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Eggplant seed vigor is a crucial indicator of its germination rate and seedling

growth quality. In response to the need for efficient and nondestructive

assessment methods, this study explores the use of hyperspectral imaging

combined with advanced feature selection and classification algorithms to

evaluate eggplant seed viability. Hyperspectral imaging was employed to collect

spectral data from eggplant seeds, covering 360 bands within a wavelength range

of 395.24–1008.20 nm. The seeds underwent microwave heating and constant-

temperature water bath aging treatments. Data preprocessing involved three

techniques: Multiplicative Scatter Correction (MSC), Savitzky–Golay (SG)

smoothing, and Standard Normal Variate (SNV) transformation. An Enhanced

Information Acquisition Optimization (EIAO) algorithm was proposed for feature

selection, which successfully identified a minimal set of 23 key wavelengths. Seed

vigor classificationmodels were developed using Extreme LearningMachine (ELM),

Random Forest (RF), and Support Vector Machine (SVM).The optimal classification

accuracies achieved were 90.0% for ELM, 91.45% for RF, and 90.5% for SVM. The

MSC-EIAO-RF model demonstrated the best performance, achieving an accuracy

of 91.45%, which is 9.04% higher than the MSC-IAO model (82.41%).Validation on

four UCI datasets further confirmed the EIAO algorithm's superiority over

conventional feature selection methods. These results verify the robustness and

generalizability of hyperspectral imaging combined with EIAO for nondestructive

seed viability detection, offering an intelligent and efficient solution for seed

quality assessment.
KEYWORDS

information acquisition techniques, wavelength selection, hyperspectral, eggplant
seed, vitality classification
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1 Introduction

Eggplant is a perennial herb widely cultivated in warm tropical

and subtropical regions worldwide. Due to its high mineral content

and low caloric value, it is considered one of the healthiest fruits and

vegetables (Abubakar et al., 2023; Asafew and Chandravanshi, 2021;

Yamaguchi et al., 2019). Eggplant seeds are flat, shiny, and either

reddish-black or yellow, with fine lines on the seed coat but no hairs,

exhibiting strong vitality. Seed quality is commonly assessed based

on germination potential and vigor (Xing et al., 2023). Among

these, seed vigor is the most crucial indicator of seed quality, as it

directly influences seedling germination rates and the overall health

of the plant (Ventura et al., 2012). For seeds stored over extended

periods, especially those used for breeding or conserving genetic

diversity, seed vigor remains a prominent research focus (De Vitis

et al., 2020). Even under optimal storage conditions, seed viability

inevitably declines over time, a phenomenon referred to as seed

aging (Ebone et al., 2019). Traditional methods for assessing seed

vigor, such as conductivity and red ink tests, are often complex,

inefficient, and somewhat destructive. These methods play a critical

role in determining the quality grade and shelf life of seeds, making

them essential for evaluating seed vitality and longevity (Wang

et al., 2021a). Therefore, developing more advanced and innovative

testing methods to enhance the efficiency of existing seed testing

technologies has become a critical area of research.

In recent years, Hyperspectral imaging (HSI) technology has

garnered widespread attention in seed quality assessment due to its

non-destructive and rapid characteristics. By providing spatial and

spectral information related to plant and biochemistry, the technology

has excellent capabilities in seed variety classification and grading, seed

viability and damage detection, and seed composition determination

(Feng et al., 2019). In seed classification, researchers have combined

hyperspectral imaging technology in combination with the firefly

optimization algorithm to optimize deep learning parameters,

successfully achieving vitality detection of sweet corn seeds (Wang

and Song, 2024). Huang et al. employed HSI to classify corn seeds from

four different years and developed a classification model based on the

average spectral features of the seeds, utilizing the least squares support

vector machine (LSSVM) (Huang et al., 2016). Wang et al. employed

near-infrared hyperspectral imaging (NIR-HSI) technology to study

the maturity classification of corn seeds. They extracted the average

spectra from the embryo side (T1) and the endosperm side (T2) of the

seeds, and calculated the average spectrum of both sides (T3). Principal

component analysis (PCA) was applied to select the characteristic

wavelengths. When T1 and T2 were used as inputs for the optimal

model, the classification accuracy reached 98.7% and 100%,

respectively (Wang et al., 2021b). In classifying camellia oil grades,

researchers collected hyperspectral images of camellia oil samples from

three different grades. The successive projections algorithm (SPA) and

competitive adaptive reweighted sampling (CARS) were employed to

extract spectral and texture features. Subsequently, the genetic

algorithm (GA) was used to optimize the kernel function of the

support vector machine (SVM), along with its corresponding kernel

function parameters and penalty factors. The results demonstrated that

the model classification performance was best when GA was used to
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optimize the SVM (Gu et al., 2024). These studies highlight the

significance and potential of hyperspectral imaging (HSI) in seed

vigor detection. By providing spatial and spectral information related

to plants and their biochemical characteristics, HSI holds great promise

for the non-destructive assessment of seed vigor and other key

quality parameters.

