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Satellite remote sensing data is essential for large-scale, timely, and repeatable

monitoring of forest species diversity. While various methods have been applied

to satellite-based diversity estimation at regional scales, selecting suitable sensor

and monitoring period remains challenging, especially in tropical forests. This

study aims to identify the optimal time window, spatial resolution, andmetrics for

species diversity estimation in the Jianfengling tropical forest in southern China.

We constructed stepwise linear regression models for estimating Richness,

Simpson, and Shannon-Wiener indices using in-situ species diversity and

heterogeneity metrics of spectra and structure. For analyzing phenology

influence, we utilized six Sentinel-2 images acquired bimonthly from January

to November. For evaluating scale dependency, we resampled the GF2 image to

five spatial resolutions ranging from 0.8 to 10 m. The results indicated that the

suitable phenological periods for species diversity estimation were at the

beginning and end of the growing season, especially September performing

the best for all diversity indices. Among four types of heterogeneity metrics,

spectral information consistently explained most variance in species diversity

indices across all periods. The optimal spatial resolution for estimating Richness

and Shannon-Wiener index was 4–5 m, which corresponded to the average tree

crown size. The texture features made a significant contribution compared to

other metrics. Our study highlights that species diversity monitoring is highly

dependent on the spatiotemporal scales of remote sensing data. It may offer

practical guidance for selecting appropriate data and methods for species

diversity monitoring in tropical forests.
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1 Introduction

Forest species diversity is an important indicator of forest

ecosystem health, which plays a vital role in maintaining

ecosystem services, functions, and stability (Pennekamp et al.,

2018). Tropical forests, as one of the most biologically diverse

ecosystems on Earth, are crucial for mitigating climate change

(Csillik et al., 2019). However, they are suffering a rapid loss of

biodiversity due to increasing pressures from human disturbances,

climate change, and biological invasions (Montràs-Janer et al.,

2024). Moreover, the dense evergreen vegetation and complex

structure characteristics make it particularly challenging to

estimate species diversity accurately and understand the dynamics

timely (Wiegand et al., 2017). Therefore, effective methods to

monitor forest species diversity across different spatial and

temporal scales are urgently required for assessing biodiversity

status and guiding sustainable forest management.

Traditional forest surveys could provide accurate species

diversity measurements at local scale. However, limited

accessibility and high costs of large-scale in-situ data collection

lead to calls for remotely sensed monitoring as a complement (Kerr

and Ostrovsky, 2003). Remote sensing approaches for species

diversity estimation can be broadly divided into two categories:

direct classification of species or functional types and indirect

estimation based on the relationships between species diversity

indices and multivariate heterogeneity indicators (Turner, 2014).

Many studies have explored the relationships between spectral

heterogeneity metrics and species diversity indices at landscape

scale utilizing airborne hyperspectral imagery, but its limited

coverage and low repeatability preclude widespread usage for

monitoring species diversity across larger spatial and temporal

scales (Fassnacht et al., 2022; Féret and Asner, 2014). In this

context, multispectral satellite data that effectively balance

spatiotemporal issues provide a unique opportunity for mapping

species diversity at large spatial scales, which have been successfully

applied to various ecosystems (Hernández-Stefanoni et al., 2012;

Lopes et al., 2017). However, their potential in tropical forest

ecosystems still requires further exploration.

Some studies have estimated tropical forest diversity using

spaceborne data (Ganivet and Bloomberg, 2019). For instance,

Kumar et al. (2022) calculated forest species diversity using

information theory-based indices derived from Sentinel-2 imagery.

Njomaba et al. (2024) explored the potential of PlanetScope to

predict tropical species diversity using stepwise linear regression

analysis. However, it has been observed that the relationship exhibits

phenological sensitivity and scale dependency, and is strongly

influenced by factors such as community composition,

topography, and selected heterogeneity metrics, leading to high

variability with positive, negative, or no correlation (Badourdine

et al., 2022; Pangtey et al., 2023; Wang et al., 2018a). As a result,

understanding and assessing the influence of phenology, scale, and

various metrics on species diversity estimation is crucial for

achieving more reliable monitoring in tropical forests.

Vegetation phenology refers to the periodic rhythms for growth

and development of plants to adapt to interannual or seasonal
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changes in the environment (Richardson, 2018). An increasing

number of studies have used multi-temporal images covering

different phenological periods to improve tree species and

diversity mapping accuracy (Blickensdörfer et al., 2024; Liu et al.,

2023b; Persson et al., 2018). However, the necessity of combining

multi-temporal images and the determination of optimal

phenological periods for species diversity estimation is still

challenged. Some studies showed improved performance with

multi-temporal images, especially during the transition of the

growing season (Immitzer and Atzberger, 2023; Xi et al., 2021),

while others reported no advantage over single-date images

(Pouteau et al., 2018; Torresani et al., 2019). Additionally, the

subtle phenological dynamics of evergreen vegetation and limited

cloud-free imagery in tropical regions result in gaps in

understanding the impact of phenology on forest species diversity

estimation. Thus, it is meaningful to identify suitable time windows

for monitoring species diversity in tropical forests, further guiding

the acquisition of temporally matched scenes.

Spatial scale is a central topic in both ecology and remote

sensing (Gamon et al., 2020). An increasing number of studies have

adopted the multi-scale, multi-source framework to explore how

sensor characteristics and resolution affect species diversity

estimation, using data from Sentinel-2, Landsat, RapidEye,

IKONOS, and WorldView-2 (Mallinis et al., 2020; Nagendra

et al., 2010; Wang et al., 2022). Some studies have shown that

higher spatial resolution does not necessarily improve species

diversity prediction, and medium resolution (10/15 m) may be

optimal (Liu et al., 2024). High-resolution imagery can introduce

intra-species spectral variance due to canopy shadows, while low-

resolution images may obscure inter-species spectral variance under

highly mixed conditions (Rocchini et al., 2010). Therefore, finding

the optimal spatial resolution is critical. Given that satellite data

with very high spatial and temporal resolution (e.g. GF2 and

PlanetScope) allows for better matching of pixel size with crown

size, it is essential to explore its applicability and determine the

suitable spatial resolution for forest species diversity monitoring.

