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YOLOv11-GSF: an optimized
deep learning model for
strawberry ripeness detection
in agriculture
Haoran Ma, Qian Zhao, Runqing Zhang, Chunxu Hao,
Wenhui Dong, Xiaoying Zhang*, Fuzhong Li, Xiaoqin Xue
and Gongqing Sun

College of Software, Shanxi Agricultural University, Taigu, China
The challenge of efficiently detecting ripe and unripe strawberries in complex

environments like greenhouses, marked by dense clusters of strawberries,

frequent occlusions, overlaps, and fluctuating lighting conditions, presents

significant hurdles for existing detection methodologies. These methods often

suffer from low efficiency, high computational expenses, and subpar accuracy in

scenarios involving small and densely packed targets. To overcome these

limitations, this paper introduces YOLOv11-GSF, a real-time strawberry

ripeness detection algorithm based on YOLOv11, which incorporates several

innovative features: a Ghost Convolution (GhostConv) convolution method for

generating rich feature maps through lightweight linear transformations, thereby

reducing computational overhead and enhancing resource utilization; a C3K2-

SG module that combines self-moving point convolution (SMPConv) and

convolutional gated linear units (CGLU) to better capture the local features of

strawberry ripeness; and a F-PIoUv2 loss function inspired by Focaler IoU and

PIoUv2, utilizing adaptive penalty factors and interval mapping to expedite model

convergence and optimize ripeness classification. Experimental results

demonstrate the superior performance of YOLOv11-GSF, achieving an average

precision of 97.8%, an accuracy of 95.99%, and a recall rate of 93.62%,

representing improvements of 1.8%, 1.3 percentage points, and 2.1% over the

original YOLOv11, respectively. Furthermore, it exhibits higher recognition

accuracy and robustness compared to alternative algorithms, thus offering a

practical and efficient solution for deploying strawberry ripeness

detection systems.
KEYWORDS

object detection, strawberry, YOLOv11, ghost module, C3K2-SG module, F-PIoUv2
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1 Introduction

Strawberry is one of the important high-economic-value fruit in

China, with its cultivation area and production volume

continuously increasing in recent years (Amr et al., 2020). Pre-

harvest yield assessment is a crucial link in strawberry cultivation

management, providing vital data support for sales plan

formulation and fertilizer application schemes for the next season.

Currently, strawberry yield assessment primarily relies on historical

yield data and manual statistics, which are inefficient and prone to

large errors (Tang et al., 2025). According to the “Series of Reports

on China’s Economic and Social Development Achievements in the

Past 75 Years,” with the rapid development of information

technology, new-generation technologies such as the Internet of

Things, big data, and artificial intelligence have gradually been

applied to strawberry cultivation and management, driving the

intelligent progress of strawberry maturity detection. In the

context of smart agriculture, maturity detection technologies

based on image recognition and deep learning have gradually

gained widespread attention and application. These automated

detection technologies not only improve harvesting efficiency and

eliminate the inaccuracies of manual judgment, but also provide

farmers with precise harvesting time suggestions, reducing

strawberry losses. Science and technology for agriculture and

assisting agriculture have become the main theme of modern

agriculture. The rapid advancement of machine vision and deep

learning technologies has led to the increasing maturity of target

detection applications in agriculture (Xu et al., 2022). Studies have

shown that deep learning technologies can achieve rapid and

accurate identification and classification of fruits, providing with

more convenient picking and management services (Chen G. et al.,

2024). Therefore, for the problems of low efficiency and labor

shortage of traditional manual statistics, the automated

assessment of strawberry yield through intelligent target detection

technology can not only improve the prediction accuracy and

timeliness, but also provide technical support for the digital

upgrading of the whole process of planting management, which is

of great significance in promoting the quality and efficiency of the

strawberry industry (Yang et al., 2023).

In recent years, domestic and foreign researchers have conducted

extensive research on strawberry recognition. Cui et al. (2025)

proposed an improved YOLOv5 target detection algorithm based on

the GAM(Global Attention Mechanism) attention mechanism,

enhancing the model’s feature extraction capability by adding the

GAM attention mechanism to the neck network of the YOLOv5

model, and Analyzing the fusion detection effects of different types of

attention mechanisms to optimize the balance between strawberry

detection accuracy and efficiency. Gong et al. (2024) designed a

strawberry picking robot capable of precise recognition and

localization of strawberries, with a recognition rate of 95% for ripe

strawberries. Tang et al. (2023) proposed an improved YOLOv7-Tiny

model for ripe strawberry recognition. Based on the YOLOv7-Tiny

model, this model replaced the Leaky ReLU activation function of the

CBL convolutional block in the backbone network with the Sigmoid

Linear Unit (SiLU) function, improving the model’s nonlinear fitting
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degree and feature learning ability. Its recognition results are superior

to the original SSD, Faster RCNN, YOLOv3, YOLOv4, and YOLOv5s

models. Yang et al. (2024) proposed a strawberry recognition and

localization method combining an improved YOLOv8 algorithm with

a pose keypoint detection algorithm. This method introduces the

Bidirectional Feature Pyramid Network (BiFPN) and GAM modules

to enhance the bidirectional information flow of the model,

dynamically allocate feature weights, and focus on the extraction of

small target features and the enhancement of features in occluded areas,

aiming to improve the accuracy of picking point localization and the

prediction accuracy of occlusion recognition in complex environments.