However, wavelength selection remains a critical challenge in

applying hyperspectral imaging technology to seed identification

(Huang et al., 2024; Huang and Xia, 2023). Selecting characteristic

wavelengths can enhance data processing efficiency, highlight

important features, and improve model robustness (Huang et al.,

2022; Ong et al., 2023). In the classification of rapeseed maturity, the

continuous projection algorithm (SPA), competitive adaptive

reweighted sampling (CARS), and interval variable iterative spatial

shrinkage (IVISSA) are combined to select spectral wavelengths. The

results indicate that the algorithm combining SPA and IVISSA achieves

an accuracy of 97.86% (Feng et al., 2024). In addition to conventional

characteristic wavelength selectionmethods, biologically inspiredmeta-

heuristic algorithms have emerged as effective tools for hyperspectral

band selection. A representative application can be found in the

research on chlorophyll content prediction in Chinese cabbage using

hyperspectral technology. In this study, the reflectance data underwent

comprehensive preprocessing through standard normal variate (SNV)

transformation, Savitzky-Golay (SG) smoothing, and second derivative

(2D) analysis. Subsequently, a genetic algorithm (GA) was employed to

identify optimal spectral characteristic bands, which were then utilized

to construct a sophisticated one-dimensional convolutional neural

network (1D-CNN) prediction model (Zhang et al., 2023). For the

identification of wheat grain varieties, the interval random frog (iRF)

algorithm, an advanced wavelength selection method, was

implemented to optimize the spectral wavelength intervals through

an iterative jumping mechanism (Que et al., 2023). Although existing

studies have proposed several effective wavelength selection methods,

such as the integration of convolutional neural network architectures

with traditional feature selection algorithms (e.g., SPA, CARS, and

IVISSA), these methods have demonstrated significant improvements

in classification accuracy. However, they still exhibit certain limitations.

Traditional methods may fail to fully capture key features in

spectral data and tend to be slower when handling large datasets with

many redundant features. To address these challenges, this study

presents a novel wavelength selection algorithm (EIAO) based on

information acquisition optimization, designed to enhance the

efficiency of spectral data processing and improve classification

accuracy. By processing and optimizing the hyperspectral data of

eggplant seeds, the EIAO algorithm effectively selects the most

informative spectral bands, offering an innovative and efficient

solution for the non-destructive detection of seed vigor.
2 Materials and methods

2.1 Data collection

In the experiment, four varieties of eggplant with complete shape

and uniform size were selected for artificial aging treatment, with
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three experimental groups set up (Figure 1B), namely the microwave

group, the water bath group, and the control group with no

treatment. Each aging treatment was repeated three times to

eliminate the influence of seed variability and treatment-induced

effects, ensuring that no visible changes appeared on the seed surface.

After treatment, the seeds were air-dried at room temperature to

restore their original weight. The experiment utilized an HG101

portable hyperspectral imaging system (Zhongchuan Optoelectronics

Precision Machinery Co., Ltd., Beijing), as shown in Figure 1A.

Hyperspectral data were collected from these eggplant seed samples

using a hyperspectral camera, which covers a spectral range of 395–

1008 nmwith 360 bands, and includes components such as a halogen

lamp, a sample board, and a light shield. To ensure clear and accurate

imaging, the camera lens-to-sample distance was fixed at 30 cm, and

the exposure time was set to 15 milliseconds. Prior to capturing

hyperspectral images, a whiteboard calibration was performed to

correct for any potential lighting inconsistencies. After imaging, each

seed, categorized by its aging level, was sealed in a bag and numbered

for subsequent identification and analysis of seed vigor. Following

these procedures, the spectral images of the samples were successfully

captured and stored.
2.2 Software and performance evaluation

This study used ENVI (version 5.6, Harris Corporation, USA)

to extract the reflectance of eggplant seeds and MATLAB (version

2023a) for characteristic wavelength selection and classification

modeling tasks. The dataset was divided into an 8:2 ratio,

resulting in 800 training samples and 200 test samples. When

analyzing the results of data dimensionality reduction, the fitness

score defined in Eq. (5) was used to evaluate the quality of potential

optimal feature subsets. Accuracy represents the classification

performance of the feature subset on the classifier, while the
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number of dimensions of the feature subset indicates how many

important features contribute to the classification.

In the EIAO framework, the iteration count K was set to 50. The

parameter settings for other comparison algorithms are provided in

Table 1. These parameters are essential for guiding the algorithm’s

search process, balancing exploration and exploitation, and

ensuring efficient convergence toward the optimal solution.
2.3 Data analysis methods

2.3.1 Data preprocessing
Spectral data often contains noise from the environment and

instruments. Preprocessing the spectral data can enhance the

accuracy of the model (Chen et al., 2024). In this study, we

applied three preprocessing methods: MSC, SG, and SNV.
2.3.2 Feature extraction
Hyperspectral data often contains redundant information due

to the large number of spectral bands. Data dimensionality

reduction can help select effective characteristic wavelengths,

thereby reducing model computation and improving operational

efficiency. In this study, the Enhanced Information Acquisition

Optimization (EIAO) algorithm is used to extract characteristic

wavelengths, with improvements made to the original Information

Acquisition Optimization algorithm. A detailed explanation of the

algorithm is provided below.