Variations in species resource-use and growth strategies shape

environmental complexity across multiple dimensions (e.g.,

horizontal and vertical), which can be effectively characterized

through heterogeneity metrics that integrate multi-source remote

sensing information. Remote sensing-based heterogeneity metrics

can be generally categorized into spectral and structural

heterogeneity. The spectral heterogeneity metric is a bridge

between spectral diversity and species diversity, which has been

proven to affect species diversity predictions (Torresani et al., 2021).

Nowadays, various metrics such as coefficient of variation (CV),

convex hull area (CHA), convex hull volume (CHV), and spectral

angle mapper (SAM), have been proposed to capture

multidimensional spectral heterogeneity (Gholizadeh et al., 2018;

Kruse et al., 1993). In addition, forest structural characteristics and

their heterogeneity are considered to be proxies of forest species

diversity (Ma et al., 2022; Zhao et al., 2018). Texture features, as

expressions of spatial structure, also play a significant role in species

diversity estimation (Liu et al., 2023a). However, no single

heterogeneity metric was found to be universally applicable across
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all species diversity estimation scenarios. Therefore, it is essential to

assess the importance of different metrics in estimating species

diversity, particularly considering the variations under various

phenological phases and resolutions.

In this study, we evaluated the impact of phenology and spatial

resolution on species diversity estimation in a tropical rainforest

using multi-temporal Sentinel-2 images and very-high-resolution

GF2 images, then compared the performance of various metrics

across different periods and resolutions. Specifically, we aimed to

address the following questions: (i) Which is the crucial

phenological stage for canopy species diversity estimation in

tropical forests? (ii) What is the best spatial resolution for species

diversity estimation? (iii) How do heterogeneity metrics

quantitatively contribute to species diversity monitoring?
2 Materials and methods

2.1 Study area

The study area is located in the Jianfengling National Nature

Reserve in the southwest of Hainan province, China (JFL, 18°20′-
18°57′N, 108°41′-109°12′E), covering an area of approximately 0.54

km2 (Figure 1). It is a typical representative of China’s tropical

rainforest and belongs to the northern margin type of Asian tropical

rainforest (Zhai et al., 2013). The complex and specialized structure

of the rainforest provides conditions for a high diversity of plants.

The dominant vegetation type is tropical montane rainforest,

varying along the elevation gradient from 600 to 1200 m above

sea level. This region is characterized by a tropical island monsoon
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climate, with an average annual temperature of 19.8°C and annual

precipitation ranging from 1300 to 3700 mm. It shows distinct dry

and wet seasons, with the wet season from May to October and the

dry season from November to April (Xu et al., 2015; Zhu, 2017).

The forest canopy across this study area comprises more than 30

dominant evergreen tree species, including Gironniera subaequalis,

Quercus patelliformis, Alniphyllum fortune, Castanopsis chinensis,

Symplocos anomala, Dacrycarpus imbricatus, and Castanopsis fissa,

with varied flowering and fruiting periods (Supplementary

Figure S1).
2.2 Field measurements and diversity
metrics

Field measurements were conducted from December 12 to 24 in

2023, across 20 sample plots (20 × 20 m) within the study area

(Figure 1). The coordinates of the four corners of each plot were

determined by integrating the Real Time Kinematic (RTK) GPS/

GLONASS System with Total Station, with errors under 10 cm. In

each plot, tree parameters including species name, diameters at

breast height (DBH), crown classes (dominant, co-dominant,

intermediate, and suppressed trees), tree height, and crown

diameters in two directions (east-west and south-north) were

measured to identify upper canopy trees and calculate in-situ

species diversity. All individual trees with DBH ≥ 5 cm were

recorded and upper canopies located on the first or second layers

(dominant and co-dominant trees) were used to calculate species

diversity. The average crown diameter was 4–5 m and some plots

contained large trees (Figure 2).
FIGURE 1

Overview of the study area and field data. (a) Location of the JFL National Nature Reserve with ChinaCover land cover data (Wu et al., 2017); (b) Location of
the study area and sample plots with GF2 image; (c) LiDAR-derived canopy height model (CHM); (d) in-situ photos.
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Based on the field measurements, three commonly used species

diversity metrics, namely Richness (S) (Gaston, 2000), Shannon-

Wiener index (H) (Shannon, 1948), and Simpson index (D)

(Simpson, 1949), were calculated within each plot to quantify

different aspects of species diversity (Supplementary Table S1).

Among them, Richness represents the number of different species.

The Shannon-Wiener and Simpson indexes share certain

similarities as both take species evenness into account, but the

former focuses on rare species, whereas the latter emphasizes

dominant species. The calculation formula of the Shannon-

Wiener (H) and Simpson (D) were as Equations 1, 2:

H =o
S

i=1
− pi ln pi (1)
D = 1 −o
S

i=1
p2i (2)

where S is the total number of species in plot, and pi is the

proportional abundance of the species i, represented by the ratio of

individuals of species i within a plot.
2.3 Remote sensing data

2.3.1 Satellite data
Sentinel-2 can effectively capture spectral changes of vegetation

across different periods due to its high revisit frequency of 5–10

days, enabling us to analyze the impact of phenology on species

diversity estimation models. Considering the cloudy and rainy

weather in Southern China, we downloaded all nearly cloud-free

Sentinel-2 surface reflectance imagery over the study area from

2022 to 2024 to cover the entire phenological cycle. These level-2A

images, consist of 13 wavebands covering visible, near- and
Frontiers in Plant Science 04
shortwave-infrared spectra, were atmospherically corrected by