Compared with the original model, the improved YOLOv8-posemodel

exhibits improvements of 6.01%, 1.98%, 6.67%, and 7.85% in

strawberry recognition accuracy, recall rate, average precision, and

keypoint average precision, respectively.

Currently, in terms of the selection of cultivation methods, most

models focus on identifying ripe strawberry grown in the ground

(Zhao and Cui, 2024). This study takes the growth characteristics of

elevated Kanoya Strawberry (Sui Zhu Strawberry) as the research

object, emphatically analyzing the two critical stages of strawberry

swelling and ripe coloring for automated management and yield

prediction. Farmers can promptly adjust the environmental

parameters of elevated cultivation (such as light intensity,

temperature, humidity, nutrient solution concentration, etc.) by

monitoring changes in strawberry diameter and coloring area. This

allows them to adopt precise management measures, such as

optimizing water and fertilizer coordination and control,

supplementing CO2 gas fertilizer, or adjusting spectral lighting,

thereby simultaneously enhancing fruit quality and the commercial

fruit rate. Based on deep learning analysis of image from these two

critical stages, this study aims to construct an identification model

for the growth status of elevated strawberry. This provides technical

support for automated decisions, such as targeted thinning and

partitioned harvesting warnings. As a result, it reduces the

frequency of manual inspections. Furthermore, it achieves precise

on-demand supply of water, fertilizer, and pesticides. Additionally,

it lowers pollution risks and saves costs. Ultimately, this approach

promotes the green and low-carbon transformation of elevated

strawberry production.

In the realm of algorithms, despite the remarkable progress

achieved by the original YOLO object detection model and its

various YOLO-based improved algorithms in the agricultural field,

they still encounter a series of pressing scientific challenges when

detecting the maturity of strawberries in high-rise cultivation

environments. For instance, there are significant difficulties in

accurately identifying small-sized strawberry targets, insufficient

effectiveness in extracting maturity-related features under

complex background interferences, and the struggle to achieve an

ideal balance between model computational efficiency and detection

accuracy. This article will operate with the YOLOv11 model,

proposing a series of improvements to the model and loss

function for the task of ripeness detection of elevated Zhuisu

strawberry. In terms of the model, the GhostConv convolution

method is first introduced, which generates more feature maps

through low-cost linear transformations, effectively reducing
frontiersin.org
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computational burden and improving resource utilization.

Secondly, the C3K2-SG module is referenced, which integrates

the strengths of self-moving point convolution (SMPConv) and

convolutional gated linear units (CGLU). It more effectively

captures the local features of strawberry ripeness and enhances

target feature extraction capabilities, particularly demonstrating

notable advantages when dealing with small targets and complex

background interference. In terms of the loss function, an F-PIoUv2

loss function is referenced, which draws on the design ideas of Focal

IoU and PIoUv2, accelerating model convergence and optimizing

strawberry ripeness detection results through adaptive penalty

factors and interval mapping methods. These improvement

methods collectively enhance the performance and stability of the

YOLOv11 model in strawberry ripeness detection tasks.
2 Materials and methods

2.1 Data collection

This study adopts elevated planting in solar greenhouses, taking

the Kanoya Strawberry as the research object. The solar greenhouse

covered an area of 0.13 hectares and is planted with a total of 15,000

strawberry plants. The row spacing is 1.5 meters, and the plant

spacing is 15 centimeters. Compared with traditional ground

planting, elevated strawberry planting makes more efficient use of

space, as shown in Figure 1.

Based on improved YOLO series algorithms, strawberry

detection is conducted for naturally grown elevated strawberries.

Most strawberry are diamond-shaped, varying in size and growing

in overlap. Ti Provhe data is collected exclusively from the

strawberry experimental field in Xiaowang Village, Xia County,

Yuncheng City, Shanxince, ensuring consistency and uniformity in

the data source. Data collection is done manually, involving the

selection of three time periods during the fruit coloring stage

according to different growth cycles of strawberries, and the

collection of data from multiple angles, distances, and lighting

intensities. Dataset includes backlight, front light, close-up, long-

distance, unobstructed, and obstructed views, as shown in Figure 2.
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The collected original images are in.jpg format, with a resolution of

4096*3072 pixels, totaling 2,985 images.
2.2 Data processing

In this experiment, LabelImg software is used to perform

bounding box labeling on each strawberry in the original images.

