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Introduction:Grasslands exhibit significant variability in productivity across fine spatial

scales, which is crucial for understanding terrestrial carbon cycling, particularly under

global climate change. While alpine grasslands have been extensively studied,

subalpine wet grasslands (2000–4000 m) remain underexplored. Investigating their

productivity and responses to environmental factors is essential for a comprehensive

understanding of ecosystem dynamics in these regions.

Method: We applied destructive sampling techniques, optimized grassland

investigation, and employed multivariate modeling to examine how different

environmental variables influence grassland biomass. An 80-plot field-based

dataset was established in a subalpine wet grassland.

Results: Our findings reveal that plant biomass peaked at elevations between

3400 and 3500 m. Belowground biomass accounted for 85% of total

productivity, with the majority contributed by dominant species. Vegetation-

related variables, such as coverage and root/shoot ratio, were the primary

determinants of aboveground biomass, whereas soil properties were key

regulators of belowground biomass. Although direct and indirect effects of

landform and climatic factors influenced total biomass, the patterns of total

and belowground biomass were consistent. The results underscore the

significant positive impact of vegetation cover, root-to-shoot ratio, and soil

conditions on grassland productivity. Notably, soil organic carbon, water

content, and the nitrogen-to-phosphorus ratio affected belowground biomass.

Discussion: These insights enhance our understanding of the intricate

interactions between climate, soil, landform, and plant communities in

influencing grassland biomass and highlight the importance of preserving plant

diversity andmaintaining optimal soil conditions in subalpine wet grasslands. One

grassland does not fit all; fine-scale classification is essential to capture the

variability in productivity across different grassland types.
KEYWORDS

biodiversity, biomass, multivariate modeling, structural equation modeling, plant
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1 Introduction

Grasslands cover approximately 30~40% of the Earth’s

terrestrial surface and store up to 20% of the carbon pool, which

constitutes one of the most extensive biomes worldwide (White et

al., 2000; Bardgett et al., 2021; Lewińska et al., 2023; Thébault et al.,

2014). Grassland ecosystems are integral to numerous terrestrial

processes, including climate regulation and soil and water

conservation, providing critical habitat and food sources for

herbivores (Bengtsson et al., 2019). Despite their ecological

significance, many grassland systems have become vulnerable due

to heavy grazing compounded by insufficient conservation

measures. This vulnerability is particularly pronounced in

mountainous meadows, at the timberline ecotone, where

environmental conditions grow increasingly severe.; thus, these

areas are more susceptible to climate change (Beniston, 2003).

Therefore, understanding how environmental factors influence

grassland ecosystem health in these ecosystems is crucial.

Plant biomass is an important indicator of ecosystem

productivity. It is influenced by biotic and abiotic environmental

conditions and is crucial in the carbon cycle and carbon stocks (Hu

et al., 2018). Accurate biomass estimation (especially belowground)

is required to understand the terrestrial carbon cycling dynamics

(Yang et al., 2008). Climate has a significant effect on biomass in

montane grasslands. Temperature and precipitation patterns affect

plant growth and productivity (Körner, 2021). Cooler temperatures

and higher precipitation in high-altitude environments generally

slow down plant metabolic rates and decrease productivity (Volk

et al., 2021). Irregular or extreme weather events can disrupt plant

development and reduce productivity (Liu et al., 2021a). In

addition, the regional climate can affect the spatial pattern of

community biomass (Bai et al., 2008). Grace et al. (2016) stated

that the combined effects of large gradients of temperature and

precipitation could be the reason for the heterogeneity in

aboveground biomass. On a regional scale, precipitation and

temperature may affect vegetation growth and distribution in a

consistent predictive relationship, influencing biomass.

Topographic variables, such as slope and aspect, affect biomass

and plant communities by influencing regional temperature and

moisture availability (Fang et al., 2005). For example, precipitation

usually increases plant productivity, but the effect of precipitation

on wet grassland productivity decreases with increasing elevation

(Xun et al., 2024). A study reveals that elevation may negatively

impact aboveground biomass in alpine grasslands (Bhandari and

Zhang, 2019); however, the effect of elevation on plant biomass in

subalpine wet grasslands remains unclear.

Soil properties impact plant biomass, and soil physical and

chemical properties affect plant species richness and community

biomass by influencing soil water holding capacity, mobility

(Schoonover and Crim, 2015), soil fertility (Tiessen, 1994), and

acidity (Palpurina et al., 2017). Soil nutrients contribute to carbon

uptake, increasing plant growth and biomass (Lee et al., 2013).