The original Information Acquisition Optimization Algorithm

(IAO) algorithm was recently proposed (Wu et al., 2024). The basic

idea is to simulate the ability of humans to process massive amounts of

information. It includes three steps: collecting information, filtering

and evaluating information, and analyzing and organizing

information. When EIAO is applied to the feature selection problem,
)b()a(BA

(c)

FIGURE 1

(A) Hyperspectral data acquisition system. (B) Artificially aged eggplant seed samples (a) control group without any treatment (b) water bath group (c)
microwave group.
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We define a population of N human individuals as a two-dimensional

matrix X = { x1 ,… , xi ,  …  , xN }={ xij  1 ≤ i  ≤ N ,  1 ≤ j  ≤ Dj . x1j
represents the individual at the first position in the jth dimension. xij
represents the i-th individual in the j dimension.When IAO is used for

feature selection problems, all solutions are restricted to binary values.

That is, xij∈[0,1]. At this time, xij represents the j-th feature in the i-th

seed sample. If xj=1, it means that the feature is selected. The feature

selection framework based on the EIAO algorithm is shown

in Figure 2.

As shown in Figure 3, the first step of EIAO is population

initialization. Building on the initialization method of the original
Frontiers in Plant Science 04
algorithm, this study selects 10% of the population size as the

number of elite individuals and applies chaotic reverse learning to

the selected elites. Elite chaotic reverse learning is an initialization

technique that combines elite strategies, chaotic disturbances, and

reverse learning. It is primarily used to enhance the diversity and

exploration ability of the population.

The expression for the initial state is shown in Equation 1.

xij(k) = ubj(k) − lbj(k)
� �

∗ qk + lbj(k) (1)

The expression of logistic mapping is

qk+1 =  mqk(1 − qk) (2)

According to Equation 2, chaos mapping is a nonlinear dynamic

system that generates random numbers with unique dynamic

characteristics. These random numbers are distinguished by their

non-repeatability, accessibility, regularity, and unpredictability

(Zhang and Feng, 2018). The reverse learning strategy is an

intelligent calculation method introduced (Tizhoosh, 2005) in

2005. It has been widely applied in other group-based intelligent

optimization algorithms to enhance their search performance.

Building on the effectiveness of reverse learning strategies, Wang

et al. introduced general reverse factors and proposed the concept of

general reverse learning strategies (Wang et al., 2011). Li et al.

introduced the concept of elite learning and proposed an elite

reverse learning strategy based on general reverse learning

strategies. Experimental results demonstrated that the elite reverse

learning strategy outperforms the general reverse learning strategies

(Li, 2012).

Since the band selection of the spectrum belongs to the feature

selection of binary problems, it is necessary to convert the EIAO

continuous form into the EIAO-FS binary discrete form. Thus

converted from Equation 1 to Equation 3. The expression of T in

Equation 3 is as shown in Equation 4.

xij(k) =
1,  T(xij(k)) ≥ C

0,T(xij(k)) < C

(
(3)

T xij(k)
� �

=
1

1 + exp−x
i
j (k)

(4)

Fitness calculation

fitness = arR(Y) + b
Kj j
Nj j (5)

As shown in Equation 5, among them, rR(Y) represents the

error rate of the KNN classifier, and a and bmeet the a∈ [0, 1] and

a+ b = 1, respectively. |K| is the number of selected features, |N| is

the number of data concentration original features. Under normal

circumstances, the smaller the adaptation value, the better.

K-NN is a non-parametric supervised classification learning

algorithm. The category of a new sample is determined by the K

nearest training samples to the new sample (Pernkopf, 2005). Here,

the K−NN model is used as a classification method to evaluate the

features generated by EIAO, where K = 3.
FIGURE 2

The flowchart of the proposed algorithm EIAO.
TABLE 1 Parameter setting.

Algorithms Parameter values

EIAO
v, b, g, and d random numbers over [0,1] are set as the

literature [15]

IAO
v, b, g, and d random numbers over [0,1] are set as the

literature [15]

PSO c1=c2 = 2, w = 1

CSA a = d = 0:1, r1 = 10, U=0.00565, w = 0:005

SO Q=0.25, T=0.6, c1 = 0.5, c2 = 0.05, c3 = 2

SCA a=2
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The first stage involves collecting information and establishing

an initial information system. The mathematical model is expressed

as Equation 6.

xiter+1i = xiteri + ϑ � (xr1i − xr2i ) (6)

Where iter represents the current iteration number, ϑ is a

random number between [0,1], and xr1i and xr2i are two

information bodies randomly generated during iteration.

Consider (xr1i − xr2i ) as a differential variable, and refer to DE/

rand/2/bin to add another differential variable (xr3i − xr4i ). At this

time, the information collection phase is updated through Eq (7). By

adding more information bodies, more randomness and diversity

are introduced during the update, thereby improving the breadth of

the search. It helps to avoid premature convergence to the local

optimal solution. Multiple information bodies can make the

exploration of the search space more comprehensive, thereby

increasing the diversity of the population. The updated first-stage

mathematical model is as shown in Equation 7.

xiter+1i = xiteri + ϑ � (xr1i − xr2i ) + ϑ � (xr3i − xr4i ) (7)

The second stage is information filtering evaluation, the

expression is as in Equation 8:
Frontiers in Plant Science 05
xiter+1i = xiteri − D� rand � (xrandi − xiteri ), if   rand < 0:5

xiter+1i = xiteri + D � rand � (xrandi − xiteri ), otherwise

(
(8)

Among them, D =
cos (p2�

ffiffiffiffiffi
Gj j

p
)

X represents the error caused by

subjective factors in filtering and evaluating information, and X is

the subjective influencing factor, which reflects the individual’s less

correct judgment on information processing due to preferences,

experience, emotions, etc. Its value is calculated by the following

Equation 9:

X = 2�mod (3:648� n � (1 − b)� (a cos (g � 104))), 1) (9)

n , b , and g are random numbers generated between [0, 1]. G is

defined as a reliability factor, which characterizes the ability of the

algorithm to optimize its behavior by self-adjusting the quality of

information at different stages. This design enhances the

adaptability and flexibility of the algorithm. G is calculated by the

following Equation 10.

