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Pod numbers are important for assessing soybean yield. How to simplify the

traditional manual process and determine the pod number phenotype of soybean

maturity more quickly and accurately is an urgent challenge for breeders. With the

development of smart agriculture, numerous scientists have explored the

phenotypic information related to soybean pod number and proposed

corresponding methods. However, these methods mainly focus on the total

number of pods, ignoring the differences between different pod types and do

not consider the time-consuming and labor-intensive problem of picking pods

from the whole plant. In this study, a deep learning approach was used to directly

detect the number of different types of pods on non-disassembled plants at the

maturity stage of soybean. Subsequently, the number of pods wascorrected by

means of a metric learning method, thereby improving the accuracy of counting

different types of pods. After 200 epochs, the recognition results of various object

detection algorithms were compared to obtain the optimal model. Among the

algorithms, YOLOX exhibited the highest mean average precision (mAP) of 83.43%

in accurately determining the counts of diverse pod categories within soybean

plants. By improving the Siamese Network in metric learning, the optimal Siamese

Network model was obtained. SE-ResNet50 was used as the feature extraction

network, and its accuracy on the test set reached 93.7%. Through the Siamese

Network model, the results of object detection were further corrected and

counted. The correlation coefficients between the number of one-seed pods,

the number of two-seed pods, the number of three-seed pods, the number of

four-seed pods and the total number of pods extracted by the algorithm and the

manual measurement results were 92.62%, 95.17%, 96.90%, 94.93%, 96.64%,

respectively. Compared with the object detection algorithm, the recognition of

soybean mature pods was greatly improved, evolving into a high-throughput and
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universally applicable method. The described results show that the

proposed method is a robust measurement and counting algorithm, which can

reduce labor intensity, improve efficiency and accelerate the process of

soybean breeding.
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1 Introduction

Soybean, a prominent global agricultural commodity, holds a

pivotal role as an essential provider of plant-based protein and oil

for everyday human consumption. The phenotypic data associated

with soybean holds relevance not only for yield estimation but also

for quality assessment and other issues (Agarwal et al., 2013). In the

field of soybean breeding, the thorough examination of soybean

phenotypes is an essential endeavor. The relationship between

soybean yield and quality can be explored by investigating the

phenotypic characteristics, which is of considerable significance for

breeding experts, since further research can be conducted based on

the results. At present, the main focus of phenotypic research on

soybean plants has been on the following aspects: pest detection,

grain detection, yield estimation, maturity and others.

The quality of soybean seeds has a significant impact on the

yield, and the problems of seed quality will affect the raw materials

of agricultural comprehensive enterprises. Huang et al. (2022)

designed a complete pipeline to classify soybean seeds, which was

divided into segmentation and classification stages. The

segmentation stage is performed by the popular deep learning

method Mask R-CNN, and the classification stage is performed

by a new network called Soybean Network (SNet). The proposed

SNet model reportedly achieved a recognition accuracy of 96.2%

with only 1.29M parameters. Park and Jun (2022) conducted

phenotypic analysis of soybean seeds using artificial intelligence

(AI) based on the YOLOv5 model. The mean average precision

values of the model applied in the three soybean seed categories

reached 0.835, 0.739 and 0.785. Li et al. (2021) proposed a model

based on hyperspectral imaging technology and one-dimensional

convolutional neural network (1D CNN) to distinguish soybean

seed varieties, and the model achieved over 95% accuracy on both

the training set and the validation set.

Anticipating crop yield prior to harvest is of considerable

significance in shaping food policies and ensuring food security.

Additionally, early prediction of yield at the field or plot level is

beneficial for streamlined high-throughput plant phenotypic

analysis and the implementation of precision agriculture

practices. Maitiniyazi Maimaitijiang et al. (2020) developed a low-

cost multi-sensor UAV for crop monitoring and phenotypic

analysis. The data obtained by the UAV can relatively accurately

and robustly estimate soybean (Glycine max) grain yield within the
02
framework of deep neural networks (DNNs). A deep CNN-LSTM

model was constructed by Sun et al. (2019) for county-level end-of-

season and mid-season soybean yield prediction. The results

revealed that the proposed CNN-LSTM model can achieve a

favorable level of accuracy in both end-of-season and mid-season

yield predictions. Riera et al. (2021) developed a multi-view image-

based yield estimation framework using deep learning architecture.

In the method, plant image fusion captured from different angles is

used to estimate yield, and then soybean genotypes are sorted for

breeding decisions.

Soybean plants exhibit a multitude of phenotypic traits, each

possessing its own distinct research significance. Accurate and rapid

extraction of soybean plant phenotypes has a guiding role in

increasing yield and improving quality. Teodoro et al. (2021)

proposed a machine learning method to predict the maturity

days, plant height and grain yield of soybean varieties based on

multi-spectral bands. The method mainly involves a multi-layer

deep learning regression network, which can predict multiple

important soybean crop phenotypes based on remote sensing

data. At the same time, Moeinizade et al. (2022) used an end-to-

end hybrid model combining convolutional neural networks and

long-term and short-term memory. The model was used to extract

features and capture the sequential behavior of time series data as a

representation of soybean maturity, showing promise as an effective

method. A new convolutional neural network architecture, named

DS-SoybeanNet, was designed by Zhang et al. (2022) for improving

the performance of soybean maturity information monitoring

based on unmanned aerial vehicle (UAV) technology. Finally, the

calculation speed of DS-SoybeanNet on every 1000 images was

11.770 seconds, and the F1 accuracy was 99.19%.

