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Omer Elnour Rehab2, Jianjun Zeng1, Xiaohong Yan1*,
Qitao Su1* and Bing Zhou1*

1Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, School of Life Sciences,
Jinggangshan University, Ji’an, China, 2Applied College, King Khalid University, Dhahran Aljanob, Saudi Arabia
Global warming has emerged as one of the most pressing environmental

challenges. Concurrently, plant invasion has been exacerbated by ongoing

climate change, posing a severe ecological threat. This study investigates the

distribution patterns of both invasive and native species within the Bidens genus

and their responses to projected climate change. The MaxEnt model, was used to

predict the potential distribution ranges under both current and future climate

conditions. The results showed a distinct difference in suitable area distributions

between invasive and native species. Under future climate scenarios, most

studied species (except B. pilosa, B. maximowicziana, and B. radiata) showed

an expansion in their suitable habitats. Notably, we observed a latitudinal

migration pattern in Bidens species distribution, with invasive species primarily

influenced by precipitation during the warmest quarter, while native species were

more affected by anthropogenic factors. These results underscore the need for

enhanced public awareness of invasion risks and the establishment of dedicated

protection zones for both invasive and native species. This study provides critical

insights into the potential distribution patterns of Bidens species under climate

change. It also, offers valuable scientific support for development of invasive

species management strategies and native species conservation mechanisms.
KEYWORDS

climate change, Bidens, MAXENT model, distribution pattern, adaptability
Introduction

Global warming has become a serious challenge for core productivity,food security, and

ecosystem sustainability. The phenomenon manifested by increase in global temperature

and resulting in increase in the frequency of extreme climate events, such as droughts, and

floods (Byeon et al., 2018). In recent decades, man-made greenhouse gas emissions have led

to an increase in global average temperature (Nikendel et al., 2020; Cook et al., 2013; Hayat
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et al., 2024). With the advancement of globalization, plant invasion

has become a serious challenge, causing significant ecological, social

and economic losses (Zhang et al., 2022a). Climate change is one of

the driving factors of alien invasive plants (Zhang et al., 2024). The

driving forces for plant expansion or regeneration are precipitation,

light, temperature, etc. To cope with climate change, species will

change their distribution to adapt to the new environment, resulting

in the migration of species to suitable areas (Zhang et al., 2020). In

general, global warming forces species to migrate to high latitudes

and high altitudes to survive (Wilson et al., 2007). Xu et al. (2023)

found that global warming has changed the trend of the northward

migration of the invasive grass Cenchrus alopecuroides (L.) Thunb.

in the suitable area of China. Cao et al. (2018) showed that the

response of invasive plants to climate change has greater

phenological plasticity, and it aggravate the invasion of invasive

plants and accelerate their invasion process. At the same time,

human activities are also an important factor affecting the

distribution of species, which directly affects the spatial

distribution and diversity of plants (Zhao et al., 2023a). For

instance, Xu et al. (2024) found that climate change promoted the

growth of Aconitum leucostomum Vorosch., while human activities

inhibited the spread of A. leucostomum. Invasive plants can spread

to new areas through human activities (Rew et al., 2018). Therefore,

using human activities as predictors can more accurately show the

potential distribution range and spatial pattern of future species.

The species distribution model (SDM) analyzes the actual

distribution area and potential geographical location of species

through the actual distribution range and environmental variables

of species (Cao et al., 2018), The prediction accuracy of model

training data usually increases with the increase in number of

variables until the asymptote is reached. The number of variables

should be less than the number of species records (Neftalı ́ et al.,
2021). At present, there are many species distribution prediction

models, including MaxEnt (Phillips et al., 2006), ENFA (Hirzel

et al., 2002), GLM (Nelder and Wedderburn, 1972) and GARP

(Stockwell and Noble, 1992). Among them, the MaxEnt model is

the most popular and most widely used species distribution model

(Merow et al., 2013; Barbosa and Schneck, 2015), This model uses

machine learning methods to use the existence species records to

evaluate the possibility of events. Even if some species data are

lacking or the sample size is small, it can maintain a high degree of

accuracy and stability (Tang et al., 2021a). It has the advantages of

fast calculation speed and flexible operation (Dong et al., 2023).