G = sin (
p
4
)

iter
Maxiter

� �
+∅+

log10
iter

Maxiter

8
(10)

whereF is the information quality factor, the expression is as in

Equation 11.
A  B  

C  D 

FIGURE 3

Hyperspectral reflectance and preprocessing. (A) The raw average reflectance (B) MSC preprocessing (C) SNV preprocessing (D) SG smoothing
Preprocessing image.
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∅ = cos (2� d + 1)� 1 −
iter

Maxiter

� �
(11)

From Eq (8)-Eq (11), it can be seen that the iterative update is

mainly determined by the difference between the current individual

state xiteri and the randomly selected reference point xrandi . Although

this update method introduces randomness, its search range and

direction are limited and lack other dynamic adjustment

mechanisms. Therefore, in complex multi-peak functions, it may

not be able to effectively jump out of the local optimum. To avoid

the above problems, we introduce the sine-cosine optimization

algorithm (SCA) and update by the following formula (Equation

12). r5 is a random number between [0,2P].

xiter+1i = xiteri − D � sin (r5)� rand � (xrandi − xiteri ), if   rand < 0:5

xiter+1i = xiteri + D� cos (r5)� rand � (xrandi − xiteri ), otherwise

(

(12)

The final stage is to identify valuable information from the filtered

data and increase the likelihood of obtaining the optimal information

set. The mathematical model is expressed as Equation 13.

xiter+1i = xbesti � cos p
2 �

ffiffiffiffiffiffi
L1

3

p� �
− e � 1

Dod
i=1x

best
i − xbesti

� �
          if  ∅ ≥ 0:5

xiter+1i = xbesti � cos p
2 �

ffiffiffiffiffiffi
L1

3

p� �
−   0:8�

z � k � 1
Dod

i=1x
best
i −

2� w − 1ð Þ � xbesti

 !
 , otherwise

8>>><
>>>:

(13)

Where L = 2(
ffiffiffiffiffi
Gj j

p
−2), represents the control factor for analyzing

and organizing information. The update formula of Eq (13) mainly

relies on the local neighborhood search of the current xbesti optimal

solution, combined with some dynamic adjustment factors.

Although it can speed up the convergence, it may easily fall into

the local optimum due to the lack of long-distance jumps. The

addition of Levy flight allows individuals to make long-distance

jumps with a certain probability. This jump helps to discover new

potential optimal solutions, thereby balancing the ability of global

exploration and local development. Updated by Eq (14).

xiter+1i = xbesti � cos p
2 �

ffiffiffiffiffiffi
L1

3

p� �
− e � 1

Dod
i=1x

best
i − xbesti

� �
+ Levy,     if  ∅ ≥ 0:5

xiter+1i = xbesti � cos p
2 �

ffiffiffiffiffiffi
L1

3

p� �
−   0:8�

z � k � 1
Dod

i=1x
best
i −

2� w − 1ð Þ � xbesti

 !
+ Levy, otherwise

8>>><
>>>:

(14)

Levy flight is a random walk mechanism (Li et al., 2022)

that enables large jumps from a local position with a high

probability. The probability density distribution of Levy flight is

characterized by sharp peaks, asymmetry, and heavy tails. Its

movement pattern alternates between frequent short-distance jumps

and occasional long-distance leaps, allowing it to escape local optima

and expand the search area. Metaheuristic algorithms, inspired by

natural processes, are used to solve NP-hard problems. Levy flight can

serve as an operator in these metaheuristic search algorithms.

At the end of the iteration, we try to add the Laplace operator.

Deep and Thakur proposed the original Laplace operator idea in

2007 (Deep and Thakur, 2007), the idea is to generate children y1 =

(y11, y
2
1,⋯, ym1 ) and y2 = (y12, y

2
2,⋯, ym2 ) from the parent x1 = (x11, x

2
1,
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⋯, xm1 ), and the two pairs of children are generated in a symmetric

way around the position of their parents.

The random distribution of Laplace liX is as Equation 15:

li =
p − q loge (ui), ui ≤

1
2

p + q loge (ui), ui >
1
2

(
(15)

Among them, ui is randomly and uniformly distributed on

[0, 1]; p, q > 0 represent the position and measurement parameters

respectively. The resulting descendant relationship expression is as

shown in Equation 16:

yi1 = xi1 + li x
i
1 − xi2

		 		, yi2 = xi2 + li x
i
1 − xi2

		 		 (16)

As an effective local search technique, some researchers have

combined Levy flight (LX) with the Harris Hawk Optimization

(HHO) algorithm, demonstrating its unique and superior

performance on certain complex optimization problems (Nasab

and Abualigah, 2024). This shows us the potential of this

local search.

2.3.3 Performance evaluation
After obtaining the optimal feature subset using the EIAO

algorithm, we constructed three classification models to evaluate

their classification performance.