The swift advancement of deep learning is progressively delving

into the exploration of soybean phenotypes, leading to the

acquisition of an expanding array of phenotypic data. However,

the existing research on soybean phenotype is mainly based on a

macro perspective, such as the use of UAVs (Alabi et al., 2022;

Yamamoto et al., 2023; Xu et al., 2023) and other equipment to

estimate the overall yield. Such methods have exhibited low

accuracy. Moreover, there are also several examples of exploration

from the individual point of view, such as dismantling the whole

soybean pods and grains for counting, but such methods require a

large amount of manual participation, time and labor. In addition,

the abundance of soybean phenotypes can sometimes lead to
frontiersin.org

https://doi.org/10.3389/fpls.2025.1583526
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2025.1583526
oversight of other crucial phenotypic details, such as the

characteristics of soybean leaves and roots. As such, it is

necessary to consider the diversity of soybean phenotypes more

comprehensively and explore more reliable phenotypic information

acquisition methods. Achieving high crop yields is the common

standard and ultimate goal of most breeding programs, and thus

requires large-scale yield assessments in soybean breeding (Guo

et al., 2022). Since food estimation is usually assessed using labor-

intensive methods only after harvest, an effective yield estimation

method will greatly help breeders to focus on solving biological

problems rather than being distracted by troublesome yield

estimation models (Crusiol et al., 2022). The existing yield

estimation methods predominantly concentrate on counting

soybean pods and grains. However, such approach necessitates

manual involvement to segregate pod grains from the entire

plant. Unlike corn or wheat ears, soybean pods are densely

arranged, resulting in pronounced pod overlap. Consequently,

accurately identifying and localizing all pods within an image

becomes a challenging task. In order to achieve accurate detection

and counting, it is necessary to remove the pods from the branches

to avoid overlap, so that the detection of pods can obtain a higher

recognition accuracy. At the same time, the quantity of soybean

pods inadequately represents soybean yield, as there exists a variety

of pod types. These pod types encompass one-seed, two-seed, three-

seed, and four-seed pods, with the possibility of mutant occurrences

like five-seed or six-seed pods not being excluded.

The number of soybean pods is the most direct embodiment of

soybean yield, and a large number of studies have been conducted

on this issue. Li et al. (2019) first introduced a new large-scale seed

counting dataset, which contained 500 annotated pod images with a

total of 32,126 seeds. A dual-column Convolutional Neural

Network (TCNN) technique was also formulated to elucidate pod

images by transforming them into seed density maps. This process

culminated in accurate seed counting, resulting in an average

absolute error of 13.21 and a mean square error of 17.62. Yang

et al. (2022) designed a two-step transfer learning method. In the

first step, the instance segmentation network preprocessed by the

source domain (MS COCO dataset) is fine-tuned with the synthetic

object domain (in vitro soybean pod dataset). In the second step, by

fine-tuning several real-world mature soybean plant samples, the

conversion from simulation to reality can be achieved. The method

was reported to achieve an AP value of 0.8. Uzal et al. (2018)

introduced a computer vision method to distinguish different pod

numbers. This method can estimate the number of seeds in soybean

pods, and the final test accuracy rate reached 86.2%. Xiang et al.

(2023) proposed a method based on the YOLOX framework called

YOLO POD. The results showed that the R2 between the number

predicted by YOLO POD and ground truth reached 0.967, which

was 0.049 higher than that of YOLOX, while the inference time only

increased by 0.08s. Further, MAE, MAPE and RMSE were only 4.18,

10.0% and 6.48, respect ively , and the deviat ion was

considerably small.

Through the continuous efforts of both domestic and

international scholars, pod counting has been gradually improved,

but there remains no classification and recognition of non-
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dismantled pods. The aim of most research has been on pod

counting or dismantling pod classification and recognition,

resulting in a vacancy in non-dismantled pod classification and

recognition. Drawing from the intact nature of mature soybean

plants, a new method was proposed in the present study. A new

method was devised, harnessing the capabilities of deep learning

and metric learning, to automatically and accurately identify mature

soybean pods. Notably, the proposed method preserves the integrity

of soybean plants without necessitating their destruction. The object

detection method is first used to identify the pods in both the frontal

and rear orientations of the same soybean plant, and then the

similarities of the pods in the frontal and rear images are compared

through the metric learning method to reduce the recognition error

caused by occlusion. All the pods and the numbers of various types

of pods in the non-dismantled soybean plant are then quickly and

accurately detected. The method can measure and count quickly

and accurately with high throughput, and does not destroy the

overall morphological characteristics of soybean plants, avoiding

the loss of phenotypic information caused by dismantling

soybean plants.
2 Materials and methods

An overview of the proposed method is given in Figure 1. The

input of the system includes a series of images of different soybean

varieties taken in a specific environment (using different planting

dates and planting methods), in which the same soybean was

photographed in both the frontal and rear orientations. Firstly,

the collected image is preprocessed, and the reverse image of the

same soybean plant is mirrored and flipped to match the positive

image. According to the ratio of training set: verification set= 8: 2,

the image is input into a variety of deep learning networks for

detection and training optimization. By comparing the test results,

the optimal network is selected as the method to detect the pods of

soybean maturity. Then, the identified pods are cropped and re-

divided into data sets as training samples for metric learning. The

backbone network is replaced by the Siamese Network in metric

learning and the model structure is improved to achieve the optimal

results. Finally, the improved Siamese Network is used to accurately

count the pods.
2.1 Image acquisition

In the present study, three kinds of soybeans with infinite

podding habit, limited podding habit and sub-limited podding

habit were selected as experimental materials. The experimental

materials were planted in pots and fields in the experimental base of

Northeast Agricultural University (45°361 N, 126°181 E) and

Xiangyang Farm. A total of 350 soybean plants were harvested.