To focus more on distinguishing whether strawberries are ripe, two

data types are established, namely “0” and “1”, corresponding to

unripe and ripe, respectively. The data is saved in YOLO training

format, generating corresponding TXT files for storing the two-

dimensional coordinate information of the objects. Based on actual

taste during cultivation, objects in the expansion stage with a

coloring area of less than 70% are labeled as “0”, and objects with

a coloring area of more than 70% are labeled as “1”.

The dataset is divided into 1,791 training, 896 validation, and

298 test samples (6:3:1 ratio) to balance model training adequacy

with generalization assessment, reducing overfitting risk. Each

dataset is further divided into two folders: Images and Labels,

storing the original.jpg data and corresponding.txt annotation

information, respectively. It should be noted that the dataset is

currently not publicly available. Interested researchers can contact

the authors to request access to the dataset.

During the training process, data augmentation is performed

using four methods: horizontal flipping, vertical flipping, brightness

enhancement, and brightness reduction of the images, as shown

in Figure 3.
2.3 Principle of YOLOv11

YOLOv11 is the latest version of the Ultralytics YOLO series,

suitable for various computer vision tasks such as object detection,

instance segmentation, image classification, pose estimation, and

oriented object detection. The model architecture is divided into

three parts: Backbone, Neck, and Head (Ana et al., 2020), as shown

in Figure 4. Compared with YOLOv8, it uses the C3k2 module to

replace the original C2f module, which excels in feature aggregation.
FIGURE 1

Greenhouse elevated strawberry.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1584669
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2025.1584669
The C2PSAmodule, utilizing a multi-head attention mechanism for

global feature extraction, is integrated into the YOLOv11 model,

thereby further augmenting its feature extraction capabilities. The

detection head adopts advanced technologies such as depthwise

separable convolutions (Zhai et al., 2025) and DynamicHead,

significantly improving the model’s computational efficiency and

detection accuracy. These improvements make YOLOv11’s

detection head more flexible and efficient while maintaining high

performance. Meanwhile, by optimizing the network architecture

and reducing the number of parameters (Zhao and Jia, 2022),

YOLOv11 achieves faster processing speeds while maintaining

high performance. However, the remarkable progress achieved by

YOLOv11 still encounters a series of pressing scientific challenges

when detecting the maturity of strawberries in high - rise cultivation

environments. Therefore, this study selects YOLOv11 as the

baseline model.
2.4 Improvements to YOLOv11

Addressing issues such as low detection accuracy, frequent

missed detections, and false positives in strawberry ripeness

detection for small targets, innovative improvements based on

YOLOv11n were proposed to enhance the performance of
Frontiers in Plant Science 04
strawberry maturity detection in greenhouse high-shelf systems.

Firstly, GhostConv modules were introduced in the Backbone to

replace the fifth and seventh convolutions, reducing computational

load by generating “real” and “ghost” feature maps, thereby

improving model efficiency. Secondly, the C3K2-SG module was

designed within the Backbone, utilizing a point-shifting mechanism

to enhance the effectiveness and flexibility of feature extraction,

facilitating accurate identification of target defects against complex

backgrounds. Lastly, the F-PIoUv2 loss function was developed to

improve model detection performance by focusing on different

regression samples. The improved YOLOv11 model is illustrated

in Figure 5.

2.4.1 GhostConv
GhostConv, also known as Ghost convolution or phantom

convolution, is an efficient convolution method aimed at

generating more feature maps through low-cost linear

transformations to reduce computational burden and improve

resource utilization (Si et al., 2024). In well-performing CNN

models, feature map redundancy is crucial (Lü et al., 2022). Many

output features are similar and can be derived through

straightforward linear transformations, rather than intricate

nonlinear ones. Therefore, one feature map can be considered as

the “ghost” of another. A structure that generates a large number of
FIGURE 2

Images of strawberries in different complex scenarios. (a) Back light; (b) Front light; (c) Close-distance; (d) Long-distance; (e) Unobstructed; (f)
Obstructed.
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feature maps through a small amount of computation is called a

Ghost Module. This structure generates feature maps through a

series of linear operations, where the feature maps generated

through linear operations are called ghost feature maps, and the

feature maps being operated on are called intrinsic feature maps.

(1) Implementation of GhostConv

Regular Convolution: Perform regular convolution operations

on the input feature maps to obtain a set of intrinsic feature maps

(Y 0). The calculation is as Equation 1.

Y 0 = X*f
0 (1)

Ghost Generation: Based on the obtained intrinsic feature maps,

apply a series of simple linear operations (Fij) to generate ghost

feature maps (Yij). The calculation is as Equation 2. These linear

operations are usually low-cost as they do not require additional

convolutional kernels and significant computational resources.

