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Climate change is expected to drive substantial shifts in species’ geographic

ranges. Species-specific responses of interacting species, such as plants and their

pollinators, may lead to a spatial mismatch in their future distributions, disrupting

these interspecific interactions. The crop wild relatives (CWRs) of the tropical

cash crop vanilla hold valuable genetic resources for use in crop breeding, but

their persistence is dependent on the presence of their pollinators, and at risk due

to several anthropogenic pressures including climate change. To contribute to

the safeguarding of this wild Vanilla gene pool, the present study aims at better

understanding the effects of climate change on Vanilla species and their

pollinators, and to identify potential spatial mismatches between both.

Focusing on the Neotropical realm, we used MaxEnt species distribution

models (SDMs) to predict potential changes in the range overlap between

Vanilla and their pollinators by 2050 under the SSP2-4.5 and SSP3-7.0 climate

change scenarios. We were able to compile enough occurrence records to

generate SDMs for 11 Neotropical Vanilla CWRs, of which data on pollinator

identity was available for four animal-pollinated species. Our models showed

varying results among Vanilla species, with some predicted to undergo a net

contraction (-1% to -53%) and others predicted to experience a net expansion

(+11 to +140%), while the area of suitable habitat for all pollinators was predicted

to decline (-7% to -71%). Our models predict a decline in range overlap between

animal-pollinated Vanilla species and their pollinators under climate change, and

this spatial mismatch was more pronounced for species reliant on a single known

pollinator (-60% to -90%). Furthermore, the proportion of overlapping ranges

located within protected areas is predicted to shrink for all species if no action is

taken. Based on these findings, we propose priority areas for in situ and ex situ

conservation to safeguard Vanilla’s genetic resources.
KEYWORDS

climate change, Euglossini, ex situ conservation, in situ conservation, Orchidaceae,
plant-pollinator decoupling, species distribution models, vanilla crop wild relatives
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1 Introduction

Climate change is expected to cause substantial shifts in species’

geographic ranges, thereby altering the composition of species

communities and disrupting interspecific interactions (Scheffers

et al., 2016). The relationship between a plant and its pollinator(s) is

an example of an ecological interaction that may be at risk due to

differential responses of species to climate change, which may result in

spatial mismatches between their future distributions (Gérard et al.,

2020). Pollination contributes to species coexistence within plant

communities, affects their geographic range, and drives evolutionary

phenomena such as reproductive isolation or diversification rates

between plant lineages (Phillips et al., 2020). The great majority

(± 87.5%) of known flowering plants rely on animal vectors for

cross-pollination (Ollerton, 2021), which are essential for shaping the

genetic structure of populations of flowering plants by facilitating

pollen (and gene) flow within and between populations. This process

enables the spread of beneficial mutations that support adaptive

responses to environmental changes (Conner and Hartl, 2004),

so disruptions to this fundamental relationship could significantly

reduce plant reproductive success and survival. Understanding the

factors driving spatial and temporal changes in plant-pollinator

networks is therefore critical for maintaining community structure

and function and for developing efficient biodiversity conservation

strategies (Burkle and Alarcón, 2011).

An important group of plants that is at risk due to climate

change and other human-induced changes are crop wild relatives

(CWRs) (Castañeda-Álvarez et al., 2016). CWRs are closely related

to domesticated crop species and harbor a wealth of – often

untapped – genetic diversity vital for crop improvement (Maxted

et al., 2006; Vincent et al., 2019). Moreover, approximately 75% of

plants used in food production depend, at least partially, on

pollination by animal vectors, making pollinators essential to both

natural and agricultural ecosystems (Van der Sluijs and Vaage,

2016). Understanding how climate change affects the range

dynamics and ecological interactions of CWRs is therefore critical

for protecting this wild gene pool and ensuring future food security.