The RGB image acquisition platform was facilitated through an

LED studio, depicted in Figure 1, possessing dimensions of 120cm x

80cm x 80cm. The exterior was made of black synthetic material

and the interior was made of silver reflective material. Four LED
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light strips were installed on the top of the studio, which were

distributed on the four frames at the top of the led studio, and

reflective materials were provided around the studio to ensure

sufficient lighting. There was a circular shooting port on the top,

and the circular shooting port was filmed using an iPhone 13. In

order to prevent the photo from being affected by background

reflection, the background was composed of white light-

absorbing cloth.

A dataset containing the pod counts of mature soybean plants

was compiled. The images in the data set were all in JPG format and

were taken by an iPhone 13. The direction of the shooting lens and

the background cloth remained vertical to ensure clear shooting. To

start, we positioned a soybean plant flat in the center of the LED

studio, ensuring that the entire structure of the plant could be

captured by a smartphone camera. Subsequently, an image of the

soybean plant was taken using a smartphone. Once the initial

capture was complete, the soybean plant was manually rotated

180 degrees to expose the portion that had been in contact with the

ground. This allows you to capture images of the frontal and rear

orientations of the soybean plant and then repeat the process with

the same shot. The image resolution captured by iPhone 13

was 3024x4032.

At the same time of image acquisition, 50 soybean plants were

selected as the reference plants to evaluate the performance of the

algorithm. For the reference plants, the numbers of one-seed pods,

two-seed pods, three-seed pods, and four-seed pods of each soybean

were recorded. The present study was divided into two stages for the

identification of soybean pods. The first stage was the classification

and recognition stage of soybean pods, and 1200 soybean pod

marker data sets were selected. The second stage was the pod

correction counting stage. The data set used was the pods cut out

after the prediction through the first stage, and each image

contained a pod category.
Frontiers in Plant Science 04
2.2 Image preprocessing

For the processing of the object detection data set, the data set

was marked with soybean pods by LabelImg software. After

obtaining the soybean pod data set, the original data set was

expanded by data enhancement technology, and a total of 4800

images were obtained. According to the ratio of training set:

verification set = 8: 2, the images were input into a variety of

deep learning networks for detection and training optimization.

For the processing of metric learning data sets, different types of

pods were manually screened, and the selected one-seed pod, two-

seed pod, three-seed pod, and four-seed pod images were placed

under folders representing different pod numbers as data sets for

training Siamese Networks. First, in order to improve the accuracy

of the model and avoid the occurrence of over-fitting, techniques

such as mirroring, adding salt and pepper noise, and rotating 180

degrees were applied to enhance the data set. The effects are shown

in Supplementary Figure S1. The data set obtained by the method

was input into the Siamese Network model for training.
2.3 Object detection

In order to obtain the optimal detection effect, a variety of object

detection algorithms were selected for the selection scheme, namely

a typical two-stage object detection algorithm, Faster Region

Convolutional Neural Network (Ren et al., 2015), and training

with Resnet50 (He et al., 2016) and VGG16 (Simonyan and

Zisserman, 2014) as backbone networks; one-stage object

detection algorithms, SSD (Liu et al., 2016), YOLO v5, YOLOX

(Ge et al., 2021), YOLO v7 (Wang et al., 2023), RetinaNet (Lin et al.,

2017) and CenterNet (Duan et al., 2019). Each model underwent

200 epochs of training, and the optimal outcomes were achieved by
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continuously optimizing the hyperparameters. CNN was trained on

the soybean mature plant data set using the present authors’

computer hardware solution. The detailed experimental

environment is shown in Supplementary Table S1.
2.4 Metric learning

The procedure involving the acquisition of knowledge from an

input dataset to establish a technique for quantifying distinctions

among various data entities is referred to as metric learning. For

traditional metric learning, due to its limited ability to process raw

data, the knowledge of feature engineering needs to be used first to

preprocess the data, and then the metric learning algorithm needs to

be used for learning. Certain traditional metric learning methods

can only learn linear features. Although some kernel methods that

can extract nonlinear features have been proposed, there was no

significant improvement in the learning effect (Zhao et al., 2021;

Kaya and Bilge, 2019; Hoffer and Ailon, 2015). With the emergence

of deep learning, owing to the ability of the activation function to

learn nonlinear features, deep learning methods can automatically

learn high-quality features from the original data. As such, the

combination of deep learning network structure and traditional

metric learning methods can bring ideal results, and the Siamese

Network (Chopra et al., 2005) is a typical metric learning model.

In the present study, by comparing the Siamese Network

models using different feature extraction networks, the optimal

structure was selected for the similarity comparison of the two

images. The commonly used Siamese Network uses VGG16 as the
Frontiers in Plant Science 05
feature extraction network. In the present study, the performance of

the network did not meet the study requirements. Therefore, the

feature extraction network was substituted with alternative options,

including ResNet50, GoogLeNet (Szegedy et al., 2015), EfficientNet

(Tan and Le, 2019) and an improved version of ResNet50 (known

as SE-ResNet50). The newly proposed Siamese Network

improvement module is shown in Figure 2.

The new Siamese Network uses ResNet50 as the feature

extraction network. Based on the original network model, the

content of the residual block was changed, and the SE (Squeeze-

and-Excitation) (Hu et al., 2018). module was added, that is, the SE

attention mechanism. Through the SE attention mechanism, the

features can be corrected, the valuable features can be retained, and

the worthless features can be eliminated, thereby allowing the

network to easily obtain more important feature information.