Yij = Fi,j(Y
0
i ),∀ i = 1,…,m, j = 1,…, s (2)

Feature Map Concatenation: Concatenate the intrinsic feature

maps and the generated ghost feature maps in the channel

dimension to obtain the final output feature maps.

(2) Advantages of the Ghost Module

Using fewer convolutions, for example, with 64 convolutional

kernels, this structure only needs 32, reducing the computation

by half.
Frontiers in Plant Science 05
The low-cost operations (F) include a series of 3×3 and 5×5

convolutional kernels (Liu et al., 2025), and the convolutions are

performed on a per-feature-map basis, as shown in Figure 6.

Assuming the shape of the input feature map is [32, 32, 6], a 1x1

convolution is applied to reduce the number of channels, resulting

in a shape of [32, 32, 3]. Then, a 33 depthwise convolution is used to

extract features from each channel’s feature map, maintaining the

shape of [32,32,3], which can be regarded as a series of linear

transformations obtained from the previous layer. Finally, the

output feature maps from the two convolutions are stacked along

the channel dimension, resulting in a shape of [32,32,6].

(3) Conv-Ghost Param Ratio

The rs represents the ratio of the computational complexity of

ordinary convolution operations to that of the Ghost module. The

calculation is as Equation 3.

rs =
n · h0 · w0 · c · k · k

n
s · h

0 · w0 · c · k · k + (s − 1) · ns · h
0 · w0 · d · d

=
c · k · k

1
s · c · k · k +

s−1
s · d · d

≈
s · c

s + c − 1
≈ s (3)

The c represents the number of input channels, h is the height of

the input image, w is the width of the input image, h0 is the height
of the output image, w0 is the width of the output image, k is the size

of the convolutional kernel, d is the size of the convolutional kernel

for linear transformation, n is the number of output channels, s is
FIGURE 3

Example of image enhancement. (a) original (b) random brightness; (c) random contrast; (d) random flipping; (e) random noise.
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the number of transformations, and n\s is the number of output

channels after the first transformation.

The ‘s-1’ arises due to the fact that the identity mapping, though

involving no computation, is counted as part of the second

transformation, consequently lowering the computational

complexity of the Ghost module.

(4) Conv-Ghost Complexity Ratio

The rc represents the ratio of the computational complexity of

ordinary convolution operations to the number of parameters in the

Ghost module. The calculation is as Equation 4.

rc =
n · c · k · k

n
s · c · k · k + (s − 1) · ns · d · d

≈
s · c

s + c − 1
≈ s (4)

The other characters in the formula are consistent with those in

Equation 3.

By utilizing existing feature maps to generate more Ghost

feature maps, GhostConv significantly reduces the required

computational complexity and the number of parameters. This

approach also maximizes the utilization of available computing

and memory resources, making it particularly suitable for

resource-limited embedded systems.
Frontiers in Plant Science 06
2.4.2 C3k2-SG module
In current agricultural production, detecting strawberry

ripeness is challenging due to small target size, variable image

quality, and environmental factors. Traditional convolutional

neural networks often struggle, as excessive convolution can lead

to redundant features and reduced accuracy for small targets

like strawberries.

To address this, the study introduces the C3K2-SG convolutional

neural network module, designed to enhance local feature extraction

for strawberry ripeness detection. The module incorporates a

dynamic weight mechanism, allowing selective adjustment and

transfer of weight parameters based on information channels. This

enables the network to adapt more flexibly to local features, focusing

on exploring target features rather than relying solely on global

information aggregation. Consequently, the C3K2-SG module

significantly improves the extraction of local features related to

strawberry ripeness, enhancing model accuracy and robustness.

The C3K2-SG module combines the C3K2 module with the SG

module, which integrates the advantages of Self-moving Points

Convolution (SMPConv) (Kim and Park, 2023) and Convolutional

Gated Linear Unit (CGLU) (Shi, 2024), to significantly enhance the
FIGURE 4

Network architecture of YOLOv11.
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feature extraction capability of the model for strawberry ripeness

detection. Traditional continuous convolution methods typically rely

on large convolution kernels, but this approach not only incurs high

computational costs but also involves complex hyperparameter tuning

and is inefficient. To overcome these issues, SMPConv adopts an

innovative approach, as shown in Figure 7. SMPConv allows each

channel to share points at the same position, while each channel still

retains its own independent weight parameters. This mechanism

enables SMPConv to effectively control the free movement of

weights and achieve continuous convolution through interpolation,

thus avoiding the computationally intensive convolution operations

found in traditional neural networks. It enhances the flexibility and

efficiency of feature extraction, maintaining strong feature extraction

capabilities even in complex and diverse data environments.