Landform characteristics can be relatively uniform at large spatial
Frontiers in Plant Science 02
scales, but microtopographic conditions at small scales can enhance

soil microbial activity (Marshall et al., 2014), indirectly affecting

plant biomass. Biotic factors, such as species composition and

diversity, impact biomass through competitive dynamics and

mutualistic interactions. The root/shoot ratio has been used to

calibrate and estimate C stocks (Tilman et al., 1997) to perform

terrestrial ecosystem carbon modeling (Thuynsma et al., 2014).

Species richness and inter/intra-specific competition are also

correlated with grass biomass (del-Val and Crawley, 2005;

Partzsch, 2019).

Although many studies have shown that environmental

conditions (biotic and abiotic) influence plant biomass (McCarthy

and Enquist, 2007), little is known about the interaction of these

environmental drivers on plant biomass (Bello et al., 2013). The

effects of environmental factors on biomass vary, and many scholars

have focused on the effects of a single factor (Jones, 2014; Raich

et al., 2014; Yang et al., 2016). Since many environmental factors

and experimental conditions impact plant biomass, more in-depth

research is required to assess the relationship between

environmental drivers and plant biomass. Many studies have

focused on broad-scale patterns (Yang et al., 2010) or specific

species (Dorner et al . , 2024) . However , mechanist ic

understanding of how fine- to meso-scale environmental

interactions modulate biomass distribution in these ecosystems

remains limited. Additionally, understanding the drivers is

essential because high-elevation grasslands are highly sensitive to

climatic fluctuations and anthropogenic pressures (Liu et al.,

2021a). Grassland studies have been conducted predominantly in

alpine (>4000 m) (Genxu et al., 2008; Wang et al., 2012) and low-

elevation (<2000 m) areas (Hooper and Johnson, 1999; Knapp et al.,

2002), whereas few focused on subalpine grasslands at 2000–4000

m elevations.

Wet grasslands are ecosystems characterized by consistently

high soil moisture levels and vegetation types adapted to such

conditions, ranging from saturated to seasonally waterlogged areas.

They occur in regions with a high water table or periodic

inundation (Joyce et al., 2016). Abundant water sources, high

biodiversity, and fertile soils make this ecosystem productive and

worth studying. Since most studies defined alpine grasslands as

areas above 4000 m (Genxu et al., 2008; Wang et al., 2012), we used

the term subalpine grasslands to define grassland areas with

elevations from 2000 to 4000 m near the timberline. Subalpine

wet grasslands are located at the lower elevations of alpine regions

and are characterized by high soil moisture and vegetation

communities adapted to the alpine conditions. These grasslands

occur between the montane and alpine zones and are influenced by

high precipitation, cool temperatures, and relatively short growing

seasons (Körner, 2021).

The synergistic effects of vegetation traits, edaphic factors,

topographic variation, and climatic influences on productivity

remain poorly resolved in subalpine wet grasslands. We posit that

environmental variables exert deterministic control over biomass

allocation in subalpine wet grasslands. The factors we analyze in this
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study include those considered in the above literature and

understudied determinants with potential theoretical or statistical

values, such as site locations, soil pH, and density. A thorough

understanding of the relationships between environmental factors

and biomass is crucial for predicting the response of these

grasslands to environmental changes and devising effective

management strategies to maintain their ecological integrity.

Hence, this research aims to disentangle the complex

relationships between plant biomass in subalpine wet grasslands

and environmental factors, such as vegetation, topography, climate,

location, and soil properties. The objectives are to (1) estimate the

productivity in the study area, (2) analyze the correlations between

aboveground, belowground, dominant species, and total biomass,

(3) identify statistically significant environmental factors affecting

biomass, and (4) analyze relationships and contributions of

dominant factors to aboveground, belowground, and total biomass.
2 Materials and methods