The extreme learning machine (ELM) is an advanced one-way

feedback neural network algorithm based on a feedforward neural

network (Huang et al., 2006). When using the ELM to build the seed

activity discrimination model, the activation function employed is the

S-shaped function. The number of neurons in the extreme learning

machine is set within the range of 30 to 100, with a step size of 10.

Simultaneously, the number of hidden layer neurons is adjusted to

determine the optimal configuration for different spectral data. ELM

exhibits strong generalization ability when handling high-dimensional

data and is particularly well-suited for large-scale classification tasks.

Therefore, in this study, ELM was chosen to develop the seed vigor

classification model, aiming to enhance both classification accuracy

and processing efficiency.

RF is a decision tree ensemble model based on the bagging strategy

(Breiman, 2001). RF integrates multiple decision trees, each of which is

trained on the original training set. The final classification result is

obtained by voting among all decision trees (Si et al., 2023). In this

study, the parameter “N” of the bagging framework is set to 300, the

maximum depth “M” of the decision tree ranges from 1 to 20, and the

step size of the grid search is 1. RF is effective in handling datasets with

high noise and complex patterns, and it can automatically assess feature

importance, offering enhanced interpretability. In this study, RF was

employed to evaluate the stability of seed vigor classification,

particularly in addressing noise and variations in spectral data.

SVM is a classic supervised machine learning model capable of

classifying both linear and nonlinear data. It is a well-established binary

classification model in supervised learning (Piccialli et al., 2024). It is

widely used across various fields. In this study, the SVM algorithm

utilizes the radial basis function (RBF) as the kernel function, with the

penalty factor ‘C’ and kernel parameter ‘G’ optimized through 5-fold

cross-validation.
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2.3.4 Verification of the generalization capability
This section aims to evaluate the generalization capability of the

EIAO algorithm. To this end, EIAO, along with five other optimization

algorithms, is tested on four datasets from the UCI Machine Learning

Repository. The UCI Repository, created by the University of

California, Irvine, is a widely recognized collection of machine

learning datasets. It includes a diverse range of datasets designed for

various machine learning tasks such as classification, regression, and

clustering. Each dataset typically provides details such as the dataset

name, features, labels, descriptive documentation, and data formats.

The Ionosphere dataset was collected using a ground-based radar

system; The Arrhythmia dataset was obtained using electrocardiogram

sensors that recorded cardiac signals; The Vehicle dataset contains

features extracted from vehicle images using image processing

techniques; The Vote dataset is based on survey records of U.S.

Congressional voting behavior. These datasets are all commonly used

for classification tasks. For this study, four classification datasets are

selected, as summarized in Table 2.
3 Results

3.1 Hyperspectral data preprocessing
analysis

The resulting processed spectral curve is shown in Figure 3. The

hyperspectral reflectance curve of eggplant seeds shows a clear upward

trend in the 500–700 nm range, while the reflectance in the near-

infrared band remains relatively flat, with high reflectance values. This

is attributed to the presence of water and other tissue components in

the seeds, which strongly reflect near-infrared light. The reflectance

characteristics of eggplant seeds vary in this range depending on the

treatment. Around 750 nm, the curve fluctuates, initially rising and

then falling, due to differences in seed water content (Figure 3A). The

changes in light source from the two halogen lamps in the

hyperspectral equipment and variations in instrument response cause

surface scattering of the eggplant seed samples. To correct for these

effects, the multivariate scatter correction (MSC) method is applied

(Figure 3B). Since the hyperspectral data spans a large range, the

standard normal variate (SNV) method is used to eliminate large gaps

in the data (Figure 3C). The influence of the external environment

introduces errors in the original hyperspectral reflectance, which are

corrected by the Savitzky-Golay (SG) smoothing filter to remove

irrelevant signals and smooth the data (Figure 3D).
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3.2 Feature extraction result analysis

3.2.1 Comparative performance of EIAO and
baseline algorithms

In this study, the Enhanced Information Acquisition

Optimization (EIAO) algorithm was used to extract feature bands

from the collected seed hyperspectral data. PSO (Kocak and Orkcu,

2024), Chameleon Optimization Algorithm (CSA) (Braik et al.,

2023a), Snake Optimization Algorithm (SO) (Braik et al., 2023b),

Sin-Cosine Optimization Algorithm (SCA) (Sun et al., 2022) and

the standard IAO, as outlined in Table 1, are employed as baseline

algorithms for comparative analysis to effectively demonstrate the

overall advantages of the proposed method. Based on the fitness

function in Eq. (5) from section 2.3.2, we applied the KNNmodel as

a classification method to evaluate the quality of the feature subsets

generated by each algorithm. The evaluation was carried out using

the classification accuracy of the KNN model and the number of

selected features.

To validate the feature selection capability of the EIAO

algorithm, it was applied to four different eggplant varieties

(DS_1 to DS_4) for comparison. As shown in Table 3, EIAO

achieves the highest classification accuracy on the DS_4 dataset

and selects the fewest features on DS_3. For example, in DS_4,

EIAO only needs 70 features to achieve an accuracy of 97.56%,

while IAO requires 90 features. In addition, the fitness function

value of EIAO is significantly lower than that of other algorithms,

indicating its excellent ability in balancing classification accuracy

and feature redundancy. This result confirms that EIAO is highly

efficient in feature selection, effectively eliminating redundant bands

while maintaining excellent classification performance.