Therefore, the MaxEnt model has become an ideal prediction tool

for analyzing distribution or potential distribution (Zhang et al.,

2021b). Moreover, SDM has been widely used in species

conservation (Ouyang et al., 2022), invasive species prevention

(Wang et al., 2023), and the distribution of endangered and

threatened species (Su et al., 2024a, b; Hu et al., 2022). Su et al.

(2024b) used the maxent model to analyze the migration pattern of

Hydrocera triflora (L.) Wight & Arn. These authors found that this
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model provides a theoretical basis for the introduction and scientific

protection of this species. Yang et al. (2023) used this model to

analyze the distribution pattern of 31 Asteraceae invasive species,

and provided early countermeasures for reducing the risk and

impact of biological invasion. Zhang et al. (2023) used MaxEnt

and random forest (RF) models to predict the potential distribution

areas of Populus euphratica Olivier and Tamarix chinensis Lour. in

the lower reaches of the Heihe River (40°32′N–42°39′N, 97°36′E–
102°8′E).

Bidens L. is a genus within Asteraceae that includes

approximately 230 herbaceous species around the world, which is

widely grown in tropical and subtropical regions of Asia, American

Continent and other continents (Deng et al., 2019). There are 12

species in China. Bidens alba (L.) DC., Bidens bipinnata L., Bidens

biternata (Lour.) Merr. & Sherff, Bidens cernua L., Bidens frondosa

L., Bidens maximowicziana Oett., Bidens parviflora Willd., Bidens

pilosa L., Bidens radiata Thuill., Bidens subalternans DC. Bidens

tripartita L., Bidens vulgata Greene, among these, B. alba, B.

bipinnata, B. frondosa, B. Pilosa, B. vulgata, B. subalternans are

noteworthy for being invasive species. are widely distributed and

recorded in all provinces of China (Wang et al., 2020), It is mainly

distributed in southern and northern China, and is born in villages,

roadsides and wasteland. The heteromorphic achenes produced by

the mature capitate inflorescence of Bidens have high yield, and

have barbed spines, which are easy to adhere to the carrier and be

carried and spread (Brändel, 2004).

Most of the species in the genus are often used in traditional

Chinese medicines, with potential to heat, analgesia and anti-

inflammation, and promote blood circulation (Fotso et al., 2014;

Wang et al., 2018). Therefore, the current research on Bidens species

only focuses on the development of taxonomic and medicinal value

(Brandão et al., 1997; Chiang et al., 2004). In recent years, a variety

of invasive plants have emerged in China. Most plants of Bidens

have the characteristics of fast growth and development, large

number of fruits, easy spread and diffusion. These characteristics

are conducive for expanding the distribution area and occupying

the residence, so as to achieve rapid invasion (Qiang and Zhang,

2022; Salgado et al., 2024). In order to scientifically clarify the

distribution of Bidens and its response to future climate change, this

study used MaxEnt model and ArcGIS V10.8 software to simulate

and predict the potential distribution of B. alba, B. bipinnata, B.

frondosa, B. pilosa, B. biternata, B. cernua, B. maximowicziana, B.

parviflora, B. radiata, B. tripartita (four invasive species and six

native species) in China in the current and future 2050s (2041-

2060) and 2090s (2081-2100), and answered the following scientific

questions:(1)What are the main climate factors affecting the

distribution of invasive species and native species of Bidens? (2)

How the suitable area of invasive species and native species of

Bidens will change in the future? (3) Is the expansion trend in the

distribution pattern of invasive species and native species similar

under current and future climate change scenarios?
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Materials and methods

Acquisition and processing of distribution
data of Bidens

A total of 12 species of Bidens distributed in China were

collected. In this analysis, B. alba, B. bipinnata, B. biternata, B.

cernua, B. frondosa, B. maximowicziana, B. parviflora, B. pilosa, B.

radiata, B. tripartita 10 species were used, However, two species,

including B. vulgata and B. subalternans were excluded because B.

vulgata had only two records and B. subalternans had only four

records. Species distribution data were sourced from GBIF (https://

www.gbif.org/), China Digital Herbarium (https://www.cvh.ac.cn/)

and China Plant Image Library (https://ppbc.iplant.cn/), and the

distribution data with specific latitude and longitude points were

selected. Microsoft excel was used to process the distribution of data

and saved as CSV format to remove information such as duplication

and no coordinate points. ENMTools was used to remove

redundant distribution data and avoid over-fitting of the model.