ESA using the Sen2Cor algorithm (Louis et al., 2016). Finally, we

obtained six Sentinel-2 images representing different phenological

periods (Table 1). Due to cloud shading obscuring one plot in the

July image, only 19 plots were used for this period. We also

conducted a visual matching inspection between Sentinel-2 and

UAV imagery to ensure that geolocation shift is acceptable. For

analysis, we excluded the 60 m atmospheric bands since they do not

contain surface information, and resampled the 20 m bands to 10 m

using bilinear interpolation based on SNAP software. Then, after

analyzing the NDVI distribution histogram and manually

inspecting the NDVI values of non-vegetation and shadow pixels,

a NDVI threshold (0.3) was applied to mask most of the non-

forested pixels while preserving forest pixels from scenes during

non-growing seasons.

GF2 is an optical satellite with sub-meter spatial resolution and

revisits within 5 days, which can capture vegetation information

effectively. GF2 images feature one panchromatic band (0.8 m) and

four VIS-NIR multispectral bands (blue, green, red, and near-

infrared) with a 4 m spatial resolution, offering valuable data for

our analysis of spatial scales (Zhou et al., 2020). We selected an

available scene of cloud-free GF2 image (29/01/2023, download

from Natural Resources Satellite Remote Sensing Cloud Service

Platform) that was closest to the field sampling period and

performed image pre-processing, including radiometric

calibration, atmospheric correction (FLAASH module based on

MODTRAN radiative transfer model), geometric correction, image

fusion, and cropping, using ENVI 5.3 software (Xia et al., 2023).

Finally, the NDVI threshold of 0.5 was applied to mask shadows.

According to the average crown diameter, we resampled the fused

image from the original (0.8 m) to coarser spatial resolutions (3 m, 4

m, 5 m, and 10 m) utilizing the nearest neighbor resampling

algorithm (Liu et al., 2024). It is worth noting that there were
FIGURE 2

Boxplots of crown diameter of individual trees in each sample plot.
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only two scenes of GF2 data available from 2022 to 2024 due to

persistent cloud and rain cover, which were insufficient to support

phenological analysis. Therefore, GF2 data was only used for multi-

resolution analysis.

2.3.2 LiDAR data
Given the absence of spaceborne LiDAR coverage in the study

area, we employed unmanned aerial vehicle (UAV) LiDAR as an

alternative to analyze the importance of structural heterogeneity

metrics for species diversity estimation. The UAV LiDAR data was

simultaneously collected with field surveys using an FT-800H laser

scanner (LuoJiaYiYun Optoelectronic Technology Co., Ltd.,

Wuhan, China) mounted on a DJI M300 UAV platform. The

scanner provided a wide field of view of 330° and a measurement

accuracy of 1 cm. The average point density was 1,058 points/m2.

The UAV LiDAR data were denoised and filtered to generate a

digital elevation model (DEM) based on classified ground points,

and a digital surface model (DSM) based on the first pulse

reflections. The canopy height model (CHM) was derived by

subtracting the DEM from the DSM at 0.5 m resolution. UAV

LiDAR data processing was performed using LiDAR360 V7.2

(GreenValley International Inc., Beijing, China). Given the subtle

structural changes, a single period of structural features was

sufficient for analysis.
2.4 Spectral and structural heterogeneity
metrics

After synthesizing the rationale and applicability of commonly

used metrics, four types of heterogeneity metrics were selected:

spectral information metrics, spectral diversity metrics, texture

features, and structural diversity metrics (Table 2). Spectral

information metrics derived from spectral bands or vegetation

indices (VIs) directly represent spectral reflectance features and

highlight specific properties of vegetation. After comprehensively

considering variable redundancy and spatial resolution of different

bands, six representative VIs from Sentinel-2 and the corresponding

three from GF2 were calculated to characterize pigment content,

specific leaf area, and water content. We adopted the coefficients of

these commonly used vegetation indices, as they have been

validated for both sensors in previous studies (Liu et al., 2024; Xi
Frontiers in Plant Science 05
et al., 2023; Zhou et al., 2020). For normalized difference spectral

index (NDSI), we modified the band combination to reflect

photosynthetic pigments and vegetation growth (Patil et al.,

2007). The average values of these spectral variables (i.e., bands

and VIs) were then computed for each plot. Spectral diversity

metrics included CV, CHA, and SAM, where CVs were calculated

based on VIs or multi-bands and CHA and SAM were calculated

using all spectral bands. Eight texture features were derived from

the gray level co-occurrence matrix (GLCM) based on the first

principal component of Sentinel-2 and GF2 multispectral imagery.