An example of a crop with several wild relatives spread across

the tropics is vanilla (Vanilla Mill., Orchidaceae Juss.), a globally

valued spice and the most important orchid used in the food

industry. Cultivated lineages of the commercial crop species

Vanilla planifolia Andrews are, however, susceptible to biotic

(e.g., pests, diseases) and abiotic (e.g., droughts, heat) stresses

(Besse, 2004; Schlüter et al., 2007; Bory et al., 2008). Climate

change is expected to aggravate their vulnerability to these

stresses, leading to significant global yield declines (Bramel and

Frey, 2021; Goettsch et al., 2021; Armenta-Montero et al., 2022;

Karremans, 2024). Strengthening the resilience of vanilla cultivation

systems will be essential to meet the growing demand for natural

vanilla (Climate Bonds Initiative (CBI), 2023), with Vanilla CWRs

playing a crucial role (Flanagan and Mosquera-Espinosa., 2016;

Pérez-Silva et al., 2021, 2025; Bramel and Frey, 2021; de Oliveira

et al., 2022; da Silva Oliveira et al., 2022; Watteyn et al., 2023a).

Vanilla CWRs include wild populations of V. planifolia, as well as

related species belonging to the same (Vanilla sect. Xanata) or to
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different sections as V. planifolia (Vanilla sect. Tethya, Vanilla subg.

Vanilla). Many of these are considered as (critically) endangered by

the IUCN Red List (Hernández-Fernández et al., 2020; Herrera-

Cabrera et al., 2020; Wegier et al., 2020). Anthropogenic pressures

such as climate change, habitat conversion, agricultural

intensification, and illegal extraction from the wild are

threatening the survival of remaining Vanilla CWR populations

(Goettsch et al., 2021). Urgent action is therefore required to

implement policies that support both in situ and ex situ

conservation to safeguard these genetic resources (Bramel and

Frey, 2021; Goettsch et al., 2021; Karremans, 2024).

Several Vanilla species, including V. planifolia, are self-

compatible (Bory et al., 2010), explaining the success of hand-

pollination in commercial plantations. However, in their natural

habitat, most Vanilla species appear to be allogamous and rely on

biotic vectors for sexual reproduction (Bory et al., 2010; Karremans,

2024). This dependence on pollinators corresponds with the

broader pattern in orchids, where about 75% of the species

require animal vectors for pollination (Ackerman et al., 2023). To

date, effective pollinators of Vanilla species have been identified

across several bee tribes, including Allodapini (Petersson, 2015;

Gigant et al., 2014, 2016), Anthophorini (Gigant et al., 2014),

Centridini (Nielsen & Ackerman unpublished; Pansarin et al.,

2013), Euglossini (Ackerman, 1983; Lubinsky et al., 2006;

Householder et al., 2010; Soto Arenas and Dressler, 2010;

Pansarin et al., 2013; Anjos et al., 2017; Watteyn et al., 2022,

2023b), and Halictini (Chaipanich et al., 2020). Several previous

studies cited stingless bees (Meliponini) as the suspected pollinators

of Vanilla, but without clear evidence (e.g., Bouriquet 1946; Pijl and

Dodson, 1996; Fouché and Jouve, 1999). A recent study of

Karremans (2024) shows a stingless bee with pollen grains on its

back while exiting a V. planifolia flower and suggested that these

bees could remove pollinaria on occasion, but that it is unlikely that

they are the main pollinators, given their small size. Pansarin and

Ferreira (2022a) reported hummingbirds as pollinators of Vanilla

palmarum, yet their statement lack evidence of pollen removal. The

abovementioned pollinator groups interact with Vanilla species

through various mechanisms, such as nectar rewards in the case

of Vanilla hartii Rolfe (Watteyn et al., 2023b) or a food deceptive

strategy in the case of V. planifolia (de Oliveira et al., 2022;

Pemberton et al., 2023). Other species, such as Vanilla pompona

Schiede, employ a dual mechanism with floral fragrances to attract

pollinators and food deception to induce pollen removal and

deposition (Watteyn et al., 2022; Pansarin, 2023). Plant species

with such specialized pollinator interactions are expected to be

more vulnerable to climate change-induced plant-pollinator

decoupling than more generalist species (Gérard et al., 2020). As

such, Vanilla species and their pollinators may be at risk of a spatial

mismatch under changing climate conditions.