On the other hand, in the gating branch of GLU, a simplified

channel mixing structure is formed by adding a 3×3 depthwise

convolution operation before the activation function. This design

aligns with the concept of gated channel attention, enabling the
Frontiers in Plant Science 07
model to effectively capture and integrate important information

from neighboring image features, thus improving the model’s

robustness in various scenarios. Through this channel mixing

strategy, the model is able to maintain high accuracy and

adaptability when processing complex data.

The structure of the SG module is achieved by stacking the

CGLU module after the SMPConv. This design not only effectively

captures the features of strawberry ripeness but also integrates a

gating mechanism to enable selective information flow through the

channels, thereby enhancing the flexibility and effectiveness of

feature extraction. The specific structure of the CGLU modules is

shown in Figure 8. module, when the C3K2 parameter is set to false,

the SG module replaces the original Bottleneck module. This

approach ensures that the model remains lightweight while

maintaining effective information flow, ultimately improving the

overall performance of the strawberry ripeness detection model

(Zhai et al., 2025). The specific structure of the C3K2-SG module is

shown in Figure 9.
FIGURE 5

Network architecture of the improved YOLOv11.
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2.4.3 F-PIoUv2 loss function
In the task of strawberry ripeness detection, the collected images

often suffer from a certain degree of blurriness, particularly in areas

where the color differences in the strawberries are significant.

Additionally, the presence of complex backgrounds further
Frontiers in Plant Science 08
complicates the detection process. In traditional loss functions,

some penalty mechanisms can cause unnecessary expansion of

anchor boxes during the regression process, which slows down

the model’s convergence. To address this issue, this study

innovatively introduces the F-PIoUv2 loss function, which
FIGURE 6

The ghost module.
FIGURE 7

Schematic of SMPConv self-moving points. (a) SMP (1D); (b) SMP (2D).
FIGURE 8

CGLU modules structure diagram.
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integrates the design concepts of Focaler IoU (Zhang and Zhang,

2024) and PIoUv2 (Liu et al., 2024). Specifically, PIoUv2 effectively

resolves the problem of anchor boxes excessively expanding during

regression towards the target location, accelerating the model’s

convergence speed. Meanwhile, Focaler IoU alleviates the negative

impact of sample imbalance and the varying difficulty of samples on

bounding box regression. The F-PIoUv2 loss function, employing

an adaptive penalty factor and interval mapping strategy, not only

speeds up the model’s convergence but also improves the

strawberry ripeness detection performance. The Focaler IoU

function, as shown in Equation 5, is constructed using a piecewise

function to improve the regression of bounding boxes. The Focal

IoU function is shown in Equation 5, which adopts a piecewise

function form to construct IoU, thereby improving bounding box

regression performance.

LIoUfocaler =

0,
LIoU−d
u−d ,

1,

LIoU < d

d ≤ LIoU ≤ u

LIoU > u

8>><
>>: (5)

In Equation 5, LIoU refers to the original IoU value, while both d

and u belong to the interval from 0 to 1. Different regression

samples correspond to different d and u values. The loss(XIoUfocaler)

is defined as shown in Equation 6.

XIoUfocaler = 1 − LIoUfocaler (6)

To put it simply, by observing the Focaler IoU formula, we can

see that when LIoU is below a certain specific value, the value of LIoU
focaler becomes zero. By examining the Focaler IoU formula, it can

be observed that the value becomes zero when it is less than a
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certain threshold. In the strawberry ripeness detection, where small

object detection is required in complex environments, the original

design does not fully meet the needs. Therefore, this study improves

the Focaler IoU by removing the original two parameters(d and u),

while still maintaining the piecewise function form. This

modification enhances the model’s ability to fully utilize sample

data. Consequently, the improved approach enables the model to

perform better when detecting small strawberries in complex

environments, while also enhancing the model’s stability and

convergence (Mao et al., 2023). The definition of the improved

loss function is detailed in Equations 7 and 8.

LIoUf =
LIoU
u , LIoU ≤ u

1,  LIoU > u

( )
(7)

XIoU = 1 − LIoUf (8)

Many traditional loss functions guide anchor boxes to move

closer to the ground truth boxes by first gradually expanding the

anchor boxes until they completely cover the true boxes, followed

by a shrinking operation to achieve linear regression (Sun et al.,

2024). In contrast, the PIoU loss function effectively addresses the

problem of anchor box expansion. It could adaptively select penalty

factors based on the target size and can flexibly adjust gradients

based on the quality of the anchor boxes. This enables the anchor

box to directly minimize the distance between its four sides and the

ground truth box, efficiently moving along an almost linear

trajectory to the position of the ground truth box. Therefore,

compared to other IoU loss functions, the PIoU loss function can

perform linear regression more quickly. The PIoU loss function as
FIGURE 9

SMPCGLU and C3K2-SG module architecture.
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shown in Equations 9 and 10.

p =
dw1

wgt
+
dw2

wgt
+
dh1
hgt

+
dh2
hgt

 !
=4 (9)

XPIoU = LIoU + 1 − e−p
2

(10)

In the equation: P represents the penalty factor, with the

variables defined.

