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From text to traits: exploring
the role of large language
models in plant breeding
Mohsen Yoosefzadeh-Najafabadi *

Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
Modern plant breeders regularly deal with the intricate patterns within biological

data in order to better understand the biological background behind a trait of

interest and speed up the breeding process. Recently, Large Language Models

(LLMs) have gained widespread adoption in everyday contexts, showcasing

remarkable capabilities in understanding and generating human-like text. By

harnessing the capabilities of LLMs, foundational models can be repurposed to

uncover intricate patterns within biological data, leading to the development of

robust and flexible predictive tools that provide valuable insights into complex

plant breeding systems. Despite the significant progress made in utilizing LLMs in

various scientific domains, their adoption within plant breeding remains

unexplored, presenting a significant opportunity for innovation. This review

paper explores how LLMs, initially designed for natural language tasks, can be

adapted to address specific challenges in plant breeding, such as identifying

novel genetic interactions, predicting performance of a trait of interest, and well-

integrating diverse datasets such as multi-omics, phenotypic, and environmental

sources. Compared to conventional breeding methods, LLMs offer the potential

to enhance the discovery of genetic relationships, improve trait prediction

accuracy, and facilitate informed decision-making. This review aims to bridge

this gap by highlighting current advancements, challenges, and future directions

for integrating LLMs into plant breeding, ultimately contributing to sustainable

agriculture and improved global food security.
KEYWORDS

artificial intelligence, computational biology, knowledge graph, plant breeding,
plant omics
Introduction

Plant breeding is the process of developing new cultivars that begins with selecting

potential parental lines with desirable traits and making crosses to create a breeding

population, followed by implementing various selection strategies to identify superior lines

(Yoosefzadeh-Najafabadi and Rajcan, 2023). At the end of the breeding cycle, superior lines

will be selected based on different traits of interests including disease resistance, increased

yield, improved flavor, and better adaptability to various environmental conditions
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(Yoosefzadeh-Najafabadi and Rajcan, 2023). However, most of the

traits are complex in nature, controlling by several genes with major

and minor effect, environment, management, and their interactions

with other omics such as transcriptomics, metabolomics,

proteomics, etc (Haq et al., 2023). Therefore, plant breeders

leverage various tools and disciplines to enhance the pace of crop

improvement and make their selection more accurate.

One of the most important tools that breeders have been

utilizing extensively for decades is the use of mathematical and

statistical approaches. These approaches act as a guiding compass,

empowering breeders with two powerful wings to navigate through

the vast landscape of datasets, skillfully evaluate lines and predict

their performance under various climate and management

conditions. At the beginning, analysis of variance (St and Wold,

1989) and post hoc comparison test (Williams and Abdi, 2022) were

become incredibly popular within the plant breeding community,

with the use of a ≤ 0.05 (commonly) as the threshold, pioneered by

Fisher (Fisher, 1936). It is worth noting that Fisher unintentionally

established this threshold to distinguish between significant and

non-significant results (Stigler, 2008).

Gradually, breeders have utilized more approaches as they

broaden their research into comparing different environments, the

genetic and environment interactions, understanding the

relationships between important agronomic traits and evaluating

varieties based on multiple traits. Methods such as Principal

Component Analysis (Abdi and Williams, 2010), Multidimensional

Scaling (Douglas Carroll and Arabie, 1998), factor analysis (Lawley

and Maxwell, 1962), stability analysis (Lin et al., 1986), and the

Additive Main Effects andMultiplicative Interactionmodel (Moreno-

González et al., 2003) have played a significant role in helping

breeders to understand the fact that successful breeding is not

merely a matter of trial and error in the field or probabilities of

success by increasing the number of crosses, but rather a nuanced

process that involves significant understanding of intricate

relationships within/among traits and the art of superior selection.

In order to facilitate their understating, breeders have begun

incorporating multi-omics into their research, but identifying

interactions continues to present challenges (Yoosefzadeh

Najafabadi et al., 2024). Many existing tools rely on comparing P-

values derived from two variables at a time, which is not well-

equipped to handle multiple variables simultaneously (Yoosefzadeh

Najafabadi et al., 2023b). Additionally, adhering strictly to the

traditional significance threshold of a ≤ 0.05 may result in

overlooking valuable variables throughout the analysis, further

complicating the situation. Furthermore, as data collection

technologies advance with high-throughput omics approaches,

vast amounts of data are being generated at an unprecedented

rate; the concept of big data is beginning to make waves in the field

of breeding (Hina et al., 2024). This abundance of data poses

challenges for current methods, particularly due to the “small n,

large p” problem and the diverse nature of the data points, making

accurate analysis and interpretation an intimidating task.

In recent decades, plant breeders started to incorporate more

sophisticated approaches such as machine/deep learning algorithms in

order to overcome the shortcomings of conventional algorithms.
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One of the key advantages of machine learning (ML) is its ability to

handle big data generated by high-throughput omics approaches,

which is crucial in the field of breeding where vast amounts of data are

being produced rapidly (Yoosefzadeh Najafabadi et al., 2023b).

Gradually, breeders have recognized the potential benefits of

combining multiple ML algorithms into ensemble models to further

enhance their analysis of multi-omics data. Ensemble algorithms work

by aggregating the predictions of multiple base models to generate a

final prediction that often outperforms any individual model. By

leveraging ensemble techniques such as random forests, gradient

boosting, or stacking, breeders can harness the strengths of different

algorithms and mitigate their weaknesses, leading to more robust and

accurate predictions (Montesinos-López et al., 2024). Deep learning

(DL), a subset of machine learning, offers even more advanced

capabilities for breeders looking to analyze complex multi-omics

data (Farooq et al., 2024). DL algorithms, particularly neural

networks with multiple layers, excel at automatically learning

intricate patterns and representations from large and diverse

datasets (Yoosefzadeh Najafabadi et al., 2023c; Farooq et al., 2024).

This is especially beneficial in breeding research where the data often

exhibits non-linear relationships and interactions that are difficult to

capture using traditional methods. Furthermore, DL algorithms can

adapt and improve their performance over time as they are exposed to

more data, making them well-suited for handling the evolving nature

of multi-omics data in breeding research (Farooq et al., 2024). There is

no doubt that classical ML and DL algorithms can process large

datasets and detect patterns; however, they often require extensive

feature engineering and may struggle with integrating diverse data

types simultaneously, such as genomic, phenotypic, and

environmental data. These models are typically domain-specific,

focusing on individual aspects of the data rather than offering a

holistic view. Consequently, they might overlook subtle genetic

interactions and fail to capture non-linear relationships

comprehensively (Yoosefzadeh Najafabadi et al., 2023b).