To support the conservation of Vanilla CWRs and their pollinator

interactions, a critical first step is to identify those areas where they co-

occur, and how these areas may change under projected climate

change scenarios. Species distribution models (SDMs) provide a useful

tool for this purpose, as they generate predictions of the distribution of

suitable habitat, even for species with limited occurrence data,
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supporting targeted conservation actions (Guisan and Thuiller, 2005;

Hirzel et al., 2006). Moreover, they can be used to predict spatial (mis)

matches between species by overlaying single species distribution

predictions or using joint SDMs. Previous studies on orchid

conservation, for example, used SDMs to identify potential spatial

mismatches in future distributions between orchids and their

pollinators, information that can subsequently be integrated in land

management policies (e.g., Tsiftsis and Djordjević, 2020; Kolanowska

et al., 2021a, 2021b; 2023; Liu et al., 2024). As for Vanilla, however,

existing SDM studies centered on current and future distribution

patterns of the commercial crop species V. planifolia in Mexico

(Hernández-Ruıź et al., 2016; Armenta-Montero et al., 2022;

Maceda et al., 2023) and Vanilla CWR in Costa Rica (Watteyn

et al., 2020). Rather than SDMs, Ellestad et al. (2021) applied a

landscape-based approach to circumscribe the current geographical

distribution of V. planifolia by accounting for the co-occurrence of

pollinators and seed dispersers, as well as habitat quality and

disturbance. No studies to date have modeled Vanilla species

alongside their pollinators under predicted climate change scenarios,

leaving a significant gap in understanding the spatial dynamics critical

for their conservation.

The present study aims to evaluate the current overlap of

suitable habitats between Vanilla CWRs and their pollinators, as

well as to predict how this overlap might shift under future climate

conditions. The focus is on tropical America, which harbors at least

63 of the 118 Vanilla species naturally found across the tropics

(Karremans et al., 2020). Interestingly, this area also harbors all the

so-called aromatic species (38 in total) belonging to the section

Xanata, which are the species with most potential for use in crop

breeding. We use MaxEnt SDMs to predict changes (contraction or

expansion) in the range overlap between Vanilla and their

pollinator species under the SSP2-4.5 and SSP3-7.0 climate

change scenarios. The findings of this study can help to prioritize

in situ conservation areas where both Vanilla species and their

pollinators are predicted to continue to co-exist. Additionally, by

identifying areas predicted to lose suitability, the results can be used

to identify potential locations of Vanilla populations that may

require ex situ conservation or assisted migration.
2 Materials and methods

2.1 Species distribution modeling

2.1.1 Occurrence data
Georeferenced presence data of all currently known Neotropical

Vanilla species (n = 63) (Supplementary Table S1) was compiled

from several sources, including Karremans et al. (2020) and Watteyn

et al. (2020), among others (see Supplementary Table S2 for a

complete overview), and complemented with data recently collected

by our research group (2023-2024) as part of an ongoing genetic

study of Vanilla populations (Watteyn et al., in prep.). More

specifically, we compiled presence data within the geographical

extent of (sub)tropical America considering the currently known

distribution of Neotropical Vanilla species (-118.37°W, -28.85°E;
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-33.75°S, 32.72°N). We cleaned the presence data using the R

package CoordinateCleaner (Zizka et al., 2019) and removed (i)