After adding the SE attention mechanism module, the Dropout

(Hinton et al., 2012) layer was also added to the network

classification layer to avoid over-fitting issues. Through the

a forement ioned opera t i ons , a SE-S i amese Network

was constructed.
2.5 Frontal and rear image correction
method

The method mainly involves two stages. The first stage is the

object detection stage. The pods of each category are identified and

cut by the object detection method. At the same time, a folder is

established according to the image name for unified preservation of
FIGURE 2

SE-Siamese Network. The two input images are processed through convolutional layers, batch normalization (BN) layers, and activation functions
with identical structures, followed by a max pooling operation. The resulting features are then passed into a bottleneck module enhanced with a
squeeze-and-excitation (SE) attention mechanism, and finally output through two fully connected layers.
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the cut image. In the second stage, the similarities of all the detected

pods of the frontal and rear images of the same soybean plant are

compared through the Siamese Network. The highest similarity is

considered to be the same soybean pod and recorded. When the

similarity falls below the predefined threshold, it signifies that the

soybean pod exclusively appears within a soybean image, and this

occurrence is recorded simultaneously. Finally, the number of

various types of pods in the statistical record is the pod

phenotype information of the soybean. For instance, let’s consider

the detection results from object detection on both sides of a

soybean plant. We first select a pod fa as the target pod in the

frontal soybean pod set f = f1, f2,…, fnf g. Simultaneously, we iterate

through all rear pod sets p = p1, p2,…, pnf g to find the most similar

pod pm in set p that matches the target fa. Upon finding a match, fa
and pm are considered the same pod, and both are then removed

from sets f and p, respectively. The hyperparameter threshold is set

to 0.5, indicating that if there exists a pod in set p with a similarity

score greater than 0.5 to the target pod fa, it is also considered the

same pod. Otherwise, the target pod fa is considered to exist only on

one side, so the identified pod fa is recorded, and its corresponding

pod number is removed from set f. This process iterates through set

f, enabling the counting of various pods of a soybean plant while

considering occlusions and duplications across both sides of the

plant. As illustrated in Supplementary Figure S2, when one side of

the pod is missed while the other side is successfully detected, this

method can be employed to perform supplementary pod counting.
2.6 Evaluation index and statistical analysis

The results of different networks used on the dataset were

evaluated. For an evaluation, if the detected instance has a Jaccard

index similarity coefficient, also known as the intersection (IOU), it

is considered to be a true positive (Csurka et al., 2013; He and

Garcia, 2009) of 0.5 or higher, with a basic fact instance. IOU is

defined as the ratio of the number of pixels in the intersection set to

the number of pixels in the union set. Ground live instances that do

not overlap with any detected instances are considered false

negatives. According to the described measures, the Precision, Rec

all, F1 (Afonso et al., 2020), AP and mAP can be calculated as

follows Equations 1–5:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2Precision� Recall
Precision + Recall

(3)

AP = o
N

k=1

Precision(k)DRecall(k) (4)
Frontiers in Plant Science 06
mAP =
o
M

i
APi

M
(5)

where TP = the number of true positives; FP = the number of

false positives; FN = the number of false negatives; N is the total

number of images in the test dataset; M is the number of classes;

Precision(k) is the precision value at images; and DRecall(k) is the

recall change between the k and k − 1 images.

Further, the mean absolute error (MAE), root mean squared

error (RMSE), and the correlation coefficient (R) were used as the

evaluation metrics to assess the counting performance. The three

metrics can be denoted as follows: They take the forms

Equations 6–8:

MAE =
1
No

N

i=1
ti − cij j (6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(ti − ci)

2

s
(7)

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

o
N

i=1
(ti − ci)

2

o
N

i=1
(ti − t)2

vuuuuuut (8)

where N denotes the number of test images; ti is the ground

truth count for the i − th image; ci is the inferred count for the i − th

image; and t is the mean of ti.

In addition, an evaluation was first conducted with regard to the

accuracy of soybean pod classification and counting using only the

object detection algorithm and the fusion algorithm based on object

detection and metric learning. The calculation formula is as follows

Equation 9:

Acc = 1 −
truth − predictj j

truth
(9)

Where Acc represents the accuracy index obtained by detection;

truth represents the ground truth of the number of pods obtained

by manual counting; and predict represents the prediction of the

number of pods obtained by algorithm counting.

In order to evaluate the role of the object detection algorithm in

the actual pod classification and counting, different models were

used in the object detection stage to evaluate the final pod

classification and counting performance. Additionally, the average

accuracy was used to measure the performance of each fusion

algorithm. The formula is as follows Equation 10:

Accmean =
SUM(Acci)

5
, i = 1, 2,…, 5 (10)

The formula Accmean represents the average accuracy of each

object detection algorithm in all categories, SUM represents the

summation function, and Acci represents the accuracy of each
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category. The five categories here refer to one-seed pods, two-seed

pods, three-seed pods, four-seed pods and total pods.
2.7 Experimental settings

The present experiment was implemented using Pytorch 1.10.1.

Firstly, the selected object detection network was trained. In the

training stage, different optimizers were used to update each

network according to different network characteristics. At the

same time, in different object detection models, different initial

learning rates were used to increase the speed of the network

convergence. In the experiment, each network was subjected to

iterative training over 200 epochs, resulting in successful

convergence. The initial value of momentum was selected

according to the characteristics of each network, and the detailed

information is shown in Supplementary Table S2.
3 Results

3.1 Training and evaluation of object
detection model for pods

The first stage involved using the object detection algorithm to

find the optimal CNN model for different types of soybean pod

detection. In the present study, YOLOX, YOLO v5, YOLO v7, SSD,

CenterNet, RetinaNet and Faster R-CNN (VGG16), Faster R-CNN

(ResNet50) were trained and evaluated. After 200 epochs of

training, the convergence of the network was analyzed. The loss

function curve of the training and verification process is shown in

Figure 3. An observation can be made that Faster R-CNN (VGG16),
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Faster R-CNN (ResNet50) and RetinaNet oscillated more severely

during the training process, which may be caused by the excessive

learning rate and the inability to find the optimal solution. At the

beginning of the training phase, the training loss of the remaining

networks decreased sharply, and then after a certain number of

iterations, the loss value slowly converged to an accurate value. Such

findings could be attributed to the model not being accurate enough

in the early stage of network training, and more iterations being

needed to make the model gradually converge to an accurate state.