Based on PIoU, a non-monotonic attention layer m(x) is

introduced to investigate the focusing mechanism. By combining

the attention layer with PIoU, the PIoUv2 loss function is generated.

The definitions of the loss functions are shown in Equations 11–13.

q = e−p, q ∈ (0, 1� (11)

m(x) = 3x · e−x
2

(12)

XPIoUv2 = 3m(lq) · XPIoU (13)

According to Equation 11, as p increases, q decreases, where q

represents the quality of an anchor box. When p equals 0, q is 1,

indicating that the ground truth box and the predicted box are

perfectly aligned at this point. The hyperparameter lis used to

control the intensity of the attention (Chen Y. et al., 2024).

Combining the Focaler IoU and PIoUv2 loss functions, the F-

PIoUv2 loss function is proposed, with its loss definition shown in

Equation 14.

XF−PIoUv2 = 3m(lq) · XIoU f + 1 − e−p
2

� �
(14)

The F-PIoUv2 loss function proposed in this study combines

the advantages of two loss functions. It not only adaptively selects

the appropriate penalty factor based on the target size but also fully

considers the overall positional information of the anchor boxes,

enhancing the model’s ability to discriminate between anchor boxes

of different quality.
3 Experimental design

3.1 Experimental environment

To ensure fair experimental comparisons, all experiments were

conducted on a single computer with a standardized hardware

configuration. The system ran Windows 11 Pro and was equipped

with an AMD Ryzen 9 7945HX processor with Radeon Graphics,

along with an NVIDIA GeForce RTX 4080 GPU. Python 3.10.9 was

used as the programming language, and CUDA 11.8 was integrated

to accelerate the model training process. For the experimental setup,

all input images were uniformly resized to a resolution of

1450×1450 pixels, and each training batch contained 8 images.

The model is trained for 200 epochs with a batch size of 16. The

initial learning rate is set to 0.01. The optimizer starts with AdamW

and later switches to SGD.
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3.2 Evaluation metrics

To comprehensively assess the performance of the proposed

model, this study adopts a series of evaluation metrics, including

precision (P), recall (R), average precision (AP), mean average

precision (mAP), model size, and detection frames per second

(FPS) (Yang et al., 2023). These metrics collectively establish a

comprehensive evaluation system aimed at quantifying the model’s

efficiency and resource consumption in practical applications.

Specifically, precision (P) reflects the accuracy of the model in

identifying positive objects, i.e., the proportion of correctly detected

targets among all detected targets. Recall (R) reveals the model’s

coverage capability for positive samples, expressed as the

proportion of correctly detected targets among all actual positive

targets. Average precision (AP) provides an effective evaluation

means for single-category performance by calculating the average of

precision at different recall levels. Mean average precision (mAP),

commonly used in multi-category target detection tasks, achieves a

comprehensive measure of the model’s overall performance by

averaging the AP values of all categories. This study uses mAP50

(IoU threshold of 50%) and mAP50-95 (average mAP across IoU

thresholds from 50% to 95% in 5% increments) as

evaluation metrics.

In addition, the model size, quantified in megabytes (M),

measures the model’s size and memory resource consumption,

serving as an important indicator of model complexity. Detection

frames per second (FPS) (Di and Qu, 2020), i.e., the number of

image frames the model can process per second, directly reflects the

model’s detection speed, measured in frames per second. The

specific formulas for calculating each evaluation metric are

omitted here for brevity (Equations 15–18):

P =
TP

TP + FP
� 100% (15)

R =
TP

TP + FN
� 100% (16)

AP =
Z 1

0
P(R)dR� 100% (17)

F1 =
2*P*R
P + R

� 100% (18)

The terms are as follows: TP is True Positive, FP is False

Positive, TN is True Negative, and FN is False Negative.

To validate the performance of the YOLOv11-GSF model, we

meticulously designed a rigorous experimental procedure. The

model was trained on a training dataset comprising 1,791 images,

fine-tuned on a validation dataset of 896 images, and ultimately

evaluated for accuracy using a test dataset consisting of 298 images.