records located in the ocean, GBIF headquarters, urban areas or

biodiversity institutions (e.g., museums, botanical gardens,

universities), and (ii) records with outlier, zero, rounded or invalid

coordinates, and identical latitude/longitude. We also removed

records older than 1950 or with missing collection dates. After

spatial filtering (see section 2.1.3.), only Vanilla species with ≥ 30

occurrence points were retained, as the number of presence points

greatly affects model accuracy (Wisz et al., 2008). This resulted in a

total of 11 Vanilla species that could be modeled, including 7 animal-

pollinated and 4 autogamous species (Table 1). Information about the

pollinators of the animal-pollinated Vanilla species was derived from

recent studies, resulting in 11 potential pollinators described in the

literature, of which seven are supported by robust observations of

pollen removal and identifications of the pollinators at species level

(Table 1). Georeferenced presence data of these seven pollinator

species was compiled fromGBIF and literature (Supplementary Table

S2). The data were cleaned with the same procedure as for the Vanilla

species, to obtain a final dataset comprising seven pollinator species

with sufficient occurrence data (≥ 30 points). All modeled species

belonged to the bee tribe Euglossini, including four Euglossa and

three Eulaema species.

2.1.2 Predictor variables
As predictor variables, we used the bioclimatic variables from

the WorldClim database, with a spatial resolution of 30 arcsec (ca.

0.9 km at the equator), both for the near-current historical baseline

(1970-2000) and future (2041-2070) climate conditions (Fick and

Hijmans, 2017). Following Booth (2022), the variables bio8, bio9,

bio18 and bio19 were removed due to known spatial artefacts. No

further variable selection was carried out, as Maxent models can

handle multicollinearity (Feng et al., 2019). For the Vanilla SDMs,

we also included eight soil variables with a spatial resolution of 250

m (SoilGrids) from the International Soil Reference and

Information Center (ISRIC, Hengl et al., 2017) and 4 topographic

variables with a spatial resolution of 30 m from the ASTER Global

Digital Elevation Model v3 (DEM, Abrams et al., 2022), both

resampled to a resolution of 30 arcsec to match the resolution of

the bioclimatic variables. An overview of the predictor variables can

be found in Supplementary File 1 (Supplementary Table S3). The

pollinator SDMs only included climatic variables, as previous

studies have shown that bee distribution ranges are mainly driven

by climate, and other variables do not significantly improve the

models (Silva et al., 2014; Nemésio et al., 2016).

We selected five general circulation models (GCMs) from the

sixth Coupled Model Intercomparison Project (CMIP6) (Eyring

et al., 2016) with the highest combined weight of performance (i.e.

ability to predict past climate conditions) and independence

according to Brunner et al. (2020) that are available through the

WorldClim database: ACCESS-CM2, GISS-E2-1-G, INM-CM5-0,

MIROC6, MPI-ESM1-2-HR. For each of these GCMs, we focus on

two climate change scenarios: the Shared Socioeconomic Pathways

SSP2-4.5 and SSP3-7.0 (Riahi et al., 2017). These SSPs are

projections in terms of international policies towards
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environmental sustainability and GHG emission reduction. SSP2-

4.5 (“middle of the road”) assumes that nations will work toward

but make slow progress in achieving sustainability in development

goals, while SSP3-7.0 (“rocky road” – regional rivalry) is a more

pessimistic scenario, with greater regional conflicts and less global

cooperation to mitigate climate change. We choose these two SSP

scenarios as we aimed to include scenarios which may best reflect

reality, considering a more optimistic and pessimistic vision,

respectively. The other scenarios reflect very optimistic or

pessimistic views on the future. For example, SSP1-1.9 and SSP1-

2.6 envision a world where ambitious mitigation efforts lead to

significant GHG reductions, reaching net-zero emissions by 2050 or

2070, respectively, while the very pessimistic SSP5-8.5 scenario

envisions a world where emissions continue to grow at very high

rate, which is unlikely (Huard et al., 2022).

2.1.3 Species distribution modeling
We used the maximum entropy algorithm (MaxEnt version 3.4.3)

(Phillips et al., 2006; Elith et al., 2011) to model the distribution of

Vanilla species and their corresponding pollinators under current and

future climate conditions. MaxEnt has become a popular tool for

predicting species distributions, as it can cope well with sparse,

irregularly sampled data and minor location errors (Graham et al.,

2008). MaxEnt is a niche modeling algorithm based on the maximum

entropy theory (Phillips et al., 2006, 2017). It is a presence-only
Frontiers in Plant Science 04
algorithm that compares presence locations to all the environments

that are available in the study region, i.e. the ‘background’.