As breeders strive to decode complex biological aspects behind

different traits of interests and refine crop improvement strategies,

Large Language Models (LLMs) offer a groundbreaking approach

(Kuska et al., 2024; Lam et al., 2024). LLMs, with their advanced

capabilities in understanding and generating human-like text, offer

great potential in synthesizing vast and diverse datasets. Their

application in plant breeding can revolutionize how breeders’

access, interpret, and utilize information from high-throughput

omics technologies, phenotypic, and environmental sources

(Kuska et al., 2024). Unlike traditional methods, LLMs can

manage vast and heterogeneous datasets by leveraging their

ability to uncover intricate relationships without domain-specific

feature engineering. By analyzing vast amounts of data, LLMs can

extract insights, identify patterns, and even generate novel

hypotheses that can steer breeding programs towards more

informed and efficient decision-making (Lam et al., 2024; Pan

et al., 2024). This, in turn, can streamline the breeding process,

reduce time and resources spent on trial and error, and help in the

development of more resilient and productive crop varieties.

The primary goal of this paper is to elucidate the transformative

potential of LLMs in the field of plant breeding. By integrating DL
frontiersin.org
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and sophisticated AI techniques, the paper aims to demonstrate

how LLMs can handling vast and complex datasets to provide a

comprehensive understanding of biological aspects behind complex

traits. The paper seeks to highlight the specific applications of LLMs

in plant breeding, from improving the accuracy of predictions to

enabling the discovery of novel genetic interactions. Additionally, it

aims to provide a comprehensive guide on the implementation of

LLMs, showcasing its potential in plant breeding area. Ultimately,

this paper aspires to pave the way for a more informed and

data-driven approach to plant breeding, fostering innovation and

efficiency in the development of superior crop varieties.

Evolution of plant breeding: from
early practices to advanced
computational techniques

Plant breeding is a dynamic field that has undergone significant

evolution over the years (Figure 1). The origins of plant breeding

date back centuries, coinciding with the advent of agriculture itself
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(Lee et al., 2015). Early farmers intuitively selected plants with

desirable traits for cultivation, laying the groundwork for what

would become a sophisticated scientific discipline. The

formalization of plant breeding as a scientific endeavor began in

the 19th century with the work of Gregor Mendel, whose

experiments with pea plants established the principles of heredity

(Yoosefzadeh Najafabadi et al., 2023c). Mendel’s laws provided a

foundational framework for understanding how traits are inherited,

enabling breeders to predict the outcomes of their breeding

activities (Yoosefzadeh Najafabadi et al., 2023c). Over time, this

knowledge facilitated the development of more structured and

systematic approaches to plant breeding (Figure 1).

The 20th century witnessed remarkable advancements in plant

breeding driven by the adoption of genetics and biotechnology

(Kim et al., 2020). The Green Revolution, marked by the

introduction of high-yielding varieties and the use of chemical

fertilizers and pesticides, significantly boosted agricultural

productivity worldwide and helped avert widespread famine

(Conway and Barbie, 1988). However, this period also highlighted

the importance of addressing issues such as genetic diversity and
FIGURE 1

An illustrated timeline presents a historical perspective on plant breeding techniques. It started with the Crop Domestication phase, when selective
breeding began around 10,000 BC. The next era, Conventional Breeding, involved the use of systematic selection and hybridization to improve
desirable traits. In the 1980s, Molecular Breeding ad marker assisted selection was introduced, advancing genetic mapping and molecular markers to
enable DNA-level trait selection. Predictive Breeding utilized in 2012, integrating genomic data with advanced analytics for more efficient and
accurate selection. As plant breeding moves forward, AI-Powered breeding platforms are being developed, representing the next frontier in plant
breeding. This illustration was created using BioRender.com.
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environmental sustainability. Conventional breeding methods, such

as mass selection, backcrossing, and hybridization, became staples

of the plant breeding process, allowing breeders to develop varieties

with improved traits like yield, disease resistance, and stress

tolerance (Singh et al., 2021). Despite these successes, the intricate

nature of traits governed by complex genetic architectures and

environmental interactions posed ongoing challenges.

The transition from conventional plant breeding to modern

breeding techniques reflects the broader shift towards data-driven

and precision agriculture (Farooq et al., 2024). As traditional

methods reached their limits in addressing complex challenges

such as climate change, food security, and resource sustainability,

breeders began to explore innovative approaches that integrate

technological advancements with classical breeding principles.

One of the most transformative changes has been the integration

of multi-omics technologies, including genomics, transcriptomics,

proteomics, and metabolomics, which allow for a holistic

examination of the biological processes underlying trait

expression (Hina et al., 2024). This integration provides a

multidimensional understanding of how genes, proteins, and

metabolites interact, enabling breeders to gain insights into trait

variation and stress responses.

The integration of advanced computational techniques is a

defining feature of modern plant breeding (Figure 1). These tools

have transformed the analysis of complex datasets, enabling breeders

to identify hidden patterns and relationships that were once difficult

to detect (Farooq et al., 2024). However, the sheer volume and

heterogeneity of multi-omics data have outpaced the capabilities of

traditional computational methods, which often require structured

inputs and struggle to synthesize unstructured sources such as

scientific literature or field notes. This is where LLMs emerge as a

recent advancement in the evolution of plant breeding, building on

the foundation laid by earlier computational techniques while

addressing their limitations. Rooted in transformer architectures

developed for natural language processing, LLMs excel at

processing sequential and textual data, ranging from sequences to

research publications, without the need for extensive preprocessing or

domain-specific feature engineering (Lam et al., 2024). This capability

marks a significant leap beyond the trial-and-error approaches of

early breeding and the data-limited precision of mid-20th-century

methods, positioning LLMs as a cornerstone of modern, data-driven

breeding programs. However, to effectively implement recent

algorithm advancements into the breeding program, breeders need

to utilize a wide array of packages and libraries available in various

programming languages, including R, Python, and Bash

(Yoosefzadeh Najafabadi et al., 2023a). This raises the important

question of how coding and computer languages are empowering

plant breeders to address the big data challenges arising from the use

of multi-omics in their breeding programs.
How codes are helpful in plant breeding?

The rapid integration of new technologies in breeding programs

has led to a significant increase in the volume, variety, and accuracy
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of data points, combined with the nature of data collection, thereby

presenting big data challenges (Yoosefzadeh-Najafabadi et al.,

2024). Historically, concerns over the storage, analysis, and

interpretation of multi-omics datasets within constrained

timeframes posed significant challenges to their adoption in

advancing breeding programs. However, these challenges are

gradually being mitigated through the availability of diverse

software packages and platforms developed in various

programming languages, such as R, Python, and Bash (Kim et al.,

2020). Additionally, the implementation of AI components,

including ML, DL, reinforcement learning (RL), and transfer

learning (TL), has fostered effective collaboration between plant

and computer scientists, facilitating the extraction of valuable

information from multi-omics datasets (Kim et al., 2020; Farooq

et al., 2024).