At the same time, from Table 4, we can analyze which spectral

regions of the full wavelength the selected features are mainly

concentrated in. Among the selected wavelength features, the

905.70–1008.20 nm range accounted for the highest proportion

(23.17%), followed by 694.92–798.40 nm (16.52%) and 490.95–

589.60 nm (15.94%). These frequently selected regions were mainly

located in the near-infrared range, particularly in the short-wave

near-infrared region above 900 nm. This spectral region is typically

associated with absorption peaks of functional groups such as O–H,

N–H, and C–H, which correspond to key seed components like

moisture, proteins, and starch. These components are known to

change during seed aging treatments, providing a clear biochemical

basis for the frequent selection of this range as effective feature

wavelengths. Overall, the selected wavelengths were primarily

concentrated in the information-rich near-infrared region,

highlighting both the effectiveness of the feature extraction

algorithm and the physical relevance of the selected features.

3.2.2 Robustness analysis of EIAO algorithm
To assess the robustness of the proposed EIAO method, we

further evaluated it from two aspects. On one hand, we examined

whether the convergence curve of EIAO remains stable across

multiple repetitions. From Figure 4, we observe that the shaded

region for DS_1 and DS_3 shows minimal fluctuations. The shaded

area represents the standard deviation, which indicates the range of
TABLE 2 UCI datasets used in this study.

Dataset
Number of
Samples

Number of
Features

Class

Ionosphere 351 34 2

Arrhythmia 452 279 16

vehicle 846 18 4

vote 435 16 2
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variation in the fitness values at different iterations. Standard

deviation is a measure of the dispersion of data, with a larger

value indicating greater differences between data points, and a

smaller value indicating more concentrated data with less

variation. On the other hand, Figure 5 examines whether the

EIAO algorithm quickly converges to the optimal solution during

iterations. By comparing with other algorithms, we can see that

EIAO not only provides better solutions than the other five

algorithms, but also converges significantly faster.

3.2.3 Modeling and analysis based on feature
extraction

Although the analysis of four independent eggplant varieties

confirmed the feature selection capability of EIAO, in practical

applications, seeds are often stored in a mixed form consisting of

multiple varieties. Therefore, this section combines the data from

the four varieties to assess the practicality of EIAO in more complex

scenarios. To evaluate the effect of feature selection on the

classification model, the wavelength subsets selected by EIAO

were input into the ELM, RF, and SVM models, and the results

were compared with those obtained using the full wavelength data.

Accuracy was used as the evaluation metric for the models. In this

section, we compare the classification accuracy of three classifiers

(ELM, RF, and SVM) using three sets of spectral data: raw data,

preprocessed data, and data obtained after wavelength selection.

This comparison aims to evaluate the effects of data preprocessing
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and feature selection on classification performance, providing

insights into how these factors influence the overall model efficacy.

Based on the accuracy evaluation coefficient presented in

Table 5, the following analysis can be made: First, when

comparing different preprocessing methods, SG-EIAO and SNV-

EIAO demonstrate the most significant optimization effects. These

methods have achieved consistently favorable results across all

classifiers, particularly on the test set, where the accuracy has

reached 90% and 90.5%, respectively. This suggests that

combining EIAO with spectral preprocessing methods can further

enhance classifier performance and improve model classification

accuracy across different datasets. Second, the improvement effects

of EIAO optimization vary across different classifiers. In the ELM

and RF models, accuracy significantly improved after optimization,

especially on the test set. In the SVM model, although the

improvement in test accuracy is relatively stable, its overall

performance is not as high as that of the RF and ELM models.

Furthermore, it was observed that, in the SVM model, the accuracy

after MSC preprocessing with IAO and EIAO wavelength selection

decreased notably, particularly for MSC-EIAO, where the test

accuracy dropped to only 73%, significantly lower than other

models. This may be attributed to the possibility that certain

features, valuable to the SVM model, were discarded during

feature extraction, leading to the loss of key information and a

subsequent reduction in test accuracy.

To further evaluate the performance of the classification

models, additional metrics including precision, recall, and F1-

score were introduced alongside overall accuracy. As a key

indicator of a model, the F1-score effectively reflects the balance

between precision and recall across different classes. As shown in

Table 6, among the three classifiers, the Random Forest (RF) model

achieved the best overall performance, with the highest F1-score of

91.45% under the MSC-EIAO method. The Support Vector

Machine (SVM) model also performed well under the SNV-EIAO

method, reaching a test accuracy of 90.50% and an F1-score of

90.49%. However, SVM was found to be more sensitive to feature

selection strategies, with its performance significantly declining

under methods such as MSC-EIAO. Overall, the MSC-EIAO

method demonstrated the greatest potential among all

preprocessing and feature selection strategies. It significantly

improved the performance of the RF model, showed stable

effectiveness in the ELM model, but may suppress performance

when applied to SVM.
TABLE 4 The proportion of the feature wavelength to the full-band.

Band range (nm) Proportion (%)

395.25–489.30 13.83%

490.95–589.60 15.94%

591.34–693.20 15.58%

694.92–798.40 16.52%

800.20–903.90 14.96%

905.70–1008.20 23.17%
TABLE 3 Performance comparisons between EIAO and 5 baseline
algorithms on Seed Spectrum datasets.