2.1 Study area

The study area is located in the eastern Qinghai-Tibet Plateau. It

covers an area of 10,164 km2 and has an average altitude of 3500 m

(Figure 1a). We used the Sichuan Province Grassland Resource

Survey Map (1:2.5 million scale), the Zoige County Grassland Type

Map (1:700,000 scale), and grassland classifications used in recent

Zoige studies (Bai et al., 2013; Liu et al., 2020) to choose six

grassland types: marsh wetland, marsh grassland, wet grassland,

subalpine wet grassland, subalpine shrub grassland, and alpine

grassland. Due to the potential impacts of elevation on grassland

biomass (Wang et al., 2024; Xun et al., 2024), we distributed 80 plots

uniformly in wet grassland in different elevation zones. The study

area (Zoige region) has diverse topographic conditions, including

hills, plateaus, and valleys. The hilly plateau accounts for 69% of the

total area. The study region has a wet, high-elevation, cold

temperate climate. The mean annual precipitation ranges from

600 to 800 mm, and most precipitation falls in the rainy season

(May to October). The mean annual temperature is 0.6 to 2 °C, and

the annual temperature difference is 20 to 21 °C. The hottest month

(June) has an average temperature of 10.8 to 12.6 °C, whereas the

coldest month (January) has an average temperature of -10.2 to -7.2

°C. The average annual sunshine hours are 2000 to 2400 h. The soil

types are diverse, but swamp soil and subalpine meadow soil are

dominant, accounting for 33.1% and 30.15% of the total area,

respectively (Wang et al., 2016). The unique geographical and

climate conditions of this region lead to rich and diverse

grassland resources. The grassland area is 8084 km2 (72.09% of

the study area), and the major grassland types include alpine

meadows and alpine semi-swampy areas. Dominant plant species

include Blysmus sinocompressus, Carex setschwanensis, Carex

enervis, Carex tibetikobresia, Elymus nutans, Carex moorcroftii,

and Carex muliensis.
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2.2 Experimental design and data
collection

A field survey was conducted in August 2020 at peak biomass in

areas of high rainfall (Hagiwara et al., 2010; Liu et al., 2021b). We

used a 1×1 m plot for sample collection (Figure 1b is an example).

The 80 sample plots were randomly selected in different elevation

zones, considering accessibility (3200–3900 m) (Figure 1a). The

minimum linear distance between the sample plots was 200 m. The

dominant species and biomass of the plant community differed

substantially at different sites. We chose undisturbed sites with

stable species composition and biomass as sampling areas,

representing more than 60% of the landform types in the local

area. Water areas were not included in the survey.

The coordinates of the plots were recorded using a portable GPS

unit, and topographic information, including elevation, slope, and

aspect, was collected. We investigated plant attributes, including the

height, dominant species, richness, and coverage in each plot. We

used destructive sampling for vegetation analysis (Christensen and

Hörnfeldt, 2003; Gonzalez-Cascon and Martin, 2018). All plant

species in the plots were photographed, harvested, and cleaned

with fresh water in the field. The samples were separated into

individual species, which were identified in the lab. The soil was

broken apart in a water-filled tray, and roots were removed manually

with tweezers. The roots were separated into live (white, flexible) and

dead (dark, brittle) parts, identified by morphology, and sorted by

plant species before weighing. Unrecognized and broken roots were

categorized as residual roots (Figure 1b-26). The fresh aboveground

and belowground plant components were weighed separately using

an analytical balance to determine the biomass (Liu et al., 2021b). The

plant samples were placed into envelopes, labeled, and mailed to the

laboratory to check the accuracy of the names. They were oven-dried

to a constant weight at 65 °C for two days, and their dry weight was

recorded to the nearest milligram (Hamrouni-Sellami et al., 2013).

Soil samples were collected at a depth of 30 cm using a soil

corer. Four soil cores (100 cm3) were obtained in each plot and

stored in labeled containers. Two cores were oven-dried to

determine the soil bulk density and soil water content. The plant

roots and gravel were separated from the remaining soil samples,

and the material was air-dried and passed through a 2 mm sieve.

The samples were used to determine soil physical and chemical

properties, including soil organic carbon, soil total nitrogen, total

phosphorus, and pH. Soil organic carbon was measured using the

K2Cr2O7-H2SO4 oxidation method, and soil total nitrogen was

measured using the Kjeldahl method. Soil total phosphorus was

measured using the molybdenum antimony colorimetric method.

Soil pH was obtained with a calibrated pH meter after 30 min of

extraction in distilled water (soil: water ratio of 1:2.5) (Li et al.,

2021). Mean annual temperature, mean annual precipitation, and

solar radiation data were derived from WorldClim data (Fick and

Hijmans, 2017). Landform data, such as slope and aspect, were

extracted from a 12.5 m resolution digital elevation model obtained

from the Advanced Land Observing Satellite (ALOS).
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2.3 Analysis

We modeled 18 environmental variables (Table 1) that are

known to have a significant effect on grassland productivity (Sun

et al., 2021). We conducted Pearson correlation analysis to

determine variables with a high correlation with aboveground,

belowground, and total biomass and established a polynomial

(quadratic) regression model to analyze the effect of the factors

on biomass. The explanatory power of the model was assessed based
Frontiers in Plant Science 04
on the significance (P-value) and the coefficient of determination