Coding plays an important role not only in data analysis but

also in streamlining data integration processes. Modern data

integration techniques have proven effective in evaluating

complex traits, such as soybean yield. For example, Yoosefzadeh-

Najafabadi et al. (2021) introduced a hyperspectral genome-wide

association study (HypWAS) using a hierarchical data integration

strategy to assess the predictive power of hyperspectral reflectance

bands for soybean seed yield. This comprehensive analysis was

executed in R, utilizing various packages that facilitate these

complex computations. In a similar area, ML and DL algorithms

have been applied in plant breeding programs to detect biotic and

abiotic stresses in crops, such as stripe rust in wheat (Walsh et al.,

2024), iron deficiency chlorosis in soybeans (Xu et al., 2021), and

powdery mildew in vegetables (Mahmood ur Rehman et al., 2024).

These studies utilized different programming languages and

extensive coding to optimize algorithm parameters, visualize data,

and interpret results. Therefore, the use of coding and

computational tools in plant breeding is vital for future advances,

unlocking deeper insights and fostering innovations that improve

crop resilience and productivity. In terms of coding for LLMs, an

LLM coded in Python could be fine-tuned on a corpus of plant

breeding publications to extract insights about genetic markers

linked to drought tolerance, then integrate these with

hyperspectral data from HypWAS to refine yield predictions

under water-limited conditions. Moreover, LLMs can streamline

bioinformatics workflows by assisting in coding tasks, such as

generating R scripts to analyze multi-omics data or debugging

Python code for genomic annotations, reducing the technical

burden on plant breeders (Zhao et al., 2023).
Does algorithm help plant breeders?

Algorithms are central to the computational toolkit in plant

breeding, where they serve numerous critical functions. An

algorithm is essentially a step-by-step procedure or formula for

solving a problem, and in the context of plant breeding, they are

used to process and analyze large volumes of data with speed and

accuracy that would be unattainable through manual methods

(Yang et al., 2021). From simple statistical calculations to
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complex ML models, algorithms enable breeders to examine genetic

diversity, estimate breeding values, and identify omics regions

associated with desirable traits (Yang et al., 2021). For instance,

algorithms used in predictive modeling can help estimate the

potential yield or disease resistance of future plant generations,

thereby improving the selection and breeding of superior cultivars

(Cooper et al., 2014). The utilization of ensemble methods such as

random forests and gradient boosting further enhances predictive

accuracy by combining the strengths of multiple algorithms (Zhang

et al., 2022).

Furthermore, algorithms facilitate the exploration of genetic

relationships, such as epistatic interactions and genotype-

environment interactions, which are important for understanding

the full complexity of trait expression (Dwivedi et al., 2024).

Advanced algorithms in DL, particularly neural networks, go a

step further by automatically learning representations of data,

optimizing breeders’ abilities to forecast breeding outcomes and

design efficient breeding experiments (Montesinos-López et al.,

2021). Algorithms, therefore, provide plant breeders with a

powerful means to harness the potential of big data, enabling

precise and informed intervention in the breeding pipeline

(Mansoor et al., 2024).

The advent of LLMs elevates the role of algorithms in plant

breeding by introducing a versatile, data-agnostic approach that

exceeds the limitations of traditional methods. For example, an

LLM could analyze genomic sequences and environmental data

alongside unstructured field trial notes to predict epistatic effects on

yield with greater nuance than random forests, which rely on pre-

engineered features. Similarly, LLMs can synthesize multi-omics

data to predict genotype-environment interactions under future

climate scenarios, providing breeders with actionable crossing

recommendations. Unlike domain-specific DL models, LLMs offer

adaptability through fine-tuning or zero-shot learning, allowing
Frontiers in Plant Science 05
breeders to repurpose them for diverse tasks, such as annotating

regulatory regions in wheat genomes or generating hypotheses

about stress tolerance genes by processing thousands of research

articles (Kuska et al., 2024). This flexibility reduces the need for

multiple specialized algorithms, streamlining workflows and

enhancing precision. By integrating LLMs into breeding pipelines,

algorithms evolve from mere data processors to intelligent partners,

capable of uncovering novel insights and accelerating the

development of superior cultivars with unprecedented efficiency.
Leverage the best of existing datasets,
findings, and innovations

As plant breeders leverage advanced algorithms and multi-

omics datasets to unravel the complexities of complex traits, they

are generating a wealth of insightful results that drive the field

forward. Furthermore, the valuable datasets derived from multi-

omics explorations are frequently archived in platforms such as

NCBI and other repositories, ensuring broader accessibility and

preservation for future research endeavors (Misra et al., 2019;

Binokay et al., 2025).

The trend in the release of plant-related reference genome data

from 2000 to 2024 (NCBI, 2024) reveals a remarkable increase in

the availability of sequencing data pertinent to plant breeding and

genomics (Figure 2). The gradual rise in reference genome releases

from only a couple of datasets in the early 2000s to a peak of 942 in

2023 (NCBI, 2024) underscores the significant advancements in

sequencing technologies and their increasing adoption within the

field of plant research. In the initial years, specifically from 2000 to

2009, the number of plant-related reference genome releases was

minimal, with only a total of 10 datasets published by 2009 (NCBI,

2024). This limited output can be attributed to several factors,
FIGURE 2

A figure showcasing the release of plant reference genome data in the NCBI database ranging from 2000 to 2024.
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including the relatively high cost of sequencing, the early stages of

technology development, and the lack of widespread application in

plant breeding research. During this time, most studies focused on

foundational genomic research rather than large-scale data

generation. A significant turning point occurred in the early

2010s, particularly from 2010 to 2014, when the number of plant-

related reference genome releases began to grow exponentially

(NCBI, 2024). For instance, releases increased from 13 in 2010 to

74 in 2014 (Figure 2). This growth can be attributed to various

factors, including advancements in sequencing technology,

increased focus on genomic research in plants, and collaborative

initiatives and consortia. The exponential rise in reference genome

releases from 2018 onwards, with records peaking at 942 in

2023 (NCBI, 2024), reflects the culmination of these trends.

Factors contributing to this increase include emerging

applications in precision plant breeding, regulatory and funding

support, and open data initiatives. The sustained high volume of

reference genome releases in recent years highlights the growing

importance of genomic resources for plant breeding (Yoosefzadeh-

Najafabadi et al., 2024). These datasets provide valuable insights

into genetic diversity, trait associations, and genomic architectures,

enabling breeders to make more informed decisions and enhance

breeding efficiency (Yoosefzadeh-Najafabadi et al., 2024). As the

volume of available data continues to grow, there is an increasing

need for advanced bioinformatics tools and analytical frameworks

to effectively utilize these resources in plant breeding strategies.