Only one distribution record was retained in every 2km grid

(Warren et al., 2010). and effective distribution data were finally

obtained for analysis.
Sources of environmental data

The environmental climate data were derived from the World

Climate Database (https://www.worldclim.org/), the spatial resolution

was 2.5 arc min (Fick and Hijmans, 2017), and 19 climate data

(Bio1-Bio19) in the CCSM4 global climate model were downloaded

from the database (Table 1). CMIP6 was used to release the current

and future 2050s (2041-2060), 2090s (2081-2100) two time periods

and SSP1-2.6, SSP2-4.5, SSP5-8.5 three climate scenarios. The

SSP126 scenario was a low greenhouse gas emission condition,

the SSP245 scenario was a medium greenhouse gas emission

condition, and the SSP585 scenario was a high greenhouse gas

emission condition. The slope and slope direction were extracted

from DEM digital elevation data with an accuracy of 25 m, which

were obtained from the Computer Network Information Center of

the Chinese Academy of Sciences and the International website of

Scientific Data (http://www.gscloud.cn/). Human active (HA) data

were obtained from the Socioeconomic Data and Applications

Center (SEDAC: http://sedac.ciesin.columbia.edu/wildareas/).
Accuracy test of model construction

To perform base map analysis China map on the website of the

National Bureau of Surveying and Mapping (https://

nfgis.nsdi.gov.cn) was downloaded. Using MaxEnt model, the

screened environmental factors were used for modeling. Then

they, used to predict the suitable area of Bidens plants under the

current climate model. Through the Jackknife method, 25% of the

distribution data were randomly selected as the test data, 75%

selected as the training data, while other parameters were defaulted
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to determine the importance of each environmental factor (Li et al.,

2020a; Qiu et al., 2023). The receiver operating characteristic curve

(ROC) of all environmental variables was set and calculated, and the

area under the curve (AUC) was used to test the prediction results

of the model. This value was considered to be one of the evaluation

criteria for the prediction results of species distribution models with

high reliability and wide application, and, its value is between 0-1,

The value of AUC ≤ 0.60 represents failure; 0.60< AUC ≤ 0.70

indicated poor accuracy; 0.70 < AUC ≤0.80 means that the accuracy

is general; 0.80< AUC ≤ 0.90 means high accuracy; 0.90 < AUC≤

1.0, represents a very high accuracy, and the higher the AUC, the

more accurate the model (Yang et al., 2023).
Classification of suitable areas

The output of the model was imported into ArcGIS, and the

conversion tool was used to convert it from asc format to raster

data, and the suitable area was divided. To determine the suitable

area and unsuitable area of the species, the MaxEnt output file was

reclassified using the 10 percentile training existence logic threshold
TABLE 1 Environmental factors information.

Variable Description

Bio1 Annual Mean Temperature

Bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp))

Bio3 Isothermality

Bio4 Temperature Seasonality

Bio5 Max Temperature of Warmest Month

Bio6 Min Temperature of Coldest Month

Bio7 Temperature Annual Range (BIO5-BIO6)

Bio8 Mean Temperature of Wettest Quarter

Bio9 Mean Temperature of Driest Quarter

Bio10 Mean Temperature of Warmest Quarter

Bio11 Mean Temperature of Coldest Quarter

Bio12 Annual Precipitation

Bio13 Precipitation of Wettest Month

Bio14 Precipitation of Driest Month

Bio15 Precipitation Seasonality (Coefficient of Variation)

Bio16 Precipitation of Wettest Quarter

Bio17 Precipitation of Driest Quarter

Bio18 Precipitation of Warmest Quarter

Bio19 Precipitation of Coldest Quarter

Aspect Aspect

Elev Elevation

HA human activity factor

Slope Slope
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(TH) (Qiu et al., 2023). By combining the average value of the 10

percentile training existence logic threshold (TH) output of MaxEnt

with the IPCC classification criteria, the potential habitats were

divided into three categories: unsuitable area (<TH), suitable area

(TH-0.66) and highly suitable area(>0.66) (Shi et al., 2021).
Analysis of spatial pattern change and
distribution centroid of species suitable
area

In ArcGIS, the suitable area was binarized, and the area with

distribution probability < TH was set as the unsuitable area, and the

assignment was 0. The distribution probability ≥ TH area was set as

the suitable area, assigned to 1, and the non-suitable/suitable binary

map matrix of each period was obtained. Define 0-0 as the

unsuitable area, 0-1 as the new suitable area, 1-0 as the lost

suitable area, and 1-1 as the reserved suitable area. The area

change, change trend and range of Bidens plants under different

climatic scenarios and contemporary under different suitable grades

were calculated, and the area and geographical range of its increase,

retention and loss were obtained.