(R2). Principal component analysis (PCA) was used for

dimensionality reduction to transform multiple indicators

affecting the biomass of grassland vegetation communities into

several composite indicators. The principal components reflect

most of the information of the original multiple indicator

variables (Marsboom et al., 2018). Stepwise regression analysis

(SRA) was used to remove multicollinear variables (Ray-

Mukherjee et al., 2014). The PCA and SRA results were combined
FIGURE 1

(a) Map of the study area (Zoige region) and elevation. (b) An example plot with names and photos of plant species. Fresh samples are shown in
green frames, and lab-dried samples are shown in brown frames with “*” denoted after photo numbers.
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to identify the critical factors affecting grassland biomass. Results

from the literature and field observations were used to select key

variables to minimize type I errors.

The interactions between the driving factors and plant biomass

were analyzed and plotted using a structural equation model (SEM)

(Bollen, 1989). We used the SEM to evaluate the direct, indirect, and

total relationships among the factors to quantify correlations and

the variance instead of assuming that predictors were independent.

We observed collinearity between the 6 soil property indices. PCA

was used to reduce the dimensions of the soil property indices. The

first two principal components were chosen to represent the soil

properties. Standardization was performed to standardize the units.

We used the LAVAAN package in R 4.1.2 (R Core Team) to

implement the SEM, which is robust to multivariate non-

normality (Niu and Ban, 2012). Model fitness was measured

using the chi-squared test (P>0.05), comparative fit index

(CFI>0.95), goodness-of-fit index (GFI>0.95), standardized root

mean square residual (SRMR<0.06) and root mean square error

of approximation (RMSEA<0.05). Variance Inflation Factors (VIFs)
Frontiers in Plant Science 05
were used to quantify the degree of linear correlation between

biomass and explanatory variables in the SEM. All statistical

analyses were performed using IBM SPSS version 24.0 and R

version 4.1.2, and the data were analyzed using SPSS v25 and

OriginPro 2017 (IBM Corp).
3 Results

3.1 Biomass estimation and biotic factors

Table 2 lists the descriptive statistics of the grassland biomass

parameters. The average aboveground biomass, belowground

biomass, total biomass, and dominant species biomass were

360.61 g/m2, 3126.65 g/m2, 3487.26 g/m2, and 3027.50 g/m2,

respectively. Although most of the biomass occurred from 3400

to 3500 m, the biomass varied substantially in different plots, and

the coefficient of variation ranged from 47% to 65%. Aboveground,

belowground, and dominant species biomass showed a significant
TABLE 2 Descriptive statistics of plant biomass parameters.

Variables Abbreviations Min Max Mean SD CV

Aboveground biomass (g m-2) AGB 90.51 829.58 360.61 169.72 47.06

Belowground biomass (g m-2) BGB 193.75 8213.12 3126.65 1797.73 57.50

Total biomass (g m-2) TB 557.42 8818.96 3487.26 1851.81 51.10

Dominant species biomass (g m-2) DSB 531.89 7881.71 3027.50 1646.11 64.28
TABLE 1 Descriptive statistics and abbreviations of the 18 environmental factors used in this study.

Category Variable Abbreviations Min Max Mean SD

Vegetation Species richness SR 5 48 20 8.76

Coverage (%) Cover 0.3 1.0 0.8 0.22

Root-shoot ratio R/S 0.5 38.2 10 6.43

Soil Soil organic carbon (g kg-1) SOC 33.7 405.4 122.3 71.05

Soil water content (%) SWC 15.8 473.5 85.7 83.05

Soil bulk density (g cm-3) SBD 0.2 1.9 0.9 0.39

Soil total nitrogen (g kg-1) TN 1.5 18.2 6.5 3.57

Soil total phosphorus (g kg-1) TP 0.3 1.7 0.8 0.27

Soil pH PH 5.7 8 6.7 0.46

Landform Elevation (m) ELE 3320 3918 3482.7 109.06

Slope (m/100m) Slope 0 26.7 6.5 7.09

Aspect (°) Aspect 0 353.7 184.3 98.27

Longitude (°) LON 102.4 103.1 102.9 0.20

Latitude (°) LAT 33.2 34 33.7 0.22

Climate Mean annual temperature (°C) MAT -0.2 2.5 1.7 0.63

Mean annual precipitation (mm) MAP 653 699 670.9 12.07

Solar radiation (MJ m-2yr-1) SOL 8009 8510 8211 115.53
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positive correlation with total biomass (Figures 2a–c). Belowground