Metric Algorithm DS_1 DS_2 DS_3 DS_4

Accuracy (%) IAO 90.50 85.71 72.22 95.12

EIAO 92.00 85.71 73.33 97.56

CSA 90.50 85.00 71.11 92.68

SCA 90.50 85.71 71.11 95.12

PSO 92.00 85.00 70.00 92.68

SO 91.50 85.00 71.11 95.12

Selected features IAO 85 50 71 90

EIAO 33 40 23 70

CSA 186 40 162 230

SCA 51 60 95 150

PSO 137 100 107 220

SO 98 70 95 260

Best fitness
function

IAO 0.0950 0.1441 0.2776 0.0498

EIAO 0.0816 0.1435 0.2674 0.0266

CSA 0.0992 0.1506 0.2918 0.0763

SCA 0.0955 0.1446 0.2868 0.0495

PSO 0.0830 0.1538 0.3008 0.0761

SO 0.0869 0.1522 0.2894 0.0526
Bold numbers indicate the best performance among all compared methods.
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FIGURE 5

Stability analysis of EIAO and five baseline methods on four datasets. (A) DS_1, (B) DS_2, (C) DS_3, (D) DS_4.
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 D C

FIGURE 4

Comparison of the convergence performance of EIAO on four datasets. (A) DS_1, (B) DS_2, (C) DS_3, (D) DS_4.
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3.3 EIAO performs well on the UCI dataset

To illustrate the generality of the algorithm, we tried to test

EIAO and other five optimization algorithms on four UCI datasets.

Table 7 shows the average performance of EIAO and other five

optimization algorithms on four UCI datasets. Due to the low

feature dimension of the Vote dataset, the classification accuracy

and the number of selected relevant features of the six algorithms

are very close. On the Arrhythmia and Vehicle datasets, the

classification performance of the algorithm is slightly inferior to

that of the other two datasets. The reason may be that there are too

many classification levels. For the Ionosphere dataset, the lowest

optimal fitness value can be found, that is, the classification

accuracy in Eq (5) is the highest and the least features are

selected. At the same time, in order to analyze the robustness of
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EIAO, it is checked whether the convergence curve of the EIAO

algorithm is stable in multiple repetitions and whether it converges

quickly to the optimal solution in iterations. In Figure 6, it is

observed that EIAO achieves good performance compared with the

other five swarm intelligence algorithms.
4 Discussion

Seed vigor is a crucial factor in crop cultivation and growth.

Traditional methods for measuring vigor are often highly destructive

and inefficient. Numerous studies have demonstrated that spectroscopy

can effectively detect seed vigor parameters, while machine learning can

be employed for modeling these parameters (Yang et al., 2017). For

example, in chilling injury detection of eggplant, researchers have

collected hyperspectral data that reflect internal physiological

indicators and integrated them with machine learning to achieve

consistent detection of eggplants stored under harmful cold

conditions (Tsouvaltzis et al., 2020). This demonstrates that

hyperspectral data can be used not only for quality evaluation but

also hold great potential for monitoring changes in seed physiological

status, thereby playing a significant role in improving the accuracy of

seed vigor identification. While several studies have explored the

integration of hyperspectral data with machine learning algorithms

for the non-destructive analysis of seed quality parameters, research

focused on vigor detection in this context remains limited. For instance,

some studies have utilized hyperspectral data in conjunction with

machine learning to assess the vigor of naturally aged rice seeds (Jin

et al., 2022) (Xu et al., 2022). Another study combined visible and near-

infrared hyperspectral data with machine learning techniques to non-

destructively detect the vigor of watermelon seeds (Sun et al., 2024).

These studies have provided preliminary evidence supporting the

feasibility of using the full wavelength range for classifying seed vigor.

A series of feature selection algorithms were subsequently applied

to extract characteristic wavelengths from the full spectral range,
TABLE 6 Comparison of average precision, recall, and F1-score under different methods.

Methods

ELM RF SVM

Average
Precision

Average
Recall

Average
F1-score

Average
Precision

Average
Recall

Average
F1-score

Average
Precision

Average
Recall

Average
F1-score

MSC 85.86% 85.00% 85.43% 87.53% 87.50% 87.39% 85.51% 85.50% 85.50%

SG 87.88% 87.00% 87.44% 83.88% 84.05% 83.93% 85.01% 85.00% 84.96%

SNV 89.90% 89.00% 89.45% 87.04% 87.05% 87.03% 85.59% 85.50% 85.49%

MSC-IAO 85.58% 89.00% 87.25% 90.47% 90.45% 90.46% 73.53% 73.50% 73.50%

SG-IAO 86.54% 90.00% 88.24% 82.32% 82.35% 82.33% 84.06% 84.00% 84.00%

SNV-IAO 87.13% 88.00% 87.56% 86.95% 87.00% 86.90% 88.06% 88.00% 88.00%

MSC-EIAO 89.00% 89.00% 89.00% 91.46% 91.45% 91.45% 73.01% 73.00% 72.99%

SG-EIAO 90.82% 89.00% 89.00% 87.45% 87.45% 87.45% 80.53% 80.50% 80.50%

SNV- EIAO 90.00% 90.00% 90.00% 89.42% 89.45% 89.43% 90.54% 90.50% 90.49%
TABLE 5 Accuracy of full and feature wavelength classification model.