Based on the above binary map, the SDM toolbox was used to

calculate and simulate the geometric center position changes of the

potential suitable areas in different periods, Further, it also

compares the overall change trend of the core suitable areas of

Bidens in different periods, and reflects the influence of

environmental changes on its distribution in different periods.
Results

Accuracy and evaluation of the model

The ROC curve analysis method was used to verify the

prediction results of the potential suitable area distribution of

Bidens genu in the current climate by the receiver operating

characteristic curve (ROC). The average AUC values of the 10
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repeated training sets and test sets of Bidens genu was greater than

0.9, indicating that the model has high stability and accurate.

Therefore, it can be used to predict the potential distribution of

Bidens genu (Table 2).
Dominant environmental factors affecting
distribution

The MaxEnt model judges the weight of each environmental

factor by the Jacknife method. According to the ranking (Figure 1,

Table 3), the following table lists the three environmental factors

with the highest contribution rate for each Bidens genu. Finally, one

environmental factor with the highest contribution rate to the

model generation was selected from each Bidens species, The

dominant environmental factor of the four invasive species was

Bio18 (Precipitation of Warmest Quarter). Except that the

dominant environmental factor of B. biternata is Bio18

(Precipitation of Warmest Quarter), the dominant environmental

factor of the other five native species was HA (human activity

factor). The results showed that the environmental factors affecting

the distribution of the most species were Bio18 (Precipitation of

Warmest Quarter) and HA (human activity factor), indicating that

precipitation and human activity factor were the main factors

affecting the establishment of the distribution model of Bidens genu.

It is generally believed that when the probability of species

existence is higher than 50%, the corresponding environmental

factors are suitable for plant growth (Liu et al., 2020; Meng et al.,

2020). For example, when the precipitation of Warmest Quarter

reaches 511.368 mm, the existence probability of B. alba is 50%, and

the precipitation of Warmest Quarter reaches 845.988 mm, the

existence probability of B. alba is the largest, reaching 67.228%,

Thereafter, it decreases with the increase of Precipitation of

Warmest Quarter. When it reaches 1257.828 mm, the existence

probability of B. alba decreases to 50%. When the Precipitation of

Warmest Quarter is greater than 1257.828 mm, the probability of B.

alba is less than 50%. Therefore, the Precipitation of Warmest

Quarter between 511.368-1257.828 mm is suitable for the growth of
TABLE 2 Effective distribution records and AUC values of Bidens genu.

Classification Species Distribution Records Test AUC Training AUC

invasive species

B. alba 257 0.9866 0.9876

B. bipinnata 490 0.975 0.9747

B. frondosa 229 0.9875 0.9779

B. pilosa 1109 0.9534 0.9551

native species

B. biternata 443 0.9722 0.9755

B. cernua 86 0.9742 0.9822

B. maximowicziana 32 0.9441 0.9953

B. parviflora 415 0.9732 0.9789

B. radiata 22 0.9982 0.9928

B. tripartita 615 0.9643 0.9671
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FIGURE 1

Correlation heat map (A) and chord diagram (B) of environmental factor contribution.
TABLE 3 The main environmental variables affecting the distribution of Bidens genu (top 3).

Classification Species Variables Percent contribution (%) Suitablity More Than 50%