After the convergence of the model, the test set data of each

model was analyzed, and the evaluation indexes such as mAP, AP,

Precision, Recall, F1 and FPS on the test set were obtained, as shown

in Table 1. Through comparing the performance of several models,

an observation can be made that the FPS speed of SSD was the

fastest, reaching 154.97, but its mAP was only 3.97%, and the

detection effect for the pod category was poor. Regarding mAP,

YOLOX exhibited the optimal performance across all models,

reaching 83.43%, but FPS was much lower than SSD at only

37.26. Across all the models, it is evident that, with the exception

of the two-stage object detection algorithm Faster R-CNN, the

Precision values of the remaining models surpassed their Recall

values. This observation suggests that the one-stage object detection

algorithm is proficient in generating accurate prediction outcomes.

However, its capability to accurately identify real results is

comparatively limited. A further observation can be made that

the recognition accuracy of three-seed pods was the highest among

all pod categories. This phenomenon can be attributed to two

factors. Firstly, the abundance of samples contributes to this

outcome, as three-seed pods constituted the largest subset among

all pods. Secondly, the distinct attributes of three-seed pods might

also have contributed to this heightened accuracy. Conversely, the

recognition effect of one pod was the lowest. This outcome is
FIGURE 3

Change curve of loss function in training and verification process. (a) CenterNet. (b) Faster R-CNN (ResNet50). (c) Faster R-CNN (VGG16).
(d) RetinaNet. (e) SSD. (f) YOLO v5. (g) YOLO v7. (h) YOLOX.
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attributed, firstly, to the limited quantity of available samples, and

secondly, to the inherent traits of single-seed pods. These traits

include their diminutive size, susceptibility to occlusion, and

challenging detectability.

In addition, in order to intuitively show the different prediction

effects of different network models, the prediction results of

different networks were obtained, as shown in Supplementary

Figure S2. The evaluation results demonstrate that, when

compared to the other networks, SSD exhibited the least favorable

predictive capability, failing to accurately capture conspicuous pod

information and essentially yielding negligible performance.

RetinaNet, while somewhat improved, was still inadequate in

detecting only a portion of the three-seed pods, unable to identify

other pod types. The two renowned two-stage object detection

networks, Faster R-CNN (VGG16) and Faster R-CNN (ResNet50),

demonstrated notably enhanced performance, yet they did not

achieve the desired level. In contrast, the YOLO series network

and CenterNet exhibited the most effective detection performance.

Notably, YOLOX had the highest recognition accuracy at 83.43%.

After considering multiple factors, YOLOX was adopted as the

chosen network for one-stage object detection.
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3.2 Metric learning model training and
evaluation

The Siamese Network performances of VGG16, VGG19,

ResNet50, EfficientNet, GoogLeNet and SE-ResNet50 as different

feature extraction networks were compared. At the same time, for

the selected optimal model, the optimal accuracy was explored by

adjusting the hyperparameters for further detailed analysis.
TABLE 2 Comparison of training and test values of different feature
extraction networks.

Models Train(%) Test(%)

Siamese Network(VGG16) 93.4 90.1

Siamese Network(VGG19) 61.2 55.4

Siamese Network(ResNet50) 89.7 84.2

Siamese Network(EfficientNet) 95.1 89.2

Siamese Network(GoogLeNet) 94.7 88.7

Siamese Network(SE-ResNet50) 98.4 93.7
TABLE 1 Performance of different networks.

Network name Category Precision Recall F1 AP mAP FPS

Faster R-CNN
(ResNet50)

one
two
three
four

10.75%
23.62%
29.81%
14.94%

3.18%
12.57%
35.56%
16.98%

0.05
0.16
0.32
0.16

1.74%
9.90%
21.55%
6.38%

9.89% 12.37

Faster R-CNN
(VGG16)

one
two
three
four

26.60%
36.54%
45.29%
27.33%

18.38%
41.92%
59.68%
39.02%

0.22
0.39
0.51
0.32

12.72%
33.20%
45.59%
21.92%

28.36% 11.77

SSD

one
two
three
four

0.01%
0.01%
30%

13.33%

0.01%
0.01%
0.05%
0.15%

0.01
0.01
0.01
0.01

0.01%
2.16%
11.25%
2.48%

3.97% 154.97

CenterNet

one
two
three
four

85.21%
90.92%
91.78%
85.21%

8.36%
17.66%
34.21%
42.72%

0.15
0.30
0.50
0.58

41.66%
60.81%
73.71%
69.36%

61.38% 86.89

RetinaNet

one
two
three
four

100.00%
76.92%
60.23%
69.66%

0.07%
0.22%
1.62%
4.68%

0.00
0.00
0.03
0.09

0.07%
1.15%
11.39%
15.68%

7.07% 45.93

YOLO v5

one
two
three
four

94.87%
81.62%
76.18%
78.65%

2.56%
9.19%
41.49%
39.47%

0.05
0.17
0.54
0.53

20.90%
47.08%
66.46%
49.07%

45.87% 36.29

YOLO v7

one
two
three
four

92.86%
80.79%
80.13%
79.11%

3.59%
26.20%
58.59%
54.87%

0.07
0.40
0.68
0.65

31.19%
60.17%
76.61%
65.18%

58.29% 47.16

YOLOX

one
two
three
four

85.23%
88.69%
90.94%
89.54%

59.43%
77.05%
86.79%
85.28%

0.70
0.82
0.89
0.87

68.43%
85.66%
91.55%
88.09%

83.43% 37.26
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For different feature extraction networks, the following

hyperparameter settings were adopted. The image input

dimensions were configured as 105x105, with the network

undergoing training for 200 epochs. The batch size was

established at 32, and the initial learning rate was set to 1e-2. The

training process employed SGD with a momentum value of 0.9.