Methods

Training accuracy
(%)

Test accuracy (%)

ELM RF SVM ELM RF SVM

RAW 91.87 94.87 87.22 89 83.50 87.50

MSC 92.87 96.12 86.50 85.50 87.50 85.50

SG 92 94.25 87.37 87.50 84 85

SNV 91 96.12 86.62 89.50 87 85.50

MSC-IAO 91.36 96.25 76.09 87 90.45 73.50

SG-IAO 92.49 93.87 86.50 88 82.41 84

SNV-IAO 92.61 95.87 90.86 87.50 86.93 88

MSC-EIAO 92.74 95.87 74.50 89 91.45 73

SG-EIAO 92.99 93.37 83.37 90 87.43 80.50

SNV- EIAO 92.24 95.37 90.25 90 89.44 90.50
Bold numbers indicate the best performance among all compared methods.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1584269
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1584269
TABLE 7 Performance comparisons between EIAO and 5 baseline algorithms on UCI datasets.

Metric Algorithm Ionosphere Arrhythmia Vehicle Vote

Accuracy (%) IAO 95.71 70.00 75.74 97.70

EIAO 97.14 72.22 78.70 97.70

CSA 94.29 67.78 78.11 96.55

SCA 97.14 70.00 74.56 96.55

PSO 95.71 65.56 75.15 96.55

SO 95.71 70.00 78.11 97.70

Selected features IAO 6 32 11 6

EIAO 4 30 8 2

CSA 13 122 9 3

SCA 5 36 9 6

PSO 10 108 11 3

SO 3 74 10 4

Best fitness function IAO 0.0159 0.3088 0.2463 0.0265

EIAO 0.0153 0.2876 0.2153 0.0241

CSA 0.0306 0.2998 0.2217 0.0354

SCA 0.0289 0.3208 0.2569 0.0379

PSO 0.0607 0.3012 0.2521 0.036

SO 0.0159 0.2993 0.2223 0.0253
F
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FIGURE 6

Stability analysis of EIAO and 5 baseline methods on 4 UCI datasets. (A) Ionosphere. (B) Arrhythmia. (C) Vehicle. (D) Vote.
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aiming to reduce data redundancy while preserving classification

accuracy. In seed vitality studies using spectral detection, traditional

wavelength screening methods such as SPA and CARS are commonly

employed. However, these methods are prone to high sensitivity to

noise and unstable selected bands. To address these issues, this study

proposes a novel wavelength selection algorithm, EIAO, and applies it

to the band selection problem. Compared to other wavelength

screening methods, the EIAO algorithm not only reduced the

number of selected features but also demonstrated superior

performance in terms of classification accuracy. Specifically, EIAO

achieved an accuracy of 92.0%, outperforming benchmark algorithms

such as IAO, PSO, and SCA.

Furthermore, this study utilized three classifiers, ELM, RF, and

SVM, combined with various wavelength selection methods for

performance evaluation. As shown in the results presented in

Table 5, wavelength screening and feature subset selection

significantly enhanced classifier performance, particularly in the RF

and SVMmodels. After wavelength screening optimized by EIAO, the

accuracy of the RF model on the test set reached 91.45%, and the

accuracy of the SVM model was 90.50%, both of which were

substantially higher than those of the unscreened original data model

(83.50% and 87.50%, respectively). These findings indicate that

wavelength screening not only improves classification accuracy but

also reduces unnecessary features, thereby enhancing model

performance. This series of results underscore the importance of

wavelength screening in hyperspectral data analysis, particularly in

seed vigor classification. The improved accuracy following wavelength

screening aligns with the findings of Bi (Bi et al., 2024).

The generalization capability of the EIAO algorithm is further

evaluated in the final part of this study. Compared to other

optimization algorithms, EIAO demonstrates strong classification

performance across multiple datasets. Notably, on the Ionosphere

dataset, the classification accuracy achieved by EIAO is 97.14%,

which is significantly higher than that of IAO (95.71%) and other

optimization algorithms. This result aligns with previous research

(Desuky et al., 2021), where the performance of the newly proposed

EAOA algorithm was validated on a dataset with 16 feature selections.

In that study, the new algorithm achieved the highest classification

accuracy in selecting the optimal feature subset from the training data.
5 Conclusions

This study investigates the potential of hyperspectral technology

for the non-destructive detection of eggplant seed vitality.

Hyperspectral data from the region of interest of eggplant seeds

were extracted, and preprocessing algorithms, including MSC, SNV,

and SG, were applied to reduce noise. The EIAO algorithm proposed

in this study was then employed to select feature wavelengths, and

classificationmodels using ELM, RF, and SVMwere constructed. The

results demonstrated that data preprocessing and feature selection

substantially enhanced classification performance compared to the

original data, with the EIAO-based feature selection method yielding

particularly favorable outcomes. The RF and SVM models exhibited

strong generalization ability under the optimized features, especially
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on the test set. While the model based on the selected wavelengths

resulted in the loss of some spectral information, it effectively reduced

data redundancy and significantly improved classification accuracy.

This study highlights the importance of selecting characteristic

wavelengths for accurate modeling. Future research could further

explore the integration of additional spectral information, such as

texture features, to further enhance model performance.
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