biomass was nearly nine times greater than aboveground biomass

(Table 2). Belowground biomass and dominant species biomass

were highly correlated with total biomass, with a degree of fit of 99%

(P<0.001) and 87% (P<0.05), respectively (Figures 2b, c). The roots

represented a large proportion of the total biomass. The root/shoot

ratio ranged from 0.53 to 38.19, indicating high spatial

heterogeneity. The average root/shoot ratio (10.10) is typically

higher in subalpine wet grasslands than in temperate grasslands

globally (root/shoot ratio of 4.2) (Mokany et al., 2006) and is

comparable to that of the wetland arctic tundra ecosystem (root/

shoot ratio of 11).
3.2 Environmental factors

We analyzed the correlations between plant biomass and the

climate, topographic, vegetation, soil, and location factors

(Figure 3). Aboveground biomass was highly correlated with the

root-shoot ratio, vegetation cover, longitude, elevation, mean

annual temperature, and solar radiation (P<0.05). Belowground

biomass was highly correlated with the root-shoot ratio, vegetation

cover, elevation, soil organic carbon, soil water content, soil bulk

density, soil total nitrogen, soil total phosphorus, and pH (P<0.01).

Likewise, total biomass was highly correlated with the root-shoot
Frontiers in Plant Science 06
ratio, vegetation cover, elevation, mean annual temperature, soil

organic carbon, soil water content, soil bulk density, soil total

nitrogen, soil total phosphorus, and pH (P<0.05). Moreover,

species richness, latitude, slope, aspect, and mean annual

precipi tat ion were not correlated with aboveground,

belowground, and total biomass (P>0.05).
3.3 Relationships between biomass and key
factors

After removing low-relevance indicators from the correlation

results, polynomial curve fitting was performed to examine the

factors affecting aboveground, belowground, and total biomass

(Figure 4). Elevation, root-shoot ratio, and longitude were

significantly negatively correlated with aboveground biomass

(P<0.05). Vegetation cover and mean annual temperature were

significantly positively correlated with aboveground biomass

(P<0.001). Solar radiation did not have a statistically significant

correlation with aboveground, belowground, and total biomass

(Figure 4f). Soil bulk density had a significant negative correlation

with belowground and total biomass (P<0.01). The root-shoot ratio,

vegetation cover, soil organic carbon, soil water content, soil total

nitrogen, and soil total phosphorus were significantly positively

correlated with belowground and total biomass (P<0.05). In
FIGURE 2

Relationships between total biomass and (a) aboveground biomass, (b) belowground biomass, and (c) dominant species biomass in subalpine wet
grasslands. Solid lines represent least squares regression lines; shaded areas indicate 95% confidence intervals. Each point corresponds to a plot,
with color gradients reflecting total biomass levels.
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addition to the seven environmental factors that significantly

affected belowground and total biomass, elevation and pH were

negatively correlated with total biomass (P<0.05).
3.4 Relationships between biomass and key
factors

PCA of 18 variables was used to identify the correlations

between the environmental variables and biomass. Two major

gradients in the environmental variables were observed, and they

explained 45.1% of the variance in the dataset (Figure 5). PCA axis 1

primarily reflected the physical and chemical properties of soil,

accounting for 29% of the overall variance in the standardized soil

variables. This dimension represents a gradient of increasing soil

total nitrogen, soil water content, and soil organic carbon. Axis 2

indicated limited contributions of soil chemical properties and

primarily reflected the topographic and climate properties.

Elevation was negatively correlated with aboveground biomass,

whereas belowground and total biomass were positively correlated

with soil organic carbon, soil water content, and soil total nitrogen.

These parameters tended to decrease with increasing soil

bulk density.

The SRA results demonstrate that vegetation cover, root/shoot

ratio, elevation, soil water content, and species richness were the key

driving factors of aboveground biomass. Vegetation cover, root-

shoot ratio, and soil water content had the largest influence on

belowground and total biomass. Covariance testing showed that the

retained climate, landform, vegetation, and soil variables selected
Frontiers in Plant Science 07
for the SEM exhibited no collinearity (VIF <10) with biomass. The

optimal model explained 66.7%, 59.1%, and 56.9% of the variance

for aboveground, belowground, and total biomass, respectively.
3.5 Multivariate analysis: SEM