Meanwhile, in order to avoid the problems associated with slow

training from initial conditions and the suboptimal training

outcomes stemming from random weight initialization, transfer

learning (Pan and Yang, 2009; Zhuang et al., 2020) was used to

pretrain the model, and the accuracy of each feature extraction

network was obtained as shown in Table 2.

The experimental results show that the SE-ResNet50 model as

the feature extraction network of the Siamese Network achieved the

highest training accuracy of 98.4%, and also had the highest test

accuracy of 93.7%. Compared with the original VGG16 as the

feature extraction network, the training accuracy of the Siamese

Network model was improved by 5%, and the accuracy of the test

set was improved by 3.6%. Compared with the unimproved

ResNet50 as the feature extraction network, the training accuracy

of the Siamese Network was improved by 8.7%, and the test

accuracy was improved by 9.5%. Among all the models, the

Siamese Network model with VGG19 as the feature extraction

network had the lowest training accuracy, with an accuracy of only
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61.2%. The Siamese Network model with VGG19 as the feature

extraction network still had the lowest test accuracy, with an

accuracy of 55.4%.

In order to more intuitively show the prediction effect of each

feature extraction network on soybean pods, several images of each

type of pod were selected for prediction analysis from 50 soybean

samples recorded in advance, and the confusion matrix shown in

Figure 4 was drawn. The ordinate represents the real one-seed pods,

two-seed pods, three-seed pods and four-seed pods, and the abscissa

represents the predicted one-seed pods, two-seed pods, three-seed

pods and four-seed pods.

Through the observation of the confusion matrix, an

observation can be made that in the judgment of all types of

pods, the judgment accuracy of one-seed pods was the highest.

Except for the Siamese Network model with VGG19 as the

backbone feature extraction network, the judgment accuracy of

one-seed pods in all other models could reach 100%. This outcome

suggests a substantial distinction between one-seed pods and other

pod types, enabling the network to accurately differentiate the

distinct attributes of one-seed pods. On the contrary, the

recognition accuracy of two-seed pods was the lowest among all

types of pods, was more likely to be misjudged as a one-seed pod or

three-seed pod. The only error in the Siamese Network model with

SE-ResNet50 as the feature extraction network was the recognition
a) ResNet50 b) GoogLeNet c) EfficientNet

d) VGG19 e) SE-ResNet50 f) VGG16

FIGURE 4

Confusion matrix of six feature extraction networks. (a) ResNet50. (b) GoogLeNet. (s) EfficientNet. (d) VGG19. (e) SE-ResNet50. (f) VGG16.
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of two-seed pods. Among all types of pods, the accuracy of four-seed

pods was second only to that of one-seed pods. Such findings can be

attributed to both one-seed pods and four-seed pods belonging to

marginal pods. In essence, the entity most akin to a one-seed pod

could be interpreted as a two-seed pod, and the entity most

resembling a four-seed pod could be recognized as a three-seed

pod. However, the relationship between two-seed pods and three-

seed pods is less straightforward, rendering their characteristics

intricate to capture, which consequently results in a lower

recognition accuracy.

In order to achieve the optimal effect of the model, some

hyperparameters in the network structure needed to be adjusted.

In the experiment, the SE-Siamese Network model was trained with

different hyperparameters to obtain different accuracy rates. The

results are shown in Supplementary Table S3. An observation can

be made that the highest accuracy of 93.1% was obtained in the case

of optimal hyper-parameter combination (learning rate of 1e-3,

momentum value of 0.9, batch size of 32). In general, the effect of

using the Adam (Kingma, 2014) optimizer was generally higher

than that of using the SGD optimizer, and different batch sizes had

minimal effect on the overall accuracy. As is well known there is no

fixed template for the setting of hyperparameters in CNN training.

When setting, the characteristics of data sets and computing

resources also need to be considered. The hyperparameters

should not be blindly increased or decreased.

To summarize, the process of determining an optimal model

involved evaluating network models utilizing diverse strategies. SE-

ResNet50 was chosen as the backbone feature extraction network

for the Siamese Network. A dropout rate of 0.2 was selected, along

with a batch size of 32. The highest accuracy was attained when

utilizing the Adam optimizer with a learning rate of 1e-3. To

provide an intuitive insight into the image transformation process

within the model, the visualization of the feature extraction

component was performed, as depicted in Supplementary Figure S3.
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From Supplementary Figure S3, an observation can be made

that the results were obtained after multiple convolutions in the

deep learning architecture. The results of multiple feature changes

of one-seed pods, two-seed pods, three-seed pods and four-seed

pods are shown. In the initial feature transformation, the structural

features of various types of pods could be clearly extracted.