invasive specie B.alba Bio18 50.4 511.368-1257.828mm

Bio04 19 487.940-722.598

HA 11.5 35.088-227.256

B.bipinnata Bio18 32.6 346.632-845.988mm

HA 21.8 39.372-207.672

Bio15 15.1 64.201-142.416mm

B.frondosa

Bio18 44.3 403.26-598.884mm

Bio04 23 739.359-1001.953

HA 17 33.864-164.22

B.pilosa Bio18 52.6 459.888-1438.008mm

Bio04 17.8 443.243-851.101

HA 14.5 33.864-202.776

native species B.biternata Bio18 37.3 398.112-923.208mm

HA 23.7 39.984-206.448

Bio04 17.5 549.398-1068.998

B.cernua HA 21.9 31.416-197.88

Bio18 18.3 300.3-815.1mm

Bio01 18.3 2.211-12.716°C

B.maximowicziana HA 36.6 41.82-149.532

Bio18 13.5 305.448-598.884mm

Bio04 24.5 1186.327-1733.863

B.parviflora HA 25.8 41.208-168.504

Bio18 22.8 300.3-567.996mm

Bio15 18.7 89.621-136.55mm

B.radiata HA 38 33.864-170.34

(Continued)
F
rontiers in Plant Scienc
e
 05
 frontiersin.org

https://doi.org/10.3389/fpls.2025.1583552
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiao et al. 10.3389/fpls.2025.1583552
B. alba. According to the response curve of Bidens plants to

environmental factors, the range of dominant factors affecting

species was calculated. The results showed that the Precipitation

of Warmest Quarter in the range of 346.632 mm-1438.008 mm and

the human activity factor index in the range of 31.416-197.88 were

suitable for the growth of Bidens.
Prediction of potential suitable areas of
Bidens in the current situation

Under the current scenario, the potential suitable areas for the

four invasive species are mainly in Southern China (Figure 2).

Among them, B. frondosa has the largest potential suitable area of

272.491×104 km2, and its highly suitable area is 36.563×104 km2,

and most species in the highly suitable area of invasive species. The

second is B. bipinnata, and its potential suitable area is 250.681×104

km2, its highly suitable area is 8.362×104 km2. The potential suitable

area of B. pilosa is 242.889×104 km2, of which the highly suitable

area is 1.876×104 km2, which is the least area of highly suitable area
Frontiers in Plant Science 06
among invasive species. The total suitable area of B. alba is

145.659×104 km2, and the highly suitable area is 9.796×104 km2.

Most of the current potential suitable areas for B. biternata and B.

tripartite in native species are concentrated in the Southern region.

The potential suitable area of B. biternata is 242.321×104 km2, of

which the highly suitable area is 11.057×104 km2. The total area of

potential suitable area of B. tripartite reach 389.043×104 km2, which

was the largest area of potential suitable area among the species, and

the highly suitable area was 16.501×104 km2. The suitable areas of the

remaining B. cernua, B. maximowicziana, B. parviflora, B. radiata

and other species are mostly concentrated in the Northern region,

and a small part is in the Northwest and Southwest regions. The

potential suitable area of B. cernua was 330.793×104 km2, of which

the highly suitable area accounted for 47.580×104 km2. The potential

suitable area of B. maximowicziana was 143.203×104 km2, of which

the highly suitable area accounted for 19.012×104 km2. The potential

suitable area of B. parviflora was 260.434×104 km2, of which the

highly suitable area accounted for 9.456×104 km2. The potential

suitable area of B. radiata is 201.102×104 km2, of which the highly

suitable area accounts for 37.628×104 km2.
FIGURE 2

Prediction of potential suitable areas of Bidens genu under current climate model.
TABLE 3 Continued

Classification Species Variables Percent contribution (%) Suitablity More Than 50%

Bio04 21.1 1163.979-2057.915

Bio19 14.5 3.354-23.481mm

B. tripartita HA 32.8 36.312-117.708

Bio18 20.7 362.076-856.284mm

Bio15 13.1 66.645-135.083mm
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Changes in the spatial distribution range of
Bidens under different climate models in
the future

In the future climate scenario, by the 2090s, the total area of

potential suitable areas for the three invasive species of B. alba, B.

bipinnata and B. frondosa will show an expanding trend, and the

new area will be greater than the lost area (Figure 3). Among them,

the total area of potential suitable areas for B. frondosa increased the

most under the 2090 SSP585 scenario, which was 223.252×104 km2.

The total area of potential suitable area of B. pilosa in 2050SSP126

and 2090SSP585 scenarios decreased compared with the current

period, losing 1.800×104 km2 and 32.672×104 km2 respectively, and

the total area of potential suitable area increased in the rest periods.

The potential suitable areas of the four invasive species mainly

expanded to high latitudes, but shrank in low latitudes.