Considering the plot size, moving window sizes of GLCM were set

as 27 × 27, 7 × 7, 5 × 5, 3 × 3, and 3 × 3 for the 0.8 m, 3 m, 4 m, 5 m,

and 10 m resolution images respectively. For the phenological

analysis based on Sentinel-2 images, we excluded the texture

parameter of Cor because it was almost the same among the 20

plots. Rao’s Q index calculated based on CHM, which incorporates

horizontal variation in canopy vertical structure, was selected as the

representative of structural diversity (Torresani et al., 2020). We

directly retrieved Rao’s Q at plot-scale using the 0.5 m CHM for

temporal analysis. But in spatial scale analysis, we resampled CHM

(0.8, 3, 4, 5, and 10 m) to match the optical satellite data, and then

calculated Rao’s Q at plot-scale.
2.5 Species diversity estimation

To evaluate the impact of phenological stages and spatial resolution

on forest species diversity estimation, a series of multiple stepwise

regression analyses were conducted based on multi-temporal Sentinel-

2 data and resampled GF2 data. To avoid overfitting caused by

multicollinearity among variables, we calculated correlation

coefficients (r) among all initial variables and removed highly

correlated variables (r > 0.8) that had lower correlation with in-situ

species diversity indices (Supplementary Figure S3-S13). Remaining

variables were ranked based on their correlation with species diversity

indices, and predictor variables were selected using forward stepwise

regression. Additionally, variables with a large variance inflation factor

(VIF > 10) were removed. Finally, model accuracy was assessed via

leave-one-out cross-validation, using metrics of the coefficient of

determination (R2), root mean square error (RMSE), and the mean

absolute error (MAE). In terms of variable importance, hierarchical

partitioning was used to separate the amount of variation explained by

each predictor (Groemping, 2006).
3 Results

3.1 Impact of phenology

Based on best-fit models using multi-temporal Sentinel-2 data,

the optimal monitoring period for Richness (R2 = 0.70, RMSE =

3.39, MAE = 2.49), Shannon-Wiener (R2 = 0.71, RMSE = 0.32, MAE

= 0.26), and Simpson (R2 = 0.48, RMSE = 0.11, MAE = 0.09)

consistently occurred in September (Table 3; Figure 3). Moreover,
TABLE 1 List of Sentinel-2 datasets used in this study.

Acquisition date Sensor Acquisition year

17 January Sentinel-2B 2024

23 March Sentinel-2B 2023

17 May Sentinel-2A 2023

11 July Sentinel-2B 2023

04 September Sentinel-2B 2022

28 November Sentinel-2B 2023
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TABLE 2 Description of spectral and structural heterogeneity metrics.

Variables Description Band used Reference

Spectral information metrics

Bands Average reflectance of bands S2: 10 bands
GF2: [B, G, R, NIR]

Normalized difference vegetation
index (NDVI)

NDVI = (rNIR − rR)=(rNIR + rR) S2: [B8, B4]
GF2: [NIR, R]

(Tucker, 1979)

Simple ratio index (SR) SR = rNIR=rR S2: [B8, B4]
GF2: [NIR, R]

(Gitelson et al., 2003)
(Jordan, 1969)

Normalized difference spectral
index (NDSI)

NDSI = (r553 − r518)=(r553 + r518) S2: [B3, B2] (Patil et al., 2007)

Normalized difference water
index (NDWI)

NDWI = (r865 − r1614)=(r865 + r1614) S2: [B8A, B11] (Gao, 1996)

Canopy chlorophyll concentration
index (CCCI)

NDFR = (r790 − r720)=(r790 + r720)
NDFRmax = 0:576� NDVI − 0:0085
NDFRmin = 0:281� NDVI + 0:0225

CCCI =
NDFR − NDFRmin

NDFRmax − NDFRmin

S2: [B4, B8, B8A] (El-Shikha et al., 2007)

Enhanced vegetation index (EVI)
EVI =

2:5(rNIR − rR)
(rNIR + 6rR − 7:5rB + 1)

S2: [B2, B4, B8]
GF2: [B, R, NIR]

(Huete et al., 2002)

Spectral diversity metrics

Coefficient of Variation (CV) CV =  
sl

ml

All VIs; All Bands (Xu et al., 2022)

Convex Hull Area (CHA)
CHA =

1
So
S

i=1

CHA(Vi ,   �V)
All Bands (Gholizadeh et al., 2018)

Spectral Angle Mapper (SAM)
q   = cos−1   ( oL

l=1Sil
�Sl

(oL
l=1S

2
il  )

1
2   (oL

l=1
�Sl)

1
2  
)

All Bands (Kruse et al., 1993)

Texture features

mean (Mean), homogeneity (Hom),
contrast (Cont), dissimilarity (Dis),
entropy (Ent), angular second moment
(Asm), variance (Var), and
correlation (Cor)

derived from the gray level co-
occurrence matrix (GLCM)

The first PC of Bands (Farwell et al., 2021)

Structural diversity metrics

Rao’s quadratic entropy index
(Rao’s Q)

Rao0s  Q =o
S

i=1
o
S

j=1

dij ∗ pi ∗ pj
CHM (Torresani et al., 2020)
F
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*B, G, R, and NIR represent blue, green, red, and NIR bands of GF2. S2 represents Sentinel-2. S2 contains 10 bands, GF2 contains 4 bands. NDFR, represents normalized difference far red index.
TABLE 3 Model accuracies from multi-temporal Sentinel-2 images for Richness, Shannon-Wiener, and Simpson.

Model Richness Shannon-Wiener Simpson

R2 RMSE MAE P R2 RMSE MAE P R2 RMSE MAE P

Jan. 0.27 5.26 4.42 0.018 0.22 0.53 0.42 0.038 0.06 0.14 0.11 0.304

Mar. 0.13 5.90 4.77 0.116 0.16 0.54 0.42 0.081 0.04 0.14 0.10 0.400

May 0.31 4.98 4.14 0.011 0.51 0.42 0.35 <0.001 0.36 0.12 0.10 0.005

Jul. 0.32 5.74 4.56 0.012 0.42 0.51 0.44 0.003 0.20 0.17 0.14 0.055

Sept. 0.70 3.39 2.49 <0.001 0.71 0.32 0.26 <0.001 0.48 0.11 0.09 0.001

Nov. 0.43 4.50 3.62 0.002 0.11 0.56 0.44 0.161 0.21 0.13 0.09 0.043
fro
Bold values indicate the best model accuracies for the three species diversity indices.
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the model performance of Richness and Shannon-Wiener was

notably superior to that of Simpson (Supplementary Figure S2).
3.2 Impact of spatial resolution

The cross-validation accuracies of the models for estimating

species diversity at different spatial resolutions are shown in Table 4

and Figure 4. GF2 images were more advantageous for accurate

estimation of Richness compared to Simpson and Shannon-Wiener.