Especially in the first two feature transformations, there appears

to be no significant difference from the original image. However,

with the deepening of the network and the increase in the number

of convolutions, the image gradually became distorted and difficult

to understand clearly after the third feature change. Overall, the

feature extraction network could clearly extract the features of

different types of pods.
3.3 Comparative analysis of experimental
results

In the present study, the two-stage method of object detection

and metric learning was used to give the recognition and

counting method of different types of soybean pods, thereby

allowing for the counting error caused by soybean pod

occlusion to be effectively solved. As a one-stage processing

method, the object detection method first detects and identifies

different types of pods, and then automatically cuts the

recognition object to input into the two-stage metric learning

algorithm for similarity comparison. While the method’s

efficiency is comparatively lower than that achieved by solely

employing the object detection algorithm for soybean pod

recognition, the trade-off is acceptable due to the algorithm’s

enhanced accuracy. This warrants a marginal increase in

computation time for the sake of accuracy improvement. In

addition, for complex types of soybean plants, pods are dense,

and the correction count of front and back images alone is not
FIGURE 5

Comparative analysis. (A) Comparison of the accuracy of the object detection algorithm and the fusion algorithm. (B) Performance comparison of
different object detection algorithms in actual pod classification and counting.
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enough to fully obtain all pod information. At this time, the

number of different types of pods of the whole soybean can be

estimated by post-processing and other methods to achieve the

result of approximating the ground truth.

Figure 5A shows the accuracy comparison between the object

detection algorithm and the fusion algorithm based on deep

learning and metric learning. A clear observation can be made

that the accuracy of the fusion algorithm based on deep learning

and metric learning was higher than that of the object detection

algorithm alone, whether on different categories of pods or for the

total number of pods. Notably, the enhancement was more

pronounced for one-seed pods and two-seed pods, whereas the

improvement for four-seed pods was relatively marginal. The

underlying cause can be attributed to the following: one-seed

pods and two-seed pods possess a shorter length and are

frequently concealed by other pods during the growth and

development of soybeans. This obstructs their visibility from

certain angles, whereas the four-seed pod, owing to its elongated

structure, is less prone to being obstructed by neighboring pods. As

such, the fusion algorithm brings about a more substantial

enhancement in the recognition of one-seed and two-seed pods,

while the improvement in the recognition of four-seed pods is

relatively subdued.

From Figure 5B, an observation can be made that the accuracy

of the object detection effect had a significant effect on the fusion

model. The higher the accuracy of the object detection model, the

better the final fusion model. Therefore, if the accuracy of the object

detection algorithm can be improved, it will have a positive effect on

the final improvement of the fusion model.

In order to clearly show that the accuracy of the fusion

algorithm based on object detection and metric learning is higher

than that of the object detection algorithm alone, several soybean

plant images were selected from the test set, and the evaluation

results of the detection using the object detection algorithm alone

were compared with the evaluation results of the two-stage fusion

algorithm, as shown in Table 3.

From the experimental results in Table 3, an observation can

be made that the proposed fusion algorithm based on deep

learning and metric learning was higher than the result of using

the object detection algorithm alone in the correlation

comparison. The correlation between the ground truth and the

prediction of the three-seed pods reached the highest value of

0.9690, which was 0.0585 higher than that of the object detection

algorithm alone. In addition, for the fusion algorithm based on

object detection and metric learning, the correlation between the

ground truth and the prediction was greater than 0.9, indicating

that there was a high correlation between the predicted result and

the ground truth. In the comparison of the root mean square

error of Table 3 and the average absolute error of Table 3, except

for the error of the four-seed pods fusion model based on object

detection and metric learning being higher than that of the model

using only object detection, the fusion algorithm based on object

detection and metric learning could achieve better results in the

remaining errors. Overall, the selected soybean plant samples

based on the fusion method of object detection and metric
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learning obviously exhibited clear advantages in terms of

recognition accuracy.
4 Discussion

4.1 The bias of the number of pods in each
category may be one of the reasons that
affect the object detection results

In the present study, during the sampling process of soybean

plants under natural conditions, the number of pods in each

category was not the same, and the data samples obtained were

divided in detail as shown in Table 4. From the statistical results, an

observation can be made that the numbers of two-seed pods and

three-seed pods in the obtained 1200 original images were far more

than the numbers of one-seed pods and four-seed pods. Therefore,

more pods with different shapes, textures and colors can be

obtained in the feature extraction process for two-seed pods and

three-seed pods, which is also one of the reasons for the high

recognition accuracy of two-seed pods and three-seed pods in the

final recognition process. Moreover, Yang et al. (2022) also

explained the relationship between recognition results and data
TABLE 3 Recognition performance of different models for
soybean pods.

Seeds
per
pod

Object detection Fusion algorithm

R MAE RMSE R MAE RMSE

one 0.8547 0.8333 1.6330 0.9265 0.8167 1.2042

two 0.8890 2.4333 3.5355 0.9517 2.0500 2.5528

three 0.9105 4.4833 6.0539 0.9690 2.7500 3.2939

four 0.9093 1.3500 2.2023 0.9493 2.1500 2.7779

total 0.8856 8.0333 10.2794 0.9664 7.2000 7.7567
front
TABLE 4 Pod number statistics and object detection and recognition
accuracy of each category.