Despite the wealth of data and insights being generated, effective

integration into breeding programs remains a key challenge. This is

where LLMs become crucial, by offering a transformative approach

to navigate and synthesize the vast repositories of knowledge

scattered across publications and online databases (Lam et al.,

2024). LLMs can serve as intelligent intermediaries, providing

strategic access to existing data and facilitating its incorporation

into individual breeding initiatives. To expand this potential, LLMs

can leverage the growing datasets in novel ways not yet fully

explored in plant breeding. For instance, an LLM could be

trained on the 942 plant reference genomes from 2023 (NCBI,

2024) alongside real-time satellite imagery data to model how

genetic variations influence canopy development across diverse

agroecosystems, offering breeders spatially explicit insights for

selecting climate-adaptive cultivars. LLMs also could integrate

multi-omics datasets with emerging single-cell sequencing atlases,

such as those mapping root responses to nutrient deficiencies, to

predict how cellular-level gene expression translates to whole-plant

phenotypes, a granularity beyond the reach of conventional

bioinformatics pipelines. By constructing dynamic knowledge

graphs that evolve with new data inputs, LLMs can track

temporal trends in trait evolution, such as shifts in disease

resistance profiles over decades, enabling breeders to predict

pathogen pressures and prioritize resistant germplasm. These

innovative applications demonstrate how LLMs can transform

static datasets into living, predictive tools, bridging the gap

between data generation and application to drive rapid, impactful

advancements in crop development.
Frontiers in Plant Science 06
The story of language models, the
definition and basic information

Language models (LMs) consist of advanced algorithms or neural

networks that are trained extensively on large text datasets to learn

and identify statistical relationships and patterns in natural language

(Lam et al., 2024). LMs have a long history of use in biological

applications, functioning as word n-grams, convolutional neural

networks (CNNs), long short-term memory (LSTM) networks, and

transformers (Anderson et al., 2021; Lam et al., 2024).

Word n-grams, an important type of LM, are sequences of n

consecutive words in a given text, where ‘n’ is a positive integer

(Anderson et al., 2021). For example, the term “Xyloglucan endo-

transglycosylase” forms a 2-bigram. Word n-grams are typically

used in text mining within scientific publications and for identifying

regulatory elements in DNA sequences (where n-grams and k-mers

are often used interchangeably), as well as for interpreting protein-

protein interactions (Pan et al., 2022). However, n-grams have a

major drawback as they cannot account for the order of words,

which means they fail to capture the complex context that exists

between different n-grams or k-mers. Therefore, they cannot fully

capture the biological aspects of a trait of interest, such as the order

of genes, phenotypes, or the best sequence for making crosses (in

plant breeding area), which is a challenging task using this

approach. CNNs, another type of LM, use convolutions,

essentially filters, to analyze images or sequences of characters

(Zrimec et al., 2020; Gao et al., 2022). These filters are employed

to detect specific features or information within the input data. In

plant biology, CNNs have been crucial for identifying regulatory

enhancers in DNA and have been used in studying protein

ubiquitination (Gao et al., 2022). However, like n-grams, CNNs

have limitations due to the fixed size of their filters, making them

better suited to capturing local patterns rather than understanding

long-range dependencies or complex sentence structures (Zrimec

et al., 2020).

Despite these limitations, CNNs have performed well in the

fields of genomics and phenomics. They have been widely used to

predict gene expression levels based on sequence data (Zrimec et al.,

2020). By incorporating techniques such as dilation and scanning

field approaches, CNNs have outperformed other neural network

models (Erfanian et al., 2023). They have shown a strong ability to

identify significant motifs in input sequences and have been

extensively used in genomics and transcriptomics analyses

because of their unique strengths (Washburn et al., 2019;

Erfanian et al., 2023). Additionally, CNNs have been successfully

used to predict the sequence specificities of DNA and RNA-binding

proteins (Washburn et al., 2019). In phenomics, CNNs are used to

analyze plant images to assess traits like leaf size, shape, number,

and health, aiding in understanding plant growth and development

under various conditions (Mansoor et al., 2024). For example,

CNNs can automatically classify different plant species or detect

various disease symptoms from leaf images, enhancing breeding

programs and crop management (Ngugi et al., 2021; Iftikhar

et al., 2024).
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LSTM models are a specialized type of Recurrent Neural

Network (RNN) that excel in processing sequential data, such as

text and multi-omics sequences (Lam et al., 2024). These models are

skilled at capturing long-range dependencies in data through the

use of both long and short-term memory constructs (Gandhewar

et al., 2025). LSTMs are applied in biology for tasks such as genome

annotation and genotype classification (Taghavi Namin et al., 2018;

Gandhewar et al., 2025). However, a limitation of LSTMs, as well as

other RNNs, is their tendency to lose track of information from the

beginning of a sequence when dealing with longer texts (Amiri

et al., 2024). This problem arises due to the vanishing gradient issue,

where the model’s memory fades as information is compressed over

time. Additionally, LSTMs are prone to the exploding gradient

problem, which can cause instability and training difficulties for

certain datasets (Turkoglu et al., 2022). The sequential nature of

LSTM processing also hinders its training efficiency, as it cannot

utilize parallel computation, resulting in slower and more resource-

intensive training cycles (Turkoglu et al., 2022).

In contrast, Transformer models, introduced in 2017 to

improve machine translation (Vaswani, 2017), have since been

applied to a wide range of genomic challenges (Avsec et al., 2021;

Ji et al., 2021; Brandes et al., 2022; Cui et al., 2024a). Transformers

generally outperform LSTMs and similar architectures by offering

several key advantages. The primary strength of Transformers lies

in their multi-headed attention mechanism. This feature allows a

self-attention process that effectively captures long-range

dependencies in the data, significantly reducing the ‘forgetting’

issue common in LSTMs and enabling the analysis of longer

sequences (Shi et al., 2023). Each head in the multi-headed

attention mechanism focuses on a different segment of the input

text, fostering a richer and more nuanced understanding of long-

range interactions (Chen et al., 2023; Shi et al., 2023). Unlike RNNs,

where computation is dependent on the previous step,

Transformers allow for parallel processing, making them much

more efficient for training, deployment, and scaling up (Chen et al.,

2023). Additionally, the self-attention mechanisms within

Transformers can be examined to identify which parts of the

sequence the model emphasizes, providing insights into the

statistical relationships between sequence elements (Choi and Lee,

2023). However, despite these advantages, the attention

mechanism’s quadratic complexity in Transformers means that as

the sequence length increases, the memory and computational

requirements grow quadratically (Shi et al., 2023). This makes

Transformers computationally demanding and limits the length

of sequences they can feasibly handle.
What is LLMs?