Mean annual temperature, solar radiation, elevation, longitude,

soil water content, root-shoot ratio, vegetation cover, and species

richness were the critical variables derived from PCA and SRA for

modeling aboveground biomass using the SEM (Figure 6a). The

root-shoot ratio, vegetation cover, elevation, soil organic carbon,

pH, soil water content, soil total nitrogen, soil total phosphorus, and

soil bulk density were variables in the SEM of belowground biomass

(Figure 6b). These variables and mean annual temperature were

used in the SEM of total biomass (Figure 6c). The p-value (>0.05),

CFI (>0.95), GFI (>0.95), and SRMR (<0.06) indicated a good

model fit. VIFs for AGB, BGB, and TB in the SEM were 1.8, 1.6, and

1.5, respectively. The SEM of belowground and total biomass had

six soil indicators. PCA was used for their analysis, and the first

principal component was used to represent the soil factors.

The direct effects of vegetation cover, solar radiation, soil water

content, and species richness were positive on aboveground

biomass, and the path coefficients were 0.53 (p<0.001), 0.01, 0.16

(p<0.05), and 0.15, respectively. The root-shoot ratio, elevation,

longitude, and mean annual temperature had a negative effect on

aboveground biomass, and the path coefficients were -0.50

(p<0.001), -0.43 (p<0.01), -0.03, and -0.20, respectively. Regarding

the total effects, the root-shoot ratio (coefficient of -0.50, P<0.001)
FIGURE 3

Pearson’s correlation coefficients (r) between biomass and environmental driving factors represented by color gradients and numerical values with
asterisks, indicating both the strength of the correlation and its statistical significance. The significance levels are *P<0.05, **P<0.01, ***P<0.001.
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and vegetation cover (coefficient of 0.53, P<0.001) had a significant

effect on aboveground biomass, whereas longitude (coefficient of

-0.16) and mean annual temperature (coefficient of -0.01) had a

negative but weak effect. However, the root-shoot ratio, vegetation

cover, elevation, and Soil PCA1 had significant total effects on
Frontiers in Plant Science 08
belowground biomass (0.55 (P<0.001), 0.38 (P<0.001), -0.22

(P<0.05), and 0.14 (P<0.01), respectively). The patterns of total

biomass and belowground biomass were consistent. In addition, the

root-shoot ratio and vegetation cover were the dominant factors

influencing aboveground biomass, and the soil factors were the
FIGURE 4

The relationships between 12 key environmental factors (a-l) and aboveground biomass, belowground biomass, and total biomass. The lines
represent least squares regression lines, with red, green, and blue points and lines corresponding to aboveground, belowground, and total biomass,
respectively. Significance levels are indicated as follows: *P < 0.05; **P < 0.01; ***P < 0.001.
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leading factors affecting belowground and total biomass.

Topographic and climatic factors also had an indirect effect on

biomass by affecting plant richness and soil properties, and they also

directly affected biomass.
4 Discussion

Our study utilized destructive sampling and multivariate

modeling to determine the complex interactions between

environmental factors and biomass productivity in subalpine wet

grasslands. The results provide valuable insights into the effects of

different conditions and characteristics on grassland productivity.

The relationship between grassland biomass and the dominant

factors for an environmental gradient was elucidated. The results

revealed abundant belowground carbon storage in the subalpine

wet grasslands and different dominant factors affecting

aboveground, belowground, and total biomass. In summary, plant

traits had a significant effect on aboveground, belowground, and
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total biomass. Soil factors contributed significantly to belowground

and total biomass. Landform and climatic factors had a smaller

influence than plant and soil characteristics and impacted biomass

directly and indirectly. Plant diversity and soil properties

substantially affected the productivity of subalpine grasslands at

altitudes of 2000–4000 m.

Although a comprehensive analysis was conducted to assess the

impact of environmental factors on grassland biomass, some

limitations remained. First, the northeast of the study area is

inaccessible, and there were few sampling points, which may have

limited the accuracy of biomass estimates in this area. Second,

although we had detailed field measurements and determined the

correlations between biomass and environmental factors, the

limited size of the dataset could have resulted in uncertainties of

the SEM. The lack of data in continuous time series is also a

constraint. Third, this study focused on the response of subalpine

grassland to environmental factors. However, human activities,

such as grazing, affected grassland biomass (Hu et al., 2016; Zhou

et al., 2017). This study did not assess the impact of human activities
FIGURE 5

Results of principal component analysis of 18 variables. The arrows represent the eigenvectors corresponding to a variable. The quadrants indicate
positive or negative correlations, and the length of the arrow represents the correlation degree.
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on biomass. Other potential variables, such as soil water-holding

capacity, soil depth, and growing season length, were excluded due

to data availability. The microclimatic variation could be examined

in more detail using data other than WorldClim if available.