The species richness estimation model based on 5 m resolution GF2

data performed the best among all spatial resolution scenarios (R2 =

0.62, RMSE = 4.11, MAE = 3.06). The accuracy for Shannon-

Wiener estimation was highest at the resolution of 4 m (R2 = 0.24,

RMSE = 0.53, MAE = 0.39), while the Simpson estimation model

performed best at 0.8 m (R2 = 0.26, RMSE = 0.12, MAE = 0.10).

Specifically, the model at 0.8 m for Richness showed a

considerable coefficient of determination (R2 = 0.50) and

outperformed Shannon-Wiener and Simpson. Models at fine scale

(0.8 m) and approaching crown size scales (4–5 m) had similar

estimation accuracy for Shannon-Wiener, as same as for Simpson.

Compared to the estimation based on Sentinel-2 in January, GF2

data with 10 m resolution provided a higher R2 for Simpson (R2 =

0.22), while lower R2 values for Richness and Shannon-Wiener.
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3.3 Importance of heterogeneity metrics

In phenological effect analysis, spectral information metrics

exhibited the highest explanatory power, accounting for 48% of

variance in Richness and over 60% for Shannon-Wiener and

Simpson. Texture features explained more variance in Richness

(39%) than in Shannon-Wiener (12%) and Simpson (9%). Spectral

diversity metrics explained 11%, 13%, and 18% of the variance for

Richness, Shannon-Wiener, and Simpson, respectively. Structural

diversity metrics had the lowest explanatory power, contributing

10% for Shannon-Wiener, 4% for Simpson, and 2% for Richness

(Figure 5a–c). Additionally, the temporal variability of variable

contributions (Figure 5d) indicated that the explanatory power of

spectral information remained relatively stable across all phenological

periods. However, the metric with the greatest variation in importance

differed depending on diversity indices. For Richness, the structural

diversity metric showed the greatest temporal variation in importance,

while it was the spectral diversity metric for Shannon-Wiener, and the

texture feature for Simpson.

The hierarchical partitioning of the variation explained by each

variable for species diversity models at different phenological stages

is shown in Figure 6. Specifically, B2 and SR played important roles

in the January models for all species diversity indices (33% and 38%

for Richness, 23% and 77% for Shannon-Wiener, 30% and 70% for
TABLE 4 Model accuracies from multi-spatial resolution GF2 images for Richness, Shannon-Wiener, and Simpson.

Model
Richness Shannon-Wiener Simpson

R2 RMSE MAE P R2 RMSE MAE P R2 RMSE MAE P

0.8 m 0.50 4.54 3.54 0.001 0.19 0.54 0.37 0.058 0.26 0.12 0.10 0.020

3 m 0.24 5.46 4.47 0.030 0.06 0.60 0.46 0.288 0.04 0.14 0.10 0.396

4 m 0.16 5.48 4.64 0.079 0.24 0.53 0.39 0.029 0.20 0.14 0.10 0.048

5 m 0.62 4.11 3.06 <0.001 0.23 0.56 0.44 0.031 0.20 0.13 0.09 0.049

10 m 0.15 5.49 4.70 0.086 0.19 0.54 0.46 0.053 0.22 0.13 0.09 0.038
fro
Bold values indicate the best model accuracies for the three species diversity indices.
FIGURE 3

The temporal variation of coefficient of determination (R2) for the stepwise regression models for (a) Richness, (b) Shannon-Wiener, and (c) Simpson
(*, 0.05< p-value <0.1, significant; **, 0.01< p-value <0.05, very significant; ***, p-value <0.01, extremely significant).
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Simpson). B11 explained variation in Shannon-Wiener and

Simpson models from May to September, and contributed to

Richness models in July (26%) and September (18%).

Additionally, NDWI and NDSI were involved in Richness

estimation model at November, while acted on Shannon-Wiener

models in May and July, and contributed to Simpson models across

these three periods (May, July, and November). Moreover, the

texture feature of Mean independently explained all variance in

Richness in the May model, CV_NDWI accounted for all variance
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in Shannon-Wiener in the November model, and Hom explained

all variance in Simpson in the March model.

Figure 7a–c showed significant differences in the importance of

four types of heterogeneity metrics for species diversity estimation at

different spatial scales. Overall, texture features were the most

important, explaining 40%, 48%, and 57% of the variance in

Richness, Shannon-Wiener, and Simpson index, respectively.

Spectral information contributed 21% to Richness, 32% to Shannon-

Wiener, and 20% to Simpson. Spectral diversity performed better for
FIGURE 5

The overall explanatory power of four types of heterogeneity metrics on species diversity indices in phenological effect analysis (a-c); and the
explained variance’s CV of four types of heterogeneity metrics in different temporal models (d).
FIGURE 4

The spatial variation of coefficient of determination (R2) for the stepwise regression models for (a) Richness, (b) Shannon-Wiener, and (c) Simpson (*,
0.05< p-value <0.1, significant; **, 0.01< p-value <0.05, very significant; ***, p-value <0.01, extremely significant).
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Richness (25%) and Simpson (21%) than Shannon-Wiener (9%).

Structural diversity showed stronger explanatory power for Richness

(14%) and Shannon-Wiener (11%) than Simpson (2%). Moreover, the

contribution of texture features remained stable across scales for all

three diversity indices (Figure 7d). Spectral diversity varied most in

contribution for Shannon-Wiener estimation across different spatial

resolutions, while spectral information and structural diversity varied

significantly in importance for Simpson estimation across scales.
Frontiers in Plant Science 09
As shown in Figure 8, texture features Dis, Cont, and Mean

completely explained Richness at 10 m and 4 m, and Simpson at 3 m.