Among the six native species, B. biternata, B. cernua, B.

maximowicziana, B. parviflora, B. radiata and B. tripartita.

Except that the total potential suitable area of B. maximowicziana

decreased by 39.264×104 km2 under 2050SSP245 scenario and the

total potential suitable area of B. radiata decreased by 13.201×104

km2 and 46.857×104 km2 under 2090SSP126 and 2090SSP245
Frontiers in Plant Science 07
scenarios, the total potential suitable area of other species

increased in the future (Figure 4). Among them, the new area of

B. cernua was the largest under 2050SSP585 and 2090SSP245

scenarios. It reached 177.432×104 km2 and 155.339×104 km2,

while the new area in 2090 SSP126 was the least, only 17.463×104

km2. The potential suitable area of native species is reflected in the

expansion of high latitude area and the contraction of low latitude

area, but the suitable area of B. cernua and B. tripartita in the

northwest region is shrinking.
The change of distribution centroid of
potential suitable areas of Bidens under
future climate change

According to the figure, the migration paths of the potential

distribution centroids of the four invasive species of B. alba, B.

bipinnata, B. frondosa, and B. pilosa in the next three scenarios are

similar, and they all have a tendency to expand to high latitudes

(Figure 5). The distribution centroid of B. alba migrated was (110°

31′43″E, 26°56′22″N). The distribution centroid of B. bipinnata

migrated was (111°27′31″E, 30°47′23″N. The distribution centroid
FIGURE 3

Changes in the spatial distribution range of invasive species of Bidens genu under different climate models in the future.
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of B. frondosa migrated was (115°07′42″E, 33°32′56″N). The

distribution centroid of B. pilosa migrated was (110°52′27″E, 28°
49′24″N. The dominant environmental factor of these four plants is

the precipitation in the warmest quarter, and their migration

directions are roughly the same.

Among the native species, B. biternata and B. tripartita

migrated in the same direction to high latitudes (Figure 6). The

distribution centroid of B. biternatamigrated was (112°01′18″E, 30°
11′00″N). The distribution centroid of B. tripartita migrated was

(111°40′06″E, 34°18′10″N). The dominant environmental factor in

B. biternata is the Precipitation of Warmest Quarter, and its

migration direction is mainly related to precipitation, so it

migrates northward. The dominant environmental factor of B.

tripartita is human activity factor, but the Precipitation

Seasonality and the contribution rate of Precipitation of Warmest

Quarter to B. tripartita are also large. Therefore, the trend of B.

tripartita moving northward is also obvious.

The four species of B. cernua, B. maximowicziana, B. parviflora

and B. radata do not have the same migration direction as the above

species. The distribution centroid of B. cernua migrated was (111°

36′58″E, 37°08′26″N), Under the SSP126 scenario, it moves to the

northeast, and under the SSP245 and SSP585 scenarios, it moves to

the northwest. The distribution centroid of B. maximowicziana

migrated was (120°01′44″E, 42°29′39″N), In the SSP126 scenario, it

moves northwestward, in the SSP585 scenario, it moves

northeastward, and in the SSP245 scenario, it moves

northeastward first and then southwestward. The distribution

centroid of B. parviflora migrated was (115°35′27″E, 38°13′35″N),
Under the SSP126 scenario, it migrates to the southwest, under the

SSP585 scenario, it migrates to the northwest, and under the SSP245
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scenario, it first migrates to the northwest and then to the

southwest. The distribution centroid of B. radiata migrated was

(112°35′37″E, 42°22′20″N), Under the SSP126 scenario, it first

migrates to the southwest and then to the northwest. Under the

SSP245 scenario, it first migrates to the northwest and then to the

southwest. The dominant environmental factors of these four plants

are human activity factor, followed by climatic factors. Human

activity factor will affect the growth and distribution of species.

Therefore, the migration direction of these four plants is not simply

moving towards high latitudes.
Discussion

Evaluation of predictive ability and
contribution rate of maxent model

The MaxEnt model analyzes the distribution of species when

the entropy reaches the maximum value under limited conditions.