The experimental results demonstrated the model’s exceptional

performance in strawberry recognition and detection, achieving a

precision rate as high as 95.99%, a recall rate of 93.62%, while

maintaining a computational efficiency of 6 GFLOPs (Giga
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Floating-point Operations Per Second) and a FPS of 67.5, which

fully underscores the reliability and practicality of YOLOv11-

GSF.The false positive rate for unripe fruits is 29.03%, and the

false negative rate is 2.94%, while for ripe fruits, the false positive

rate is 4%, and the false negative rate is 3.79%. The model performs

well in identifying ripe strawberries but exhibits a higher rate of

misclassification for unripe ones. Figure 10 vividly illustrates the

improvement effects of YOLOv11 in strawberry detection,

presenting a visual comparison that highlights the algorithm’s

enhancement in localization accuracy and recognition efficacy.

Meanwhile, Figure 11 quantifies the test accuracy of different

experimental models, providing an objective basis for assessing

algorithm performance and further substantiating the superiority of

YOLOv11-GSF.
4 Discussion

4.1 Comparison

In order to further verify the superiority and effectiveness of the

proposed YOLOv11-GSF model in the task of strawberry ripeness

target detection, we carried out a series of comparative experiments.

These experiments use industry-representative target detection

models, i.e., YOLOv5, YOLOv8, YOLOv10, and YOLOv11. The

experimental results are illustrated in Figure 12. Through

comparing the performance of the YOLOv5, YOLOv8, YOLOv10,

and the original YOLOv11 models with that of the improved

YOLOv11 model in terms of key metrics, including recognition

accuracy, recall rate, and average precision, the advantages and

effectiveness of each model in the task of ripe strawberry target

detection are demonstrated. Moreover, these metrics also highlight
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the performance disparities among the algorithms when dealing

with the ripe strawberry target detection task.

Comparative evaluation of the post-detection output images

revealed that the four detection models each exhibited measurable

detection performance. Among them, YOLOv11 is outstanding in

improving the accuracy of the bounding box, and its bounding box

completeness and accuracy outperforms the other models, all of

which have varying degrees of deficiencies in detecting the

completeness of the annotations. In this case, YOLO5, YOLOv8

and YOLOv10 failed to detect all targets completely, whereas

YOLOv11 successfully detected all targets but with recognition

misclassification. In the long-range small target detection effect

image, the feature extraction capability is significantly enhanced by

designing the C3K2-SG module, as shown in Figure 12D. This

shows that the improved YOLOv11 can not only effectively prevent

small targets from being missed in long-distance images, but also

improve the detection accuracy, in addition, the improved

algorithm shows the best detection performance when dealing

with dense images. In conclusion, the improved YOLOv11

demonstrates excellent accurate recognition capabilities in various

environments such as long-distance, near-distance and dense

scenes. In conclusion, the improved YOLOv11 demonstrates

excellent accurate recognition in a variety of environments such

as far, near and dense scenes.

As shown in Table 1, The experimental results demonstrate that

YOLOv11-GSF outperforms the YOLOv11 model in terms of

Average Precision, Precision, Recall, and F1 Score. Specifically,

YOLOv11-GSF achieves substantial improvements in strawberry

ripeness detection, with an Average Precision of 97.8%, a Precision

of 95.99%, a Recall of 93.62%, and an F1 Score of 94.79%.

Additionally, the model achieves a mean Average Precision

(mAP50) of 0.973 at an IoU threshold of 0.5 and a mean Average
FIGURE 10

Training loss and evaluation metrics change chart for YOLOv11-GSF.
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Precision (mAP50-95) of 0.824 across IoU thresholds from 0.5 to

0.95, further demonstrating its exceptional detection capabilities and

robustness. By referring to Figure 13, we can observe more intuitively

that YOLOv11-GSF, compared to the original network, not only

achieves more precise localization of strawberries but also exhibits
Frontiers in Plant Science 12
stronger classification capabilities. This implies that the model can

more reliably identify and distinguish strawberries at different stages

of maturity. These improvements lay a solid technological foundation

for automated strawberry harvesting technology, with the potential to

enhance harvesting efficiency and reduce human errors.
FIGURE 11

(a) Multiple classes and close distance; (b) Multiple classes and long distance; (c) Simple scenario; (d) Small targets; (e) Mulching with few fruits; (f)
Severe occlusion.
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4.2 Ablation study

As shown in Table 2, the ablation study unveiled the distinct

influences exerted by various enhanced modules on the

performance metrics of the YOLOv11 model.

The GhostConv module demonstrates effective reduction in

computational complexity, as evidenced by the decreased GFLOPs,

through the generation of simplified feature maps. This module
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enhances operational efficiency while preserving detection accuracy,

rendering it particularly advantageous for mobile platforms with

computational constraints. The C3K2-SG module, employing a

spatial group convolution strategy, substantially augments feature

extraction capabilities. Despite a marginal fluctuation in average

precision, this module exhibits distinctive superiority in detecting

densely packed small targets. The F-PIoUv2 loss function, by

optimizing the bounding box regression mechanism, elevates
FIGURE 12

Detection results of different models with various conditions (a) Front light and unobstructed ; (b) Back light; (d) Close-distance and Obstructed; (c)
Long-distance.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1584669
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2025.1584669
target localization precision, enabling the model to delineate targets

with greater accuracy in complex environments.