NDVI was the most important spectral information variable for

Shannon-Wiener, contributing significantly at 0.8 m, 3 m and 4 m

resolutions (34%, 46%, and 27%). CHA contributed to Richness

estimation at three scales (0.8 m: 14%, 3 m: 27%, and 5m: 33%), while

only one scale for Shannon-Wiener (24% at 5 m) and Simpson (10%

at 0.8 m). Rao’s Q based on CHM was involved in three spatial
FIGURE 6

Hierarchical partitioning of the variation explained for (a) Richness, (b) Shannon-Wiener, and (c) Simpson in different phenological models.
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models for Richness (0.8 m, 3 m, and 5 m), and Shannon-Wiener

(0.8 m, 4 m, and 5 m), but only one model for Simpson (0.8 m).
4 Discussion

4.1 Phenological sensitivity of species
diversity estimation

We identified September as the optimal phenological period, which

aligns with the consensus that the growing season (May–September) is

the most informative period and a primary choice for remote sensing-

based diversity monitoring. However, inconsistencies exist in literature

regarding the most efficient single-date time window for estimating

forest species diversity.While many studies underscored the importance

of transitional seasons, such as green-up (May) and senescence

(October) (Liu et al., 2023a), others suggested that peak growing

seasons like July can obtain higher accuracy (Arekhi et al., 2017;

Chrysafis et al., 2020; Yang et al., 2022). These differences stem from

the biochemical and morphological changes among species caused by

crucial phenological events, such as leaf unfolding and flowering in

spring, and leaf discoloration and falling in autumn (Kollert et al., 2021;

Xi et al., 2023). In our tropical site, some tree species begin fruiting in

September, leading to the transformation of dominant pigments in

leaves and driving color changes from green to yellow and red, which

enhances tree species differentiation (Kapoor et al., 2022). Although the
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effect of shrubs and grasses was relatively low under dense canopy cover

in tropical forests, seasonal variations in non-tree vegetation or

background signals may also affect the relationship between spectral

heterogeneity and species diversity (Madonsela et al., 2021), potentially

explaining the reduced accuracy in November. The phenological

asynchrony in different forest layers responding to warming

temperatures in May may increase the spectral contribution of non-

canopy vegetation, further reducing accuracy. These findings

underscore the importance of understory vegetation in species

diversity assessments, which may be better captured in the future

with advancements in sensor technologies, such as hyperspectral

LiDAR (Bai et al., 2024) and multi-angle observations and satellite

thermal infrared sensing (Adams et al., 2025).

Our results highlighted that late spring and autumn are critical

temporal windows for forest species diversity monitoring. However,

frequent cloud cover and rainfall in tropical regions increase the

uncertainty in acquiring images during a single optimal period.

Moreover, effective phenological time for diversity monitoring varies

by vegetation type. For example, broadleaved tree species are typically

more distinguishable in autumn, while conifers exhibit greater spectral

changes in spring (Grabska et al., 2019). Hence, if September imagery is

unavailable, May or November images can also be considered based on

vegetation characteristics. We acknowledge that bimonthly temporal

selectionmay be insufficient to fully capture subtle phenological changes

in tropical evergreen vegetation. New generation satellites with higher

spatiotemporal resolution are expected to address this limitation. For
FIGURE 7

The overall explanatory power of four types of heterogeneity metrics on species diversity indices in spatial scale effect analysis (a-c); and the
explained variance’s CV of four types of heterogeneity metrics in different spatial models (d).
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instance, the PlanetScope dataset characterized by daily revisit frequency

and 3 m spatial resolution exhibits considerable potential to

comprehensively assess forest diversity. Besides, continuous

advancements in the fusion of multi-source remote sensing data offer

promising opportunities for more effective monitoring of tropical forests

at both high temporal frequency and fine spatial resolution. Notably,

Multi-Temporal and Spectral-Temporal-Metric methods are

increasingly applied to forest species diversity mapping (Rahmanian

et al., 2023; Vanguri et al., 2024). We recommend performing a similar
Frontiers in Plant Science 11
phenological sensitivity analysis before image composition to reduce

data redundancy and improve accuracy.
4.2 Scale dependency of species diversity
estimation

Our results indicated that the optimal spatial resolution varied

among species diversity indices. The model accuracy of Richness and
FIGURE 8

Hierarchical partitioning of the variation explained for (a) Richness, (b) Shannon-Wiener, and (c) Simpson in different spatial models.
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Shannon-Wiener was highest when the spatial resolution approaches

the average crown size (4–5 m). This is because, at this resolution, the

spectral properties effectively capture the chemical, morphological,

and structural characteristics of individual trees (Zheng et al., 2022).

However, Simpson performed better at finer resolutions (0.8 m), likely

due to its sensitivity to dominant species. Considering the overall low

abundance of dominant species caused by the high diversity in this

study area, at resolutions of 5 m or alike, the spectral information of

the coniferous dominant species is easily concealed by that of

broadleaved species, while it could be preserved at fine resolution.

Although finer resolutions may introduce noise, appropriate data

preprocessing effectively mitigates this risk, ensuring reliable results.

Another point worth noting is the number of in-situ plots, which may

not fully represent the community composition and distribution in the

study area. Despite our best efforts to sample as evenly as possible, the

limited in-situ plots with high abundance of dominant species may

impact the results.

Some previous studies have compared the impact of spatial scale

on species diversity estimation using different satellite images with

multiple resolutions (Gyamfi-Ampadu et al., 2021). However,

differences in spectral properties of satellite data sources may cause

bias in evaluating scale effects. To address this, we employed a single

type of satellite data and resampling method, focusing on identifying

suitable monitoring scales to provide informed recommendations.