Methods One Two Three Four

Number 3078 9805 13896 2955

Faster R-CNN
(ResNet50)

1.74% 9.90% 21.55% 6.38%

Faster R-CNN
(VGG16)

12.72% 33.20% 45.59% 21.92%

SSD 0.01% 2.16% 11.25% 2.48%

CenterNet 41.66% 60.81% 73.71% 69.36%

RetinaNet 0.07% 1.15% 11.39% 15.68%

YOLO v5 20.90% 47.08% 66.46% 49.07%

YOLO v7 31.19% 60.17% 76.61% 65.18%

YOLOX 68.43% 85.66% 91.55% 88.09%
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balance. Therefore, in order to obtain higher recognition accuracy,

it is crucial to expand and balance the data of each category.
4.2 Plant complexity is an important reason
that affects the recognition effect of the
model

The varying complexity of soybean plants significantly

influences the ultimate recognition outcomes. In the present

study, plants displaying infinite podding habits, sub-finite

podding habits, and limited podding habits were carefully selected

to thoroughly investigate and analyze recognition accuracy. Visual

representation is shown in Figure 6. According to the results, the

average accuracy of infinite podding habit pods was higher than

that of sub-finite podding habit and finite podding habit pods. Such

findings could be related to the characteristics of infinite podding

habit, wherein the plant height is higher, the pitch is longer, and the

overall number of pods is fewer. As a result, the final results were

seldom marred by counting errors attributed to occlusion or similar

factors. Notably, the shorter inter-pod spacing and higher pod

density of plants with sub-finite podding habits and finite

podding habits predominantly contribute to their lower

recognition accuracy. In addition, the accuracy of the total pod

number was slightly higher than the average accuracy. The reason

for such findings is that some pod number prediction results

exceeded the ground truth, while some pod number prediction
Frontiers in Plant Science 12
results were lower than the ground truth, resulting in the total pod

number being closer to the ground truth.
4.3 The total number of particles cannot
be directly calculated by the calculated
results

The total number of grains is the most accurate reflection of the

yield of a soybean. The more the total number of grains of a

soybean, the higher the yield of the soybean. The soybean will also

become the focus of breeding experts. However, the total number of

seeds cannot be calculated only by counting the sum of various

types of pods on each soybean plant, because there are empty pods

during the growth and development of soybeans, resulting in a

slight error between the sum of different types of pods and the real

number of soybean plants. Hence, the computation of the overall

seed count in soybean plants remains a work in progress,

necessitating further efforts to identify and address issues

associated with empty pods (Uzal et al., 2018).
4.4 Impact of data imbalance on metric
learning

While our Siamese Network achieves strong performance

overall, we observe that data imbalance among pod types poses
Acc Acc Acc

one: 82.22%

two: 90.91%

three: 85.77%

four: 82.76%

total: 90.17%

one: 83.33%

two: 81.53%

three: 81.33%

four: 76.25%

total: 86.71%

one: 86.84%

two: 85.07%

three: 86.54%

four: 77.03%

total: 86.75%

FIGURE 6

Comparison of phenotypic extraction accuracy of plants with different podding habits. (A) Infinite podding habit. (B) Sub-finite podding habit. (C)
Finite podding habit.
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notable challenges during the metric learning stage. In particular,

classes with fewer training samples tend to suffer from higher intra-

class variance and lower inter-class separability, which in turn

hinders the network’s ability to learn discriminative and robust

feature embeddings for these underrepresented types. This effect is

especially pronounced in pairwise similarity evaluation, where rare

pod types exhibit higher rates of false negatives. The imbalance

limits the diversity and informativeness of sample pairs involving

low-frequency classes, leading the model to overfit to majority

classes and potentially ignore minority-specific representations.

As a result, the learned embedding space may not preserve

sufficient semantic structure for rare classes, which impacts both

retrieval-based and verification-style tasks. In future research, we

plan to adopt a class-balanced sampling strategy to ensure that each

training batch provides a more even distribution of pod types and

prevent the majority class from dominating.
4.5 Some limitations

While our proposed fusion algorithm has demonstrated its

effectiveness in the majority of experiments, it still exhibits certain

limitations. Specifically, occlusions present in soybean plants when

photographed from both directions can lead to errors in the object

detection method, consequently impacting the performance of the

metric learning method, which is closely intertwined with the

effectiveness of object detection. Thus, the optimal approach in

such scenarios would involve minimizing occlusion-induced errors

through human intervention(for example, Manually expose the

occluded pods so that the camera can capture them). Additionally,

the performance of the object detection method significantly

influences the final outcome. While our method offers some

correction capabilities for counting, further enhancement of the

object detection method would lead to improved pod counting

results. This direction constitutes our next research endeavor.
5 Conclusions

In the present study, a high-precision automatic identification

method of whole plant pods in soybean maturity based on deep

learning and metric learning was proposed, which was elaborated

from data acquisition, model construction and experimental results

and analysis. With the aim of achieving recognition of different

types of soybean pods, different object detection algorithms were

used for recognition. The optimal model was selected as the

detection model of the first stage, and its accuracy on the test set

reached 83.43%. In the second stage, the Siamese Network models

with different feature extraction networks were compared.

According to the comparison results, the Siamese Network with

SE-ResNet50 as the feature extraction network was the optimal

model, and its accuracy on the test set reached 93.7%. Further, the

hyperparameters of the optimal model SE-Siamese Network were

compared, and the optimal combination model was obtained.
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Finally, the performance of the model was verified again by using

the method of confusion matrix and feature map visualization. In

order to demonstrate the effect of the model in practical application,

the images of some soybean plants were selected, and the

phenotypic information of different types of pods, total pods and

total grains were manually counted. The correlation between the

fusion algorithm based on deep learning and metric learning and

the method using only object detection was compared. Findings

were made that the correlation of the fusion method based on deep

learning and metric learning was higher than that of the method

using only object detection, which verifies the accuracy of the

method and provides a new direction for other similar studies.
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Results of different pod numbers using different data augmentation methods.
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A note on supplementary counting through metric learning.
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The prediction effect of different networks. (A)YOLOX. (B)YOLO v7. (C) YOLO

v5. (D) Faster R-CNN(VGG16). (E) RetinaNet. (F) Faster R-CNN(ResNet50). (G)
CenterNet. (H) SSD.
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The transformation process of different types of pods through feature

extraction network.
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Experimental environment settings.

SUPPLEMENTARY TABLE 2
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Effects of different hyperparameters on accuracy.
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