The use of transformer-based models in biology has led to

significant advancements, most notably with the development of

AlphaFold2 (AF2) (Jumper et al., 2021), a groundbreaking model

for predicting protein structures. While transformers are the core of

many language models, they are not universal. For instance, models,

such as the DNA LLMHyenaDNA (Nguyen et al., 2024), do not use
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transformers, and not all transformer-based models qualify as

LLMs, with AF2 being a prime example. Although there is no

widely accepted threshold distinguishing a standard LM from

LLMs, LLMs are generally recognized by their high number of

parameters, often in the billions, and are typically trained on large

datasets, offering more capabilities than typical LMs (Lam

et al., 2024).

LLMs can be broadly categorized into three architectural types:

encoder-decoder, encoder-only, and decoder-only models, each

tailored for specific applications and strengths (Raiaan et al.,

2024). Encoder-decoder models, such as the original Transformer

model introduced by Vaswani et al. (2018), excel in tasks that

require transforming input data into a desired output format, such

as machine translation. These models use an encoder to process and

condense input data into an abstract form, which the decoder then

uses to produce the output, effectively managing context and

relationships within and across sequences. Encoder-only models,

such as Bidirectional Encoder Representations from Transformers

(BERT) (Kenton and Toutanova, 2019), are optimized for

understanding and analyzing information within a sequence,

making them ideal for tasks like classification, named entity

recognition (NER) (Radford et al., 2018), and summarization.

BERT’s architecture captures bidirectional context, allowing it to

understand the connections and nuances of words in a text, leading

to more accurate interpretations and classifications (Kenton and

Toutanova, 2019). Decoder-only models, exemplified by Generative

Pre-trained Transformer (GPT) models, excel in generating

coherent and contextually relevant text (Barbhuiya et al., 2024).

They are primarily used in applications involving text generation

and translation, focusing on creating smooth and contextually

appropriate content. GPT models use their autoregressive

capabilities to predict the next token in a sequence, generating

sentences and paragraphs that mimic human writing (Barbhuiya

et al., 2024).

Despite their specific designs, these models are flexible and

adaptable beyond their original applications. For instance, a fine-

tuned version of GPT, such as ChatGPT, can be repurposed for

tasks like text classification and NER, often with a high level of

accuracy (Raiaan et al., 2024). This is achieved through techniques

like zero-shot or few-shot prompting, enabling the model to apply

its learned language understanding to new tasks with minimal

additional training (Barbhuiya et al., 2024; Raiaan et al., 2024).

This adaptability highlights the potential of LLMs to address a

variety of challenges across different domains, making them

invaluable tools in natural language processing and beyond.

The versatility of LLMs in processing word sequences applies to

various types of sequential biological data (Sarumi and Heider,

2024). Both BERT and GPTmodels have been adapted for genomic,

proteomic, and gene expression analyses (Rehana et al., 2023, 2024;

Sarumi and Heider, 2024). Typically, LLMs undergo pretraining

using self-supervised methods, taking advantage of the wealth of

publicly available genomic data. For instance, BERT models use

masked language modeling (MLM), predicting masked tokens

within a sequence (Rehana et al., 2023). In contrast, GPT models

employ causal language modeling, predicting subsequent tokens in
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a sequence (Sarumi and Heider, 2024). This approach gives GPT its

autoregressive capability, as it predicts new words iteratively and

incorporates them back into the model to continue generating

sequences. Through this pretraining process, LLMs learn intrinsic

patterns in the data, which can then be used to extract features and

identify patterns in new, unseen data (Sarumi and Heider, 2024).

These pretrained foundational models can be further adapted for

specific tasks through fine-tuning with supervised learning

techniques, expanding their application scope across various

domains in biological research.
Current status of LLMs in biological
science

LLMs are making significant strides in the realm of biological

sciences, thanks to their sophisticated natural language processing

capabilities (Lam et al., 2024). Initially designed to understand and

generate human-like text, LLMs have been repurposed to interpret

complex scientific literature, providing a valuable asset for

researchers (Raiaan et al., 2024). In biology, they are increasingly

used for mining scientific texts, extracting relevant knowledge, and

identifying patterns across vast corpuses of data (Lam et al., 2024).

Their ability to process and synthesize information from disparate

sources enables researchers to stay abreast of the latest findings,

formulate research questions, and hypothesize based on existing

literature (Chen et al., 2021; Lam et al., 2024).

Some of the prominent applications of LLMs in biological

sciences include assisting in the annotation of genomic datasets,

predicting protein functions, and integrating diverse types of

scientific data such as chemical, genetic, and phenotypic

information (Lam et al., 2024; Sunil et al., 2024). By facilitating

the interpretation of complex biological narratives and enhancing

communication between different types of data, LLMs contribute to

a more holistic understanding of biological processes. Moreover,

their predictive capabilities can be used to predict developments in

fields such as drug discovery and personalized medicine, offering

potential solutions to pressing health and environmental challenges

(Sunil et al., 2024).

Despite their promising applications, the integration of LLMs in

biological science is still in its growing stage. Challenges such as data

privacy, interpretation accuracy, and the need for domain-specific

training data remain (Kuska et al., 2024). Nevertheless, ongoing

improvements and adaptations to the unique requirements of

biological research are expected to overcome these hurdles. As the

scope of LLM applications continues to expand, they are poised to

become indispensable tools in the toolkit of biologists, facilitating

new discoveries and advancing the field.
Why LLMs are the future of plant breeding?

As plant breeding evolves into a highly data-driven and precision-

oriented domain, the potential of LLMs to fundamentally reshape this

field is immense. By offering an unprecedented ability to learn from
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textual data, LLMs have the capacity to revolutionize how breeders’

access, interpret, and utilize scientific knowledge. These models can

serve as intelligent agents capable of integrating and synthesizing vast

amounts of historical breeding records, genomic data, and recent

scientific publications to inform breeding decisions. The strategic use

of LLMs could thus streamline processes like literature reviews,

hypothesis generation, and the development of new breeding strategies.

LLMs can significantly augment breeders’ ability to predict

outcomes and identify genetic traits associated with yield, stress

tolerance, and other important agronomic characteristics. They can

analyze and correlate data from large genomic repositories, helping

breeders to pinpoint potential genetic markers for selection.

Furthermore, as LLMs become more specialized, they could play

a crucial role in automating routine tasks such as phenotyping,

creating multilingual databases of breeding information, and

assisting in cross-disciplinary research by translating domain-

specific terminology across scientific fields.