It has many advantages, such as wide application range, high

precision, simple operation, low sample quantity requirement,

stable operation results, etc (Li et al., 2021). In this study, the

MaxEnt model was used for the first time to obtain the potential

geographic distribution map of invasive and native species of Bidens

genu. The model has excellent fitting ability (AUC values are greater

than 0.9), indicating that the model can objectively predict the

potential suitable growth area of the species. The MaxEnt model

was tested by Jacknife and the contribution rate was calculated. The

results showed that the Precipitation of Warmest Quarter (bio18)

was the most important environmental factor affecting the
FIGURE 4

Changes in the spatial distribution range of native species of Bidens genu under different climate models in the future.
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distribution of invasive species, and human activity factor (HA) was

the most important environmental factor affecting the distribution

of native species. From the top three environmental factors, it can

be found that the environmental factors affecting the survival of

Bidens genu are mainly precipitation, temperature and human

activities, which is consistent with the main ecological factors of

most plants (Sun et al., 2017). According to the results of the most
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suitable threshold value of the dominant factor, the lowest

Precipitation of Warmest Quarter suitable for the growth of

invasive species is 346.632 mm, and the highest is 1438.008 mm,

indicating that invasive species prefer warm and humid climate.

The lowest human activity index causing the growth and

distribution of native species was 31.416, and the highest was

197.88, indicating that human activities were related to the
FIGURE 5

Centroid migration diagram of invasive species distribution.
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distribution of native species. Therefore, the environmental change

caused by climate change leads to the change of spatial distribution

of plants (Zhang et al., 2021a; Tang et al., 2021b; Zhao et al., 2023b).

Bidens genu are easily adhered to human clothing and livestock fur

because of the barbed spines on the top of their fruits. Therefore,

human activities can easily affect the distribution of Bidens genu and

achieve long-distance transmission and diffusion (Ma, 2021).
Frontiers in Plant Science 10
Species distribution prediction of Bidens
under current and future climate scenarios

Adaptation to climate and climate change is essential for plant

growth, geographical distribution and biodiversity (Liu et al.,

2022a). Precipitation is the main environmental factor affecting

the growth and distribution of plants in different habitats (Warren
FIGURE 6

Centroid migration map of native species distribution.
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et al., 2021). The MaxEnt model predicts that, the main suitable

areas for the four invasive species of B. alba, B. bipinnata, B.

frondosa, and B. pilosa and the native species B. biternata in the

current climate scenario are East China, Central China, South

China, and Southwest China. The climate of these areas humid,

and the human disturbance is strong, which is suitable for the

colonization and diffusion of invasive plants. Studies have shown

that the high suitable areas of B. alba are mainly in Guangxi Zhuang

and Guangdong Province in China. B. alba has a large suitable area

in southern China, mainly concentrated in the southern border and

coastal provinces, which is consistent with the previous research

results of B. alba (Yue et al., 2016). The current distribution areas of

native species and invasive species are different. The main suitable

areas of B. cernua, B. maximowicziana, B. parviflora, B. radiata and

B. tripartita are northeast, north, central and southwest regions.

Most of them are temperate monsoon climate, and have high

temperature and rainy summer, and cold and dry in winter.

Studies have shown that climate change will increase, fluctuate or

reduce the distribution range of species (Yuan et al., 2015), The

results showed that under the influence of future climate change, the

suitable areas of invasive species and native species of Bidens genu

have increased significantly. However, under the 2050SSP126 and

2090sSSP585 scenarios, the total suitable area of the invasive species

B. pilosa, the native species B. maximowicziana in the 2050SSP245

period, and the B. radiata in the 2090SSP126 and 2090SSP245

periods decreased slightly. First, it may be due to changes in

temperature and precipitation during this period. The climate is

not suitable for the survival of the species. Secondly, the distribution

range of B. maximowicziana and B. radiata is more dispersed, and

most of them are scattered in the northern region, indicating they

have strict environmental requirements. Under climate change and

intense human activities, the distribution area of more dispersed

species may be narrowed, while the distribution area of widely

distributed species may be expanded (Zhao et al., 2023a; Cao

et al., 2021).
Spatial pattern and centroid distribution
changes of Bidens

In the future climate, with the exponential growth of global

greenhouse gas emissions, the trend of future climate warming in

China will be further aggravated (Li et al., 2020b; Guo et al., 2018).

Precipitation is an important guarantee to maintain the normal

growth and physiological activities of plants (Korell et al., 2021). In

this study, the spatial distribution area of all species showed an

increase in high latitudes and a decrease in low latitudes. This is

because the impact of climate change leads to an increase in

environmental pressure in low latitudes, resulting in fewer or

extinct species in the region (Parmesan and Hanley, 2015). At the

same time, compared with invasive species, the impact of climate

change on the distribution pattern of native plants is more complex.