To reduce the effects of spatial bias on model calibration, we

applied the target background approach, which involves the

selection of background records from grid cells with presence

data of species that belong to a similar group as the target species,

under the assumption that these locations reflect a similar bias as

the sampling bias of the target species (Phillips et al., 2009). In our

case, the target group for the Vanilla SDMs consisted of all hemi-

epiphyte and liana species growing in the Neotropics (tropicos.org),

while the target group for the pollinator SDMs consisted of all bee

species (Apidae) found in the Neotropics (Dorey et al., 2023).

Presence data of the target group species were compiled from

online databases and the literature (Supplementary Table S2) and

cleaned using the same method as explained in section 2.1.1. To

further reduce the effects of spatially biased presence points on

model calibration, we thinned the presence points using the R

package spThinR (Aiello-Lammens et al., 2015), using a thinning

distance of 10 km.

The MaxEnt models were implemented and optimized using

the R package ENMeval v2 (Kass et al., 2021). For each species, a

total of 15 model parametrizations were evaluated by using multiple

combinations of five feature classes (L, LQ, H, LQH, LQHP, where

L = linear, Q = quadratic, H = Hinge, P = Product) and three

regularization multiplier (RM) values (1, 3, 5). To evaluate the
TABLE 1 Set of Neotropical Vanilla species (N = 11) with enough presence data to build accurate models, along with the identified pollination
mechanism and corresponding pollinator species in case of animal-driven allogamy.

Vanilla species Pollination strategy Pollinator species References

Vanilla sect. Xanata Vanilla chamissonis Klotsch Autogamous n.a. Reis, 2000; Gigant et al., 2011

Vanilla hartii Rolfe Animal-pollinated |
Nectar-rewarding

Euglossa cybelia
Euglossa tridentata

Watteyn et al., 2023b;
Watteyn et al., 2023b

Vanilla odorata C. Presl. Animal-pollinated |
Food-deceptive

Euglossa sp.b, d Soto Arenas and Dressler, 2010;
Watteyn et al. unpubl.

Vanilla palmarum Lindl Autogamous n.a. Householder et al., 2010;
Soto Arenas and Cribb, 2013

Vanilla phaeantha Rchb.f.a Animal-pollinated |
Food-deceptive

Eulaema sp.b Anjos et al., 2017

Vanilla planifolia
Andrews

Animal-pollinated |
Food-deceptive

Euglossa viridissimab

Euglossa dilemmac

Trigona sp.b

Soto Arenas and Dressler, 2010;
Pemberton et al., 2023;
Karremans, 2024

Vanilla pompona Schiede Animal-pollinated |
Dual mechanism

Eulaema cingulata
Eulaema meriana
Eulaema nigrita

Watteyn et al., 2022; Lubinsky et al.,
2006; Householder et al., 2010;
Ackerman, 1983

Vanilla trigonocarpa
Hoehne

Animal-pollinated |
Food-deceptive

Euglossa asarophora
Eulaema merianad

Soto Arenas and Dressler, 2010
Karremans et al. unpubl.

Vanilla subg. Vanilla Vanilla bicolor Lindl. Autogamous n.a. Householder et al., 2010;
Van Dam et al., 2010

Vanilla inodora Schiede Autogamous
Animal-pollinated

n.a.
no information

Soto Arenas and Dressler, 2010;
Soto Arenas and Dressler, 2010

Vanilla mexicana Mill. Autogamous n.a. Gigant et al., 2016
aVanilla phaeantha Rchb.f. is a synonym to Vanilla bahiana Hoehne (Karremans et al., 2020). bNo observation of pollen removal and/or no identification at species level, so data not accurate
enough for our study. cStudy performed outside native distribution range of V. planifolia (Florida), but data sufficiently accurate for our study (Euglossa dilemma may be a pollinator within V.
planifolia’s native range). dReference to unpublished publication, so data not used in our study.
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models, we performed a spatial block cross-validation using the R