Overall, our results provide insights into the conservation and
Frontiers in Plant Science 10
restoration of grassland ecosystems. Future studies should analyze

the contribution of natural and human factors, such as grazing,

urban expansion, and other factors, to grassland productivity. It is

also worth expanding this dataset to include other subalpine wet

grasslands globally.
FIGURE 6

Final structural equation models with environmental factors affecting aboveground biomass (a1), belowground biomass (b1), and total biomass (c1).
The path coefficients are for the direct effects, and the total effects comprise direct and indirect effects (a2, b2, c2). The line thickness is
proportional to the standardized path coefficients shown next to the line. The significance levels are *P<0.05, **P<0.01, ***P<0.001. Red lines
indicate negative correlations and black lines denote positive correlations.
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4.1 Biomass estimation

We found that the correlation analysis, quadratic fitting, and

stepwise regression models provided different results for the

strongest correlation factors. The likely reason is that stepwise

regression models can only explain a fraction of the variation in

the samples of aboveground, belowground, and total biomass.

Although the high variability in biomass parameter values

indicates substantial heterogeneity across sites, the grassland

biomass we calculated was generally consistent with existing

research (Ma et al., 2017). The average belowground biomass was

nearly nine times greater than the aboveground biomass,

highlighting the importance of the root systems in these

ecosystems and demonstrating that belowground biomass is a

critical source of soil organic carbon input. Moreover, the high

positive correlations between total biomass and belowground and

dominant species biomass underscore the critical role of these

components in driving productivity. These findings emphasize

that roots represent the majority of plant biomass in subalpine

wet grasslands, contributing significantly to ecosystem functioning.

This is also the reason for the high correlation between

belowground and total biomass in subalpine areas.

The root/shoot ratios indicate substantial spatial heterogeneity

in biomass allocation. The average root/shoot ratio of 10.10 was

significantly higher than that of global temperate grasslands

(average of 4.2) (Mokany et al., 2006) and comparable to that of

wetland Arctic tundra ecosystems (Jiang et al., 2017). This result is

consistent with the significant increase in the root/shoot ratio with

declining temperature (Hui and Jackson, 2006). The higher root/

shoot ratio in montane areas could be due to the relatively slow

depletion of root carbohydrates in response to low respiration rates

in cold environments and might be associated with slower root

turnover in colder regions (Yang et al., 2009). This elevated root/

shoot ratio and high belowground biomass could be a result of

adaptation to the severe alpine environment, enhancing stability

and nutrient acquisition in challenging conditions (Bardgett et al.,

2021; Lewińska et al., 2023).
4.2 Environmental factors

Plant biomass in subalpine wet grasslands is closely related to

environmental drivers and influenced by abiotic drivers. The

positive correlation between vegetation cover and plant biomass

detected in this study supports earlier findings of other scholars

(Jiang et al., 2017; Zhang et al., 2016). Topographic, meteorological,

and soil factors affect the relationship between plant biomass and

vegetation cover (Jiang et al., 2017; Liu et al., 2018). The positive

correlation between mean annual temperature and biomass

contradicts the results of Zhou et al. (2017). The temperature is a

limiting factor, and the influence of temperature and solar radiation

on biomass is greater than that of precipitation. This may be due to

the higher altitude and lower temperatures in the Zoige region

(study area) compared to temperate and tropical areas. These

conditions inhibit biogeochemical cycles and reduce the
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availability of soil nitrogen required for plant growth (Yang et al.,

2010). Higher altitudes and lower temperatures in montane areas

reduce resource effectiveness and the ability of plants to obtain

maximum photosynthetic energy, resulting in lower aboveground

vegetation biomass at higher altitudes (Shen et al., 2021).

The contents of soil nutrients—such as soil organic carbon, soil

total nitrogen, and soil total phosphorus—were positively correlated

with both aboveground and belowground plant biomass, albeit with

varying sensitivities (see coefficients in Figure 6).These nutrients are

essential for plants (Hu et al., 2016). Nutrient deficiency slows down

plant growth (Merunková and Chytrý, 2012). Soil bulk density was

negatively correlated with biomass. High soil bulk density inhibits

root growth and infiltration, reducing soil moisture required for

plant growth and affecting all soil biochemical processes (Li et al.,

2021). Altitude had a large effect on biomass, whereas the

correlation with slope and aspect was small. The altitude was

negatively correlated with biomass. The likely reason is the lower

temperature at higher altitudes, inhibiting plant growth. The shapes

of the response curves of the critical environmental factors were

highly variable, indicating their spatial variability (Sun et al., 2018).
4.3 Multivariate analysis