Integrated application of all three modules yields synergistic

benefits: enhanced detection accuracy and localization efficiency

under computational constraints, particularly in challenging

environments with distant small targets and dense scenes. This

collaborative optimization overcomes individual limitations,

providing robust solutions for complex detection tasks.
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4.3 Visualization

In order to verify the effectiveness of the proposed model

method in strawberry ripeness detection, the optimized network

and the original network were compared in a heat map

visualization, as shown in Figure 14, where the highlighted areas

represent the key parts that the network focuses on, and it can be

seen that the improved model is able to increase the model’s focus

on the strawberry.

The features of strawberry data were visualized by comparing

the YOLOv5, YOLOv8, YOLOv10, and YOLOv11 models with the

improved YOLOv11 model, using GradCAM visual heat maps.

GradCAM visualized and analyzed the output layer, where the red

areas indicate the regions that the model focuses on for strawberry

detection. The heat maps of all these models are presented in

Figure 14, enabling a clear visual comparison. The improved

YOLOv11’s attention to both ripe and unripe strawberries is

improved compared to other YOLO models, which indicates that

the improved model can alleviate the influence of the background

and better extract the features of the strawberries themselves,

proving that the improved model can meet the needs of

strawberry ripeness detection. Comparing with the Grad-CAM

plots in Figure 14, the model with C3K2-SG module extracts

more strawberry features compared with the model without

C3K2-SG module, which is reflected in the fact that the heat

region covers more parts of strawberry region and is brighter and

more concentrated.
5 Conclusions

This study presents an advanced YOLOv11-based detection

framework tailored for strawberry ripeness assessment,
TABLE 1 Performance comparison table of YOLO model versions.

Model Average precision Precision Recall(%) F1 Sore mAP50 mAP50-95 GFLOPs

Improved YOLOv11 97.8 95.99 93.62 94.79 0.973 0.824 6

YOLOv11 96.8 92.5 92.8 92.64 0.968 0.8 6.6

YOLOv10 96.6 90.9 93 91.93 0.966 0.802 24.8

YOLOv8 96 90.3 93.4 91.82 0.96 0.777 8.9

YOLOv5 95.4 89.9 90.9 90.39 0.954 0.797 4.5
fr
FIGURE 13

PR curves of different detection models.
TABLE 2 Ablation study performance comparison table for models.

Model Average precision Precision Recall(%) F1 Sore GFLOPs

YOLOv11 96.8 92.5 92.8 92.64 6.6

YOLOv11_GhostConv 97.1 93.1 93.6 93.35 6.1

YOLOv11_SG 95.9 93.2 92.5 92.85 6.3

YOLOv11_F-PIoUv2 96.9 92.7 92.9 92.80 6.4

Improved YOLOv11 97.8 95.99 93.62 94.79 6
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demonstrating precise localization of subtle defects in complex fruit

imagery. The integration of GhostConv modules into the backbone

network—replacing the fifth and seventh convolutional layers—

reduces computational complexity through dual-path feature

generation. The C3K2-SG module combines self-moving point

convolution with adaptive gating mechanisms, enhancing feature

extraction flexibility and precision. Additionally, the F-PIoUv2 loss
Frontiers in Plant Science 15
function mitigates penalty factor amplification and class imbalance

issues, collectively improving detection performance. Compared to

the baseline YOLOv11, the proposed YOLOv11-GSF model

achieves a 1% increase in Average Precision (AP), 3.49% higher

Precision, 0.82% gain in Recall, and 2.15% elevation in F1 Score,

balancing accuracy and real-time efficiency in dynamic

agricultural settings.
FIGURE 14

Heatmaps results of different models with various conditions .(a–d) are heatmap of different strawberry morphologies.
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Despite its algorithmic advancements, the model’s validation

remains confined to image datasets, necessitating further real-world

testing to ensure operational reliability. Specifically, the

framework’s robustness against environmental variability—such

as fluctuating lighting conditions, fruit occlusion, and field clutter

—requires validation through physical deployment. Planned next

steps include comprehensive field trials on unmanned ground

vehicles to evaluate performance under natural conditions,

coupled with synchronized robotic arm harvesting experiments to

assess end-to-end system integration.

Future research will expand this work along three dimensions:

(1) edge-device optimization for resource-constrained agricultural

robots, (2) seamless integration with automated harvesting systems

to enable closed-loop operations, and (3) cross-species adaptability

studies to extend the model’s applicability to other small berry crops

via transfer learning. By establishing a cohesive “lab-to-field”

translational pipeline, this study lays groundwork for scalable,

intelligent solutions in precision agriculture.
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