package blockCV (Valavi et al., 2019), in which presence and

background data were divided into 100 km wide squared blocks

arranged in eight cross-validation folds. To obtain the best model

among the 15 models, we first chose the four models with the

highest Area Under the receiver-operating characteristic Curve

(AUC), and then selected the model with the smallest difference

between training and testing AUC, which is a measure for

overfitting (i.e. among the four models with highest AUC we

selected the model with least overfitting). The use of AUC has

been criticized, mainly because AUC values are easily inflated by

increasing the geographical (i.e. environmental) extent in which

background points are selected (Lobo et al., 2010). To avoid this, we

only selected background points within a convex hull around the

presence records, extended by a buffer of 20% of the longest distance

between presence records. Projections were made for the entire

geographical extent of (sub)tropical America (see 2.1.1) but further

analysis and interpretation was restricted to the area encompassed

by the convex hulls, to minimize extrapolation to conditions under

which the models were not trained. Models with AUC values

greater than 0.7 (i.e., acceptable accuracy; Raes & ter Steege,

2007) were selected for further analysis.

The final models were used to predict habitat suitability under

both current and future conditions. Suitability maps were converted

to presence-absence maps using the threshold at which the sum of

the sensitivity (true positive rate) and specificity (true negative rate)

was highest (Liu et al., 2005; Jimenez-Valverde and Lobo., 2007).

From the five GCM binary outputs for each SSP, we used a majority

vote rule to predict suitability to generate a single output for future

projections. We then calculated changes (km2) in habitat suitability

(contraction, expansion, no change) between current and future

distributions for all modeled species separately. All analyses were

carried out in R v4.3.3 (R Core Team, 2025) and the final maps were

visualized using QGIS v3.40.
2.2 Vanilla-pollinator range overlap and
identification of priority conservation areas

QGIS v3.40 was used to visualize the overlap in distribution

range (hereafter “range overlap”) between the animal-pollinated

Vanilla species and its known pollinator(s) and to assess changes in

this overlap under the two SSP scenarios by 2050. We calculated the

area of range overlap between each Vanilla species and its pollinator

(s) under current and future climate conditions. For Vanilla species

with more than one known pollinator, we summed the presence

maps of their individually modeled pollinator species before

overlaying them with the presence map of the corresponding

Vanilla species. Presence-absence maps displaying habitat

suitability for Vanilla species and their pollinator(s) were then

used to identify areas suitable for in situ conservation and to

highlight Vanilla populations that may require ex situ

conservation or assisted migration. Using the World Database on

Protected Areas (WDPA) map (UNEP-WCMC & IUCN, 2024), we

assigned high-priority in situ conservation areas where Vanilla
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species and their pollinator(s) are predicted to continue to coexist

under future climate scenarios. We distinguish between areas

already under protection, and priority conservation areas that

need to be established (i.e. no protection status at present).

Furthermore, we identified populations located in areas that are

expected to become unsuitable by 2050 and may need ex situ

conservation (e.g., in botanical gardens) or assisted migration

(e.g., relocation of these populations to areas expected to remain

or become suitable).
3 Results

3.1 Climate change effects on the
distribution of Vanilla and its pollinators

The Vanilla and pollinator models showed a high level of

predictive accuracy (average AUC = 0.84 ± 0.07 SD and average

AUC = 0.81 ± 0.09 SD, respectively) (Supplementary Table S4).

Based on the permutation importance, we found that the most

important variables predicting the current distribution of the

modeled Vanilla species were related to climate rather than

soil variables (Supplementary Tables S4, S5). Specifically, the

distribution of five species (V. bicolor, V. hartii, V. mexicana,

V. phaeantha, V. trigonocarpa) was mainly predicted by

precipitation variables, including annual precipitation (bio12),

precipitation of driest month (bio14), and precipitation

seasonality (bio15). The habitat suitability of the other six species

(V. chamissonis, V. inodora, V. odorata, V. palmarum, V. planifolia,

and V. pompona) was primarily predicted by temperature variables

such as temperature seasonality (bio4), minimum temperature of

coldest month (bio6), and temperature annual range (bio7).