The cumulative contribution rate of precipitation factors of the four

invasive species is significantly greater than that of other factors,

indicating that invasive species have higher requirements for
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precipitation. In the future, with the global climate warming and

the northward movement of precipitation, the suitable area of

invasive species in geographical space will expand to the high

latitudes of northern China, this, is consistent with the expansion

trend of the invasive species of Bidens genu, such as B. frondosa and

B. Pilosa (Yue et al., 2016; Du et al., 2021). The suitable area of

plants in the high latitudes of native species has increased or

decreased. It may be because the dominant factor of native

species is human activities, human migration, land use and other

activities will lead to plant death or migration (Cao et al., 2022).

At the same time, the distribution centroid of invasive species

expands to higher latitudes, which may be due to the gradual

increase of rainfall from the current altitude to higher altitudes

with greenhouse gas emissions. Therefore, most species will move to

higher latitudes and altitudes to adapt to climate change (Jiang et al.,

2022). The migration direction of invasive species is consistent with

previous research, indicating that climate warming leads to the

migration of species to higher latitudes (Liu et al., 2022b; Ye et al.,

2020). Compared with invasive species, the migration direction of

native species is more complex in the future climate background,

because different human activities, methods and intensities will lead

to different types of land use (cultivated land, forest land, shrub land

and residential land), which directly affects the spatial distribution

and diversity of plants (Zhao et al., 2023a), Therefore, local species

use human activity factor as predictors, which can more accurately

show the future potential distribution range and spatial pattern of

local species. The migration path of native species with human

activity factor as the dominant factor is more complex than that of

invasive species. The distribution centroids of B. maximowicziana

in 2090 SSP245 period, B. radiata in 2050 and 90 SSP585 periods,

and B. parviflora in 2050 and 90 SSP126 periods all migrated to

lower latitudes than at present. This is due to the dual effects of

climate and human activities. Even in areas with suitable climate,

the reduction of natural habitats caused by human is overuse of land

which hinder the expansion of species suitable areas (Liu et al.,

2021). According to the prediction results, the dominant

environmental factor of the five plants in the local species is

human activity, Further, the closer distribution center of mass is

to the northwest region, the smaller the migration range and the

more complex the direction. Because the population in the northern

region is scarce, the spread of plant seeds depends on human

activities. While human activities promote the spread of plant seeds,

the scope, mode and intensity of human activities will also hinder

the expansion of species (Zhang et al., 2022b).
Summary and recommendations

In this study, the current distribution data of species were used

for model analysis, and the prediction model was used to predict the

future distribution area of species, The model predicted the invasion

trend of invasive species in advance and establish a prevention

mechanism, and establish a local species protection scheme.

However, the model prediction was based on the current species

distribution data and the future prediction of climate change.
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Therefore, the specific distribution of future species may be different

from the prediction. According to the change of the distribution

range of species, the establishment of invasive species prevention

and local species protection mechanism, put forward the following

suggestions: Firstly, establish an invasive species protection zone in

the future suitable areas predicted by the invasive species B. alba, B.

bipinnata, B. frondosa, and B. pilosa to prevent the continued

spread of invasive species. Secondly, establish local species

reserves in areas where the predicted future suitable areas for

local species are reduced to protect local species plant resources.

Thirdly, strengthen the public awareness of invasive species

prevention and guide residents to strengthen the protection of

native species.
Conclusion

This study explored the effects of climate change on the

distribution of invasive and native species of Bidens. The results

showed that the suitable areas for invasive species were mainly

located in southern China, while the suitable areas for native species

were mainly located in northern China. In the future climate

scenarios, the potential suitable areas of all species will be

transferred to high latitudes. Precipitation in the warmest quarter

and human activities were the main environmental factors affecting

the potential distribution of invasive species and native species,

respectively. In summary, this study provides strong evidence for

the potential suitable area distribution of invasive and native species

of Bidens under the background of climate change. This will become

a useful reference for preventing malignant invasion of invasive

species and establishing protection mechanisms for native species.

It also fills the gap in the future distribution pattern change of

Bidens in China.
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