PCA is a dimensionality reduction technique that transforms a

large number of variables into a smaller number of uncorrelated

components to explain the majority of the variance in the data

(Jolliffe, 2002). This method revealed two key gradients in the

environmental variables. The first axis primarily reflected the

physical and chemical soil properties, indicating an increase in

the contents of soil total nitrogen, water, and organic carbon with

an increase in belowground biomass. The second axis, which was

related to topography and climate, showed that elevation was

negatively correlated with aboveground biomass. In contrast,

belowground and total biomass were positively correlated with

soil organic carbon, water content, and total nitrogen, and they

decreased as the soil bulk density increased. Although PCA can be

useful for identifying patterns and reducing dimensionality, it does

not model causal relationships or interactions among variables.

Therefore, an SEM was developed based on the PCA results to test

hypotheses regarding the effects of statistically significant

environmental factors.

SEM is a multivariate approach for modeling complex

relationships among variables. It provides a comprehensive

framework and equations to assess direct, indirect, and total

effects (Bollen, 1989) that other multivariate methods, such as

PCA, canonical correlation analysis, partial least squares path

modeling, and multiple regression, may not fully capture. SEM’s

strength is its ability to quantify the direct and indirect effects of

factors on the dependent variable, offering insights into the

underlying mechanisms of the observed patterns (Kline, 2016).

This approach is well-suited for our study, which focuses on

disentangling the interactions between multiple environmental

factors and their impacts on plant productivity (Grace et al.,

2016). However, we acknowledge the potential mathematical
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dependence of R/S on AGB and BGB. For instance, the VIF values

for AGB, BGB, and TB in the SEM ranged between 1 and 2,

indicating low multicollinearity. This low-level correlation may

arise from the inherent mathematical relationship between R/S

and its components, AGB and BGB. Despite this, we retained R/S

in the SEM because it represents an ecologically meaningful trait,

reflecting biomass allocation strategies across environmental

gradients. Given its ecological relevance and the low level of

multicollinearity—which is a common and often acceptable issue

in SEM—its inclusion is statistically justified.

Therefore, this study used SEM as the core model to investigate

the complex relationships between environmental factors and grass

biomass in subalpine wet grasslands. The individual influence of

plant traits (e.g., root-to-shoot ratio and vegetation cover) on

aboveground biomass was greater than that of topographic and

soil factors. For belowground biomass, the individual influence of

soil factors was greater than that of topographic factors. The root-

shoot ratio and vegetation cover had the largest direct and indirect

pathway effects. However, topographic and climatic factors had

fewer individual effects on aboveground and belowground biomass

than soil and plant factors, and the total pathway effect was the

lowest, indicating that climate and topographic factors contributed

less to plant biomass than soil and vegetation factors. Many studies

have shown that climatic factors had the dominant influence on

community biomass at large scales (Jiao et al., 2017) and indirectly

affected plant community composition by changing soil moisture

availability (Yang et al., 2011). In contrast, biodiversity and soil

factors affected community density and biomass at small scales

(Marquard et al., 2009). Plant traits affect aboveground biomass

directly due to resource competition, such as capturing light,

whereas soil properties contribute to the decomposition and

mineralization of organic matter.
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Lewińska, K. E., Ives, A. R., Morrow, C. J., Rogova, N., Yin, H., Elsen, P. R., et al.
(2023). Beyond “greening” and “browning”: Trends in grassland ground cover fractions
across Eurasia that account for spatial and temporal autocorrelation. Global Change
Biol. 29, 4620–4637. doi: 10.1111/gcb.16800

Li, Z., Liang, M., Li, Z., Mariotte, P., Tong, X., Zhang, J., et al. (2021). Plant functional
groups mediate effects of climate and soil factors on species richness and community
biomass in grasslands of Mongolian Plateau. J. Plant Ecol. 14, 679–691. doi: 10.1093/
jpe/rtab021

Liu, S., Zamanian, K., Schleuss, P.-M., Zarebanadkouki, M., and Kuzyakov, Y. (2018).
Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles.
Agriculture Ecosyst. Environ. 252, 104–193. doi: 10.1016/j.agee.2018.02.005

Liu, D., Zhang, C., Ogaya, R., Fernández-Martıńez, M., Pugh, T. A. M., and Peñuelas,
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