Moreover, we found that the distributions of V. bicolor,

V. phaeantha, and V. pompona is also predicted by soil pH. The

remaining climate, soil and topography variables seem to be less

important in predicting Vanilla species distributions. The

distribution of the pollinators is mainly predicted by temperature

variables (Supplementary Tables S4, S6), including annual mean

temperature (bio1 - Euglossa tridentata, Eulaema meriana), mean

diurnal range (bio2 - Euglossa cybelia), mean temperature of coldest

month (bio6 - Eulaema cingulata), and mean temperature of coldest

quarter (bio11 - Euglossa asarophora, E. dilemma, Eulaema nigrita).

Figure 1 shows the changes in habitat suitability of Vanilla and

pollinator species predicted under both scenarios (SSP2-4.5 and

SSP3-7.0) for the year 2050 relative to the near-current historical

baseline (1970-2000), to which we will refer to as ‘present’ for

simplicity. In the SSP2-4.5 scenario, the habitat suitability of four

Vanilla species (V. hartii, V. inodora, V. palmarum, V. pompona) is

predicted to decrease, with net changes in suitable area ranging

from -1% to -46%. For the other seven species (V. bicolor, V.

chamissonis, V. mexicana, V. odorata, V. phaeantha, V. planifolia,

V. trigonocarpa), our models predicted an increase in habitat

suitability, with net changes ranging from +12% to +140%. A

similar trend is predicted under the SSP3-7.0 scenario, with a

decrease (net change ranging from -3% to -53%) or increase (net
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change ranging from +11% to +139%) in habitat suitability for the

same species.

The habitat suitability of all modeled pollinator species is

predicted to decline, with slightly higher negative net changes

under the SSP3-7.0 compared to the SSP2-4.5 scenario (Figure 1).

The greatest reduction is predicted for the Euglossa species, with net

changes ranging from -24.6% to -68.2% under the SSP2-4.5 scenario

and -31.7% to -70.7% under the SSP3-7.0 scenario. The predicted

decrease in habitat suitability for the three Eulaema species was less

compared to the other pollinator species, with net changes ranging

from -6.9% to -27.4% under the SSP2-4.5 scenario and -18.5% and

-31.6% under the SSP3-7.0 scenario.

Vanilla and pollinator presence-absence maps for current

climate conditions as well as the maps demonstrating the

predicted future changes can be found in Supplementary File 1

(Supplementary Figures S1, S2), together with an overview of the

predicted changes in suitable habitat (km2) and net change (%) for

both Vanilla and pollinator species (Supplementary Table S7).
3.2 Climate change-induced shifts in
Vanilla-pollinator range overlap

Table 2 shows the predicted climate change-induced shifts in

Vanilla-pollinator range overlap for the animal-pollinated Vanilla

species for which data on pollinators was available (i.e. four of the in

total 11 modeled Vanilla species): (i) V. hartii and pollinators

Euglossa cybelia and E. tridentata, (ii) V. planifolia and pollinator

Euglossa dilemma, (note: observations of pollen removal made by
Frontiers in Plant Science 06
Pemberton et al. (2023) took place outside the native distribution

range of V. planifolia (Florida) but Euglossa dilemma has been

recorded within V. planifolia’s native range hence may be

considered as a pollinator), (iii) V. pompona and pollinators

Eulaema cingulata, V. meriana, and E. nigrita, and (iv) V.

trigonocarpa and pollinator Euglossa asarophora. Overall, our

models predict a decrease in range overlap by 2050 (Figure 2).

This predicted spatial mismatch is slightly larger in the SSP3-7.0

scenario for V. hartii, V. pompona, and V. trigonocarpa, while it is

very similar in both the SSP2-4.5 and SSP3-7.0 scenarios for V.

planifolia and V. trigonocarpa. The largest spatial mismatch is

predicted for V. trigonocarpa, with a decline in plant-pollinator

range overlap of about 90% relative to the present situation,

followed by V. planifolia, V. pompona, and V. hartii.