Moreover, the adaptive learning nature of LLMs means they can

improve continually as more data becomes available, offering

solutions that grow in accuracy and utility over time. Their

potential to interface with other technologies such as Internet of

Things (IoT) devices for real-time data collection, and CRISPR for

precision gene editing, suggests a future where breeders can make

faster, more informed decisions that lead to rapid advancements in

crop development (Kuska et al., 2024). In this context, LLMs will

not only symbolize the future of plant breeding but also act as

catalysts for innovations that meet the global agricultural demands

of tomorrow.
Leveraging LLMs and biological language
models in plant breeding

Natural language models (NLMs), initially created for

understanding and generating human language, are able to

transform plant breeding by streamlining access to extensive

textual datasets such as research papers, databases, and reports

that are publishing every day. It would be challenging for plant

breeders to keep up with the pace of publications, therefore,

utilizing NLMs would be the best approach to ensure the new

information can be consider in the breeding pipeline. These datasets

can enhance the understanding of genotype and phenotype of

interests, which are fundamental to plant breeding (Busta et al.,

2024). Additionally, NLMs can integrate data from genetic markers,

phenotypic images, gene sequences, and environmental data,

forming multimodal models that deliver more comprehensive

insights into crop traits and breeding strategies (Ji et al., 2023).

While general NLMs such as GPT and BERT are pre-trained on

broad datasets and prove adaptable across various domains, their

lack of specialization may result in inaccurate interpretations,

particularly in specialized fields including plant breeding (Ji et al.,

2023). Specialist NLMs, tailored to specific domains, can be fine-

tuned on breeding-related corpora and incorporate key insights

about genetic trait correlations and region-specific crop

requirements (Rehana et al., 2023).
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Beyond text knowledge, NLMs simplify bioinformatics

workflows, assisting in coding, debugging, and navigating

complex software tools specific to genome-wide studies in plant

breeding (Zhao et al., 2023). Similarly, biological language models,

trained to process DNA, RNA, or protein sequences, apply

principles such as context recognition to predict genetic

mutations’ effects on phenotypes and explore gene networks

responsible for trait regulation (Lam et al., 2024). These models

hold the potential to elevate precision breeding techniques by

facilitating cross-species comparisons and identifying conserved

traits (Zhao et al., 2023). In this case, text-based embeddings can

seamlessly combine with other modalities, such as gene expressions,

to enhance candidate gene identification for desirable traits,

potentially leading to the development of climate-resilient

cultivars (Zhao et al., 2023).

As another area to explore in plant breeding, knowledge graphs,

representing entities and relationships as nodes and edges, provide

an integrated framework to connect disparate data sources, which is

important for linking genetics and environmental parameters in

plant breeding. In scientific research, LLMs such as SciBERT,

BioBERT, and BioGPT have significantly impacted knowledge

graph construction by efficiently extracting entities and their

relationships from unstructured text, forming triple-based

structured data representations (Bi et al., 2024). The integration

of these models with knowledge graphs reduces inaccurate

responses and leverages robust reasoning to improve performance

in domains requiring precise information retrieval, demonstrating

significant advancements in artificial intelligence applications (Lim

et al., 2024). Therefore, combining language models with knowledge

graphs, particularly through techniques like Think-on-Graph

(ToG), allows sophisticated reasoning by extracting multi-hop

connections for comprehensive query responses (Sun et al., 2023).

In practice, integrating LLMs in plant breeding necessitates a

structured methodology encompassing data collection, model

training, and evaluation (Rehana et al., 2024). It begins with

curating a comprehensive dataset from literature and multi-omics

databases, proceeding with fine-tuning pre-trained LLMs on plant-

specific corpora to enhance language understanding and data

integration capabilities (Figure 3). This seamless integration

facilitates hypothesis generation and decision-making, allowing

breeders to query the models for insights and strategies that

influence breeding multivariate decisions (Figure 3). Ultimately,

deployment with user training embeds these tools in practical

breeding contexts, ensuring their utility through intuitive

interfaces and insightful visualizations. Through these concerted

operations, language models emerge as valuable assets in precision

plant breeding, advancing genetic understanding and breeding

innovations (Figure 3).
How to make it feasible to reach crops
from codes?

Bridging the gap between advanced computational codes and

tangible improvements in crops necessitates a multifaceted
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approach (S.S et al., 2024). Firstly, an integrated infrastructure

that supports data acquisition, storage, processing, and analysis is

essential. This calls for investment in robust high-performance

computing facilities and cloud-based platforms that can

accommodate large-scale datasets and computational processes

required for training LLMs and running predictive algorithms

(Chen et al., 2024). These infrastructures should be designed to

ensure data security, user accessibility, and interoperability across

global breeding programs.

Secondly, interdisciplinary collaboration between data

scientists, agronomists, geneticists, and breeders is critical for

translating computational insights into actionable breeding

strategies. Developing user-friendly interfaces and visualization

tools can facilitate this collaboration, enabling breeders to interact

intuitively with complex data outputs and derive practical insights

for field implementation. Training programs and workshops aimed

at enhancing the computational literacy of breeders would further

enable a seamless transition from theoretical codes to real-

world applications.

Moreover, the development of standardized protocols and

validation frameworks is vital to ensure the reliability and

reproducibility of LLM-driven predictions. Establishing rigorous

benchmarks and workflows for model evaluation helps in

optimizing the performance and applicability of these systems to

diverse crop species and environments. Continuous feedback loops

where insights from field trials are used to refine models can

enhance the accuracy and relevance of predictions, thus ensuring

that computational innovations translate into meaningful

crop improvements.

Lastly, fostering a culture of openness and data sharing within

the global plant breeding community can accelerate the adoption

and optimization of LLM technologies. By sharing successful case

studies, datasets, and coding methodologies, stakeholders can

collectively advance the state-of-the-art and expedite the

realization of LLM-driven breakthroughs in crop science. This

collaborative approach not only expedites innovation but also

democratizes access to cutting-edge technologies, ensuring that

the benefits of research are shared widely across borders

and communities.
How to utilize existing LLM tools in plant
breeding area?

Several tools have been recently developed in plant science

through the use of LLMs that can be potentially use in plant

breeding. PlantConnectome, as an example, utilizes the power of

GPT to distill great understanding from approximately 71,000 plant

literature abstracts. By constructing a detailed knowledge graph,

PlantConnectome has a significant potential to show previously

unreported relationships that existing databases have overlooked

(Lim et al., 2024). This ability to uncover novel connections can

direct breeding programs towards previously unidentified genetic

traits that could enhance resistance to diseases or adaptivity to

changing climates, proving invaluable in developing new plant
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varieties with desirable characteristics. Similarly, AgroLD integrates

around 900 million triples from over 100 datasets, which

synthesizes complementary information for hypothesis

formulation and validation (Larmande and Todorov, 2021). In

plant breeding area, AgroLD offers breeders a comprehensive

resource for identifying genetic markers associated with these

traits, thus facilitating targeted breeding strategies for robust

crop varieties.