Moreover, evidence shows that resampling high-resolution imagery to

coarser resolutions may improve the estimation accuracy up to a

threshold, beyond which spectral mixing reduces performance (Liu

et al., 2024). Additionally, a coarser resolution resulted in fewer pixels

available within the plot for calculating the diversity indices, partly

explaining the lower accuracy observed at 10 m resolution in our

study. Beyond the critical spatial scales tested in our study, we suggest

future research paying more attention to the integrated utilization of

nested plots and UAV data to better understand the effects of grain

and extent on forest species diversity estimation. A critical next step is

to assess how spatial resolution degradation influence spectral

integrity and metric performance, with UAV imagery providing a

reliable ground reference. UAV provides very high-resolution data,

which can match well with the nested plots at different scales, thereby

enabling spatial extrapolation and selecting the optimal monitoring

scale. Adjusting the field sampling design to be remotely driven may

be also a viable strategy to probe deeply into scale effects. Besides,

while this study was targeted at tropical forests, the methodology for

scale detection is broadly applicable to other ecosystems. Notably, in

areas with large terrain undulations, such as mountainous and canyon

areas, terrain correction and shadow factors need to be carefully taken

into consideration.
4.3 Variable importance in species diversity
estimation

Our results indicated that the importance of spectral heterogeneity

metrics in forest species diversity estimation has temporal and spatial

effects. In our study, the blue band was prominent in January, probably

associated with carotenoid uptake during leaf senescence (Hennessy
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et al., 2020). The near-infrared and red-edge bands were significant in

late spring, attributed to their association with strong chlorophyll

uptake and internal leaf structure during early growth stages. The

SWIR band contributed to monitoring species diversity across several

phenological periods, potentially due to its sensitivity to canopy leaf

water content (Ming et al., 2024). However, for GF2, we only found a

weak role of Green, Red, and NDVI, which may be related to the

sensor band range and the limited number of bands. But interestingly,

when resampling to 10 m resolution, the spectral band mattered more

significantly to Simpson and Shannon-Wiener estimation compared to

spectral diversity indices that integrate multidimensional information.

This phenomenon, where more complex metrics using full-range

spectral data perform worse on coarse-resolution images, has also

been reported (Rossi et al., 2021; Wang et al., 2018b). In addition,

spectral diversity metrics calculated by Sentinel-2 showed limited

explanatory power for species diversity, while CHA based on GF2

explained a larger proportion of the variance. This discrepancy may be

attributed to the coarse spatial resolution of Sentinel-2 and its

matching issue with the plot size. Previous studies also reported that

the relationship between species and spectral diversity is more

significant at larger plot size (Marselis et al., 2019). More refined

spatial matching strategies, such as increasing field plot size, applying

sampling buffers or comparing the performance of satellite data

extracted from different corner coordinates (Liu et al., 2023b), could

contribute to mitigate the effects of positional offset. In addition,

different atmospheric correction methods may affect metric

consistency across time and space (Chraibi et al., 2022). While the

use of normalized vegetation indices (VIs) can mitigate some

atmospheric effects, band reflectance values used in spectral diversity

metrics remain sensitive to correction accuracy. Given the complexity

of atmospheric conditions in tropical regions, future research could

investigate the consistency and uncertainty of different atmospheric

correction methods, and its potential influence on spectral diversity

estimation. Also, the scale aggregation led to various degrees of spectral

mixing, which mitigated the importance of spectral heterogeneity

metrics. Therefore, the availability of more satellite-based data with

high temporal and spatial resolution or multi-temporal UAV data is

called for further exploring the suitability of spectral heterogeneity

metrics at different spatial and temporal scales.

Our analysis also emphasized the critical role of structural

heterogeneity metrics, especially texture features, in forest species

diversity estimation. These features derived from the spatial variability

in image pixels can effectively reflect variations in canopy structure, leaf

arrangement, and key aspects of ecosystem heterogeneity that influence

forest diversity patterns. Compared to other metrics, the superior

performance of texture features likely benefits from the fact that they

can be computed through diverse algorithms, enabling the

quantification of multidimensional image heterogeneity (Farwell et al.,

2021).With the emergence of more high-precision data, texture features

offer promising potential to enhance species diversity predictionmodels.

The limited structural diversity metrics (Rao’s Q and texture) in our

study may underestimate the importance of structural metrics for

species diversity estimation. Thus, we suggest fully leveraging the

advantages of LiDAR point cloud data and incorporating innovative

structural heterogeneity indices, such as canopy entropy, to reduce
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saturation effects in structurally complex forests, and improve the

accuracy of diversity estimation. Moreover, with the recent availability

of high-resolution, wall-to-wall structural parameter datasets, such as

the canopy height map at 1 m resolution (Tolan et al., 2024), the

influence of structural heterogeneity can be integrated in future large-

scale applications.
5 Conclusion

Overall, we assessed the impacts of phenology and spatial

resolution on species diversity estimation in a typical tropical forest

using Sentinel-2 and GF2 satellite data and emphasized the

importance of various heterogeneity metrics across temporal and

spatial scales. Our results indicate that the optimal phenological

periods for estimating species diversity are at the beginning and end

of the growing season, while the ideal spatial resolution aligns with the

tree crown size. These findings provide guidance on selecting

appropriate phenological periods and spatial scales, thereby

improving species diversity monitoring in complex evergreen

tropical forests to achieve more accurate and efficient estimations.

Despite focusing on a specific tropical forest, our methodology could

offer concrete spatiotemporal prior knowledge for integrating suitable

remote sensing data and optimizing fieldwork designs in various

ecosystems. Broader exploration across globally diverse tropical forests

would enhance the understanding of tropical-specific phenological

windows and spatial scales. Additionally, our study provides valuable

insights into promoting the development of dynamic heterogeneity

metrics that incorporate spatiotemporal variation and calling for in-

depth analysis of the impact of scale changes on metrics themselves.