Plant Reactome, as another example, serves as an expansive

knowledgebase of plant pathways, offering curated pathways from

rice and projections to 129 other species. Its repository of 339

reference pathways provides a detailed view of metabolic processes,

hormone signaling, and genetic regulation (Gupta et al., 2024). By

facilitating the visualization and analysis of multi-omics data within

plant pathways, this resource allows breeders to identify genetic
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interactions and pathways critical for desired traits such as

enhanced yield or stress tolerance, directing breeding efforts more

effectively. As another example, WGIE specializes in extracting

important wheat germplasm information from fragmented research

data (Wei and Fan, 2024). By employing conversational LLMs and

innovative data extraction methodologies, WGIE enhances the

accessibility and efficiency of identifying useful wheat traits. Such

advancements support breeders in selecting the best traits for

superior yield and adaptability, addressing both current and

future food production demands.

AgroNT pushes the boundary of high-throughput analysis in

plant genomics, focusing on crop varieties. It excels in predicting

regulatory annotations, promoter strengths, and tissue-specific gene

expression, whilst also prioritizing functional variants important for

plant breeding (Mendoza-Revilla et al., 2024). Its large-scale
FIGURE 3

A schematic picture of utilizing LLMs in plant breeding area. (A) Collecting diverse datasets from scientific literature, multi-omics repositories, and
breeding records, (B) Standardizing text and annotating multi-omics data during preprocessing, (C) Choosing a pre-trained LLM, fine-tuning it with
plant breeding-specific texts, and using multi-modal methods to integrate text and structured data, (D) Leveraging the LLM to build knowledge
graphs that illustrate the relationships between multi-omics, traits, and environmental factors, (E) Establishing performance metrics and refining
outputs with input from breeders and biologists, (F) Creating feedback loops to continuously assess results, and (G) Assisting plant breeders in
developing data-driven strategies by prioritizing multi-omics and traits for field trials based on their yield, quality, and adaptability. The figure was
created using BioRender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fpls.2025.1583344
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yoosefzadeh-Najafabadi 10.3389/fpls.2025.1583344
application in evaluating mutations can support breeders in

selecting beneficial genetic modifications or variants to enhance

crop performance under diverse environmental conditions, making

it a formidable tool for future agricultural innovations. FloraBERT

demonstrates the potential of deep learning models in predicting

gene expression by utilizing transfer learning from a wide array of

plant species (Levy et al., 2022). This approach surpasses traditional

models by providing insights into taxonomic relationships and

nucleotide positions within gene promoters. Such insights can be

instrumental in guiding plant breeders towards genomic loci that

control important phenotypic traits, thereby enhancing the

efficiency of breeding programs targeting specific traits.

In general, LLM-based research tools are emerging as

powerful resources in plant science, with significant potential to

revolutionize plant breeding despite their application in this

domain being relatively new and underexplored. Tools such as

PlantConnectome, AgroLD, Plant Reactome, WGIE, AgroNT, and

FloraBERT have been developed primarily for plant genomics and

related fields, with limited direct adoption by plant breeders to date.

However, in plant breeding, an LLM could integrate decades of

breeding trial data with genomic and phenotypic records to

pinpoint genetic markers associated with high yield under various

environmental conditions. Similarly, it could analyze unstructured

field notes alongside structured datasets to identify management

practices, such as optimal planting density or nutrient application,

that enhance trait expression across different genotypes. Another

possibility is using LLMs to predict phenotypic outcomes by

combining historical trial data with current environmental inputs,

enabling breeders to prioritize crosses likely to produce resilient

lines. Breeders can interact with these models conversationally,

posing questions such as, “What genetic factors most influence yield

stability in maize?” and receive synthesized responses drawn from

diverse data sources, streamlining decision-making and enhancing

crop improvement strategies. These applications leverage LLMs’

ability to handle multimodal data and uncover subtle correlations,

making them valuable for accelerating breeding cycles and

improving selection accuracy without requiring extensive manual

preprocessing or specialized computational expertise.

Beyond these general uses, LLMs hold particular promise for

deepening the understanding of environmental effects (E) and

genotype-by-environment interactions (G×E), which are an

integral part of the breeding process. Environmental factors

significantly shape phenotypic expression, but their variability

and interdependence make them challenging to incorporate into

breeding decisions. LLMs can help by processing large-scale

environmental datasets alongside genetic and phenotypic data to

model G×E interactions with greater precision. For instance, an

LLM could integrate historical climate records, soil sensor data, and

multi-site trial results to forecast how different genotypes might

perform under projected climate change scenarios, aiding breeders

in selecting lines with robust adaptability. Additionally, LLMs can

analyze diverse data sources, such as satellite imagery or grower

observations, to detect environmental patterns linked to desirable

traits, such as stress tolerance or nutrient efficiency, and suggest

tailored management strategies (M) such as irrigation timing or
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fertilizer use. By incorporating real-time inputs from IoT devices in

fields or greenhouses, LLMs could also provide dynamic

recommendations for adjusting breeding trials or phenotyping

protocols to account for current conditions. Although their use in

these areas is still in its infancy, LLMs’ capacity to manage complex,

multimodal data and identify non-linear relationships positions

them as a transformative tool for breeders aiming to enhance crop

resilience and productivity in the face of environmental uncertainty.

These advancements are not without limitations. The

effectiveness of LLMs largely depend on the quality and coverage

of the available training datasets. The model predictions in

breeding decisions can be biased due to incomplete data, limiting

the potential value of the model. Additionally, the computational

resources required for training large models can pose accessibility

challenges, particularly in regions with limited technological

infrastructure. However, there are several ways to effectively

measure LLMs into plant breeding workflow. The plant breeding

community can enhance the evaluation and maximization of the

impact of LLMs, by measuring their performances through

objective metrics such as precision, recall and accuracy and by

measuring against real world datasets. This not only helps verify

that LLMs can provide practical benefits over existing approaches,

but also provides insights for how best to improve their use in future

applications, thereby further grounding them as drivers of

innovation in plant breeding.
How practical is to build LLMs from
scratch?

The emergence and evolution of LLMs over recent years have

significantly advanced artificial intelligence capabilities, enabling

machines to perform complex language processing tasks with great

skill and accuracy (Lam et al., 2024). However, the process of

developing an LLM from the scratch involves substantial financial

and computational investments. Training these models would be

highly expensive, depends on the number of tokens, model’s size

and complexity.

In the context of LLMs, a token often represents a unit of text,

which can range from a single character to an entire word,

depending on the tokenization strategy employed by the model

(Yang, 2024). This tokenization process allows models to manage

extensive vocabularies while maintaining a relatively fixed size for

processing (Men et al., 2024). For example, in OpenAI’s GPT series,

text is typically tokenized into subword components, enabling the

model to comprehend and generate language with a high degree of

flexibility (Bhattacharya et al., 2024). Understanding the role of

tokens is crucial because they influence the volume of training data

required and, consequently, the model’s overall performance.

Calculating the cost of training an LLM primarily involves several

factors: the number of tokens, the computational requirements, and

the decision of whether to rent or purchase the necessary hardware

(Tuggener et al., 2024). Larger training datasets, with their vast

token counts, directly impact the amount of computational power

needed. For instance, a model with 10 billion parameters might
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require around 100,000 GPU hours, while a 100 billion parameter

model could need as much as one million GPU hours to train.

Renting GPUs, such as the high-performance NVIDIA A100, can

cost between $1 USD and $2 USD per GPU hour, which translates

to training expenses of about $150,000 USD to $1.5 million USD,

depending on the model size (Theodoris et al., 2023). Alternatively,

purchasing a GPU cluster, potentially consisting of 1,000 GPUs,

involves significant upfront costs, estimated at around $10 million

USD, excluding operational expenses like energy use. Energy

consumption is another critical factor as training large models

can consume approximately 1,000 megawatt-hours of energy,

adding about $100,000 USD to the expenses at an assumed rate

of $100 USD per megawatt-hour. Training large models such as

Evolutionary Scale Modeling (ESM-2), a pretrained language

models for proteins (Lin et al., 2023), may exceed $200,000 USD.

However, pretraining smaller models such as DNABERT-2 (Zhou

et al., 2023) or GeneFormer (Cui et al., 2024c) via cloud services can

cost several hundred dollars. These considerations help plant

breeders assess the financial and logistical requirements of LLM

training, directing decisions between developing models in-house

or utilizing pre-trained models. Furthermore, the open-source

nature of many models comes with comprehensive user guides,

simplifying the process of fine-tuning and deployment, especially

for computational plant breeders experienced with Python.

Beyond computational demands, the specificity and variability

within plant breeding datasets presents challenges for the

deployment of LLMs in plant breeding. In this area, the datasets

are heterogeneous as they collected from different environments

over multiple years, leading to accuracy concerns if LLMs are

trained on incomplete or biased data. In order to make sure

about the robustness of LLMs, training datasets should be

representative, encompassing full genetic diversity as well as

comprehensive and broad phenotypic and multi-omics data.

Additionally, interpretability is still a problem because it can be

challenging to comprehend how LLMs make predictions.

Therefore, enhancing interpretability with visualization tools and

explainable AI methods is vital for making LLMs more accessible

and actionable for plant breeders. Additionally, integrating LLMs

into existing processes requires careful consideration of data privacy

and ethical implications to preserve breeder autonomy and respect

original knowledge. Addressing these challenges will help optimize

LLM benefits while mitigating their limitations in plant breeding.

Despite the high resource demands and complexity associated

with creating a LLM for plant breeding, the potential benefits are

profound. A model trained on vast range of datasets from plant

breeding and multi-omics could significantly enhance scientific

research, significantly speed up the crop improvement by making

breeder’s decision more accurate. This potential is exemplified in

the ongoing expansion of plant LLMs, such as FloraBERT (Levy

et al., 2022) and AgroNT (Mendoza-Revilla et al., 2024). Yet,

current efforts predominantly focus on model creation, with less

emphasis on training with in-depth plant data and even fewer on

practical applications in plant research. The sequencing of over 788

plant genomes presents a vast opportunity for pretraining models

across a wide variety of plant groups (Cui et al., 2024b). Moreover,
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with the increasing availability of single-cell RNA-sequencing data,

these models can be pretrained and fine-tuned with additional

modalities, such as those capturing the epigenome, proteome, and

metabolome. As an example, Arabidopsis thaliana alone boasts over

one million sequenced nuclei, supporting extensive research in

plant development and responses to environmental factors

(Nobori et al., 2023). Studies have produced comprehensive

atlases encapsulating seed-to-seed development and various

responses in root systems and leaves (Lee et al., 2023; Nobori

et al., 2023). These growing datasets present an invaluable resource

for the progressive training and refinement of plant breeding LLM.

An important factor in the effectiveness of any LLM is the

quality and breadth of its training data (Feng et al., 2023). The

concept of “garbage in, garbage out” is particularly relevant,

indicating that the output quality directly reflects the input’s

quality. To create an LLM beneficial for plant breeding, access to

diverse and rich datasets is vital (Farooq et al., 2024a). These should

include genetic sequences, phenotype information, climate data,

and a broad spectrum of scientific literature. Although platforms

like NCBI, Common Crawl (Patel and Patel, 2020) or commercially

available datasets such as C4 provide a starting point, it is

imperative to ensure data integrity and relevance. Additionally,

adherence to legal standards, particularly concerning copyright

regulations, is a necessary consideration in data collection

and usage.

Optimizing LLM training involves leveraging sophisticated

techniques that streamline processes and minimize costs (Shahini

et al., 2024). One such method is mixed precision training, which

combines 16-bit and 32-bit floating-point numbers to manage

computational demands efficiently (Parthasarathy et al., 2024;

Shahini et al., 2024). This approach, along with 3D parallelism

strategies, enables the creation of robust, scalable models

equipped to handle extensive datasets typical in plant breeding.

Upon training an LLM, thorough evaluation is essential to

determine its efficacy for targeted applications in plant breeding.

Performance benchmarks tailored to areas such as plant breeding or

bioinformatics can be instrumental in assessing the model’s

accuracy and adaptability. Following the evaluation phase, fine-

tuning the model through techniques such as prompt engineering

or targeted adjustments allows it to home in on specific tasks,

whether predicting plant traits based on genetic data or integrating

recent findings from breeding studies.
Conclusion

The evolution of LLMs can revolutionize plant breeding by

providing breeders with new tools for discovering and

incorporating large and diverse amounts of data. To efficiently

utilize LLMs in plant breeding programs, plant breeders should

identify specific areas in their breeding objectives where LLMs can

add value, such as uncovering new genetic interactions or

improving predictions of traits. The next step is effective data

preparation, including curating high-quality, diverse datasets that

accurately represent genetic variation and environmental factors.
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Best practices include working with data scientists to improve the

quality of the data and using publicly available multi-omics

databases to pre-train LLMs. Overall, LLMs have the potential to

benefit breeders through enhanced predictive accuracy and

automation of data analysis, which reduces dependence on trial

and error. Through the application of visualization tools and

explainable AI methods, LLM outputs will be significantly

interpretable, facilitating informed decisions. Ongoing model

validation with real data will also ensure pragmatic applicability

and effectiveness. As these technologies evolve, engaging with LLM-

driven research communities will foster shared learning and

innovation. By implementing these steps, plant breeders can

better integrate LLMs within their programs, paving the way for a

data-driven, precision breeding era. These advancements contribute

to sustainable agriculture and global food security, making the

breeding process more dynamic and responsive to future needs.
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