Future research could explore the synergistic application of multi-

source satellite imagery, UAV data, and machine learning algorithms,

which may help bridge the scale gap between in-situ measurements

and large-scale satellite observations, and further enhance the accuracy

and scalability of species diversity monitoring.
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(2024). Assessing forest species diversity in Ghana’s tropical forest using planetScope
data. Remote Sens. 16, 463. doi: 10.3390/rs16030463

Pangtey, D., Padalia, H., Bodh, R., Rai, I. D., and Nandy, S. (2023). Application of
remote sensing-based spectral variability hypothesis to improve tree diversity
estimation of seasonal tropical forest considering phenological variations. Geocarto
Int. 38, 2178525. doi: 10.1080/10106049,.2023.2178525
frontiersin.org

https://doi.org/10.1016/j.rse.2025.114766
https://doi.org/10.1007/s10661-017-6295-6
https://doi.org/10.1002/rse2.306
https://doi.org/10.1016/j.rse.2024.114452
https://doi.org/10.1016/j.rse.2024.114069
https://doi.org/10.1016/j.rse.2024.114069
https://doi.org/10.1016/j.jag.2022.102884
https://doi.org/10.3390/su12219250
https://doi.org/10.1038/s41598-019-54386-6
https://doi.org/10.1016/j.agwat.2007.05.020
https://doi.org/10.1016/j.rse.2020.112175
https://doi.org/10.1016/j.rse.2020.112175
https://doi.org/10.1111/avsc.12643
https://doi.org/10.1890/13-1824.1
https://doi.org/10.1007/978-3-030-33157-3_16
https://doi.org/10.1016/j.foreco.2018.09.003
https://doi.org/10.1016/j.foreco.2018.09.003
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1038/35012228
https://doi.org/10.1016/j.rse.2017.12.014
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.3390/rs11101197
https://doi.org/10.3390/rs11101197
https://doi.org/10.18637/jss.v017.i01
https://doi.org/10.3390/rs13051033
https://doi.org/10.3390/rs12010113
https://doi.org/10.3390/rs12010113
https://doi.org/10.1016/j.jag.2012.04.002
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.3390/rs15123074
https://doi.org/10.2307/1936256
https://doi.org/10.1186/s12870-021-03411-w
https://doi.org/10.1016/s0169-5347(03)00071-5
https://doi.org/10.1016/j.jag.2020.102208
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.1371/journal.pone.0268018
https://doi.org/10.1002/rse2.383
https://doi.org/10.1016/j.rse.2023.113576
https://doi.org/10.1016/j.fecs.2023.100122
https://doi.org/10.3390/rs9100993
https://doi.org/10.3390/rs9100993
https://doi.org/10.1016/j.fmre.2022.10.005
https://doi.org/10.3390/rs13132467
https://doi.org/10.3390/rs12071210
https://doi.org/10.1088/1748-9326/ab2dcd
https://doi.org/10.1088/1748-9326/ab2dcd
https://doi.org/10.1016/j.ecolind.2024.111711
https://doi.org/10.1038/s41559-024-02326-7
https://doi.org/10.1038/s41559-024-02326-7
https://doi.org/10.3390/rs2020478
https://doi.org/10.3390/rs16030463
https://doi.org/10.1080/10106049,.2023.2178525
https://doi.org/10.3389/fpls.2025.1582910
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1582910
Patil, V. D., Adsul, P. B., and Deshmukh, L. S. (2007). Studies on spectral reflectance
under normal and nitrogen, phosphorus and pest and disease stress condition in
soybean (Glycine max L.). J. Indian Soc. Remote Sens. 35, 351–359. doi: 10.1007/
BF02990790

Pennekamp, F., Pontarp, M., Tabi, A., Altermatt, F., Alther, R., Choffat, Y., et al.
(2018). Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112.
doi: 10.1038/s41586-018-0627-8

Persson, M., Lindberg, E., and Reese, H. (2018). Tree species classification with
multi-temporal sentinel-2 data. Remote Sens. 10, 1794. doi: 10.3390/rs10111794

Pouteau, R., Gillespie, T. W., and Birnbaum, P. (2018). Predicting tropical tree
species richness from normalized difference vegetation index time series: the devil is
perhaps not in the detail. Remote Sens. 10, 698. doi: 10.3390/rs10050698

Rahmanian, S., Nasiri, V., Amindin, A., Karami, S., Maleki, S., Pouyan, S., et al.
(2023). Prediction of plant diversity using multi-seasonal remotely sensed and
geodiversity data in a mountainous area. Remote Sens. 15, 387. doi: 10.3390/rs15020387

Richardson, A. D. (2018). Tracking seasonal rhythms of plants in diverse ecosystems
with digital camera imagery. New Phytol. 222, 1742–1750. doi: 10.1111/nph.15591

Rocchini, D., Balkenhol, N., Carter, G. A., Foody, G. M., Gillespie, T. W., He, K. S.,
et al. (2010). Remotely sensed spectral heterogeneity as a proxy of species diversity:
Recent advances and open challenges. Ecol. Inf. 5, 318–329. doi: 10.1016/
j.ecoinf.2010.06.001

Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M., Risch, A. C.,
et al. (2021). Spatial resolution, spectral metrics and biomass are key aspects in
estimating plant species richness from spectral diversity in species-rich grasslands.
Remote Sens. Ecol. Conserv. 8, 297–314. doi: 10.1002/rse2.244

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech. J.
27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x

Simpson, E. H. (1949). Measurement of diversity. Nature 163, 688–688. doi: 10.1038/
163688a0

Tolan, J., Yang, H.-I., Nosarzewski, B., Couairon, G., Vo, H. V., Brandt, J., et al.
(2024). Very high resolution canopy height maps from RGB imagery using self-
supervised vision transformer and convolutional decoder trained on aerial lidar.
Remote Sens. Environ. 300, 113888. doi: 10.1016/j.rse.2023.113888

Torresani, M., Feilhauer, H., Rocchini, D., Féret, J. B., Zebisch, M., and Tonon, G.
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