Table 3 gives an overview of the proportion of protected suitable

areas shared between Vanilla species and their pollinators under

present and future climate conditions. For example, of the total

amount of area predicted to be suitable for both V. pompona and its

pollinators (i.e., range overlap) under present climate conditions, about

42% is currently protected. By the year 2050, the proportion of

protected shared suitable area is expected to decrease to about 21%

(SSP2-4.5) and 17% (SSP3-7.0). Vanilla species with multiple known

pollinators (V. hartii and V. pompona) have a higher proportion of

protected shared habitat compared to those with only a single known

pollinator (V. planifolia and V. trigonocarpa). All Vanilla species show

a decreasing trend of protected Vanilla-pollinator shared area by 2050

if no actions are taken. Figure 3 shows a map indicating priority

conservation areas, using V. pompona as an example. The same maps

for the other Vanilla species are available in the Supplementary File 1
FIGURE 1

Predicted changes in suitable habitat by 2050 under the “middle of the road” (SSP2-4.5) and “regional rivalry” (SSP3-7.0) scenarios for the 11
modeled Vanilla species and seven pollinator species. Calculations were made considering the area encompassed by the convex hulls around the
presence points of the modeled species (see 2.1.3).
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(Supplementary Figure S3). These maps show (i) currently protected

areas where the range of a Vanilla species and its pollinator(s) overlap,

(ii) currently unprotected areas with range overlap between a Vanilla

species and its pollinator(s), which could be prioritized new

conservation areas, and (iii) areas that harbor populations that may

need ex situ conservation or assisted migration, as they are predicted to

become unsuitable in the future.
4 Discussion

Focusing on the crop wild relatives (CWRs) of the high-value

cash crop vanilla, we generated SDMs for 11 Neotropical CWRs, of
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which data on pollinator identity was available for four animal-

pollinated species, including the commercially cultivated V.

planifolia. The models showed varying results among Vanilla

species, with some predicted to undergo a net contraction and

others predicted to experience a net expansion. However, all four

animal-pollinated species were predicted to experience a decline in

range overlap with their pollinators. This spatial mismatch was even

more pronounced for Vanilla species reliant on a single known

pollinator. At present, the proportion of shared suitable habitats

located within protected areas varies among Vanilla species, but

strong declines are expected for all species by 2050 in case no action

is taken. Our spatially explicit results can be used to guide in situ

and ex situ conservation strategies.
TABLE 2 Area of range overlap (km2) between Vanilla species and their pollinator(s) under present and future climate conditions, and the net change
in range overlap between present and future climate conditions (%).

Vanilla species Pollinator species Scenario Range overlap (km2) Net change in range overlap by 2050 (%)

Vanilla hartii Euglossa cybelia Present 314,622

SSP2-4.5 221,659 - 29.6

SSP3-7.0 165,776 - 47.3

Euglossa tridentata Present 576,333

SSP2-4.5 423,937 - 26.4

SSP3-7.0 342,925 - 40.5

Both pollinators Present 581,827

SSP2-4.5 430,601 - 26.0

SSP3-7.0 349,032 - 40.0

Vanilla planifolia Euglossa dilemma Present 123,015

SSP2-4.5 44,705 - 63.6

SSP3-7.0 48,700 - 60.4

Vanilla pompona Eulaema cingulata Present 3,729,349

SSP2-4.5 2,128,650 - 42.9

SSP3-7.0 1,793,170 - 51.9

Eulaema meriana Present 3,690,869

SSP2-4.5 1,440,330 - 61.0

SSP3-7.0 1,130,422 - 69.4

Eulaema nigrita Present 3,602,796

SSP2-4.5 1,634,702 - 54.6

SSP3-7.0 1,381,341 - 61.7

All three pollinators Present 4,387,376

SSP2-4.5 2,281,764 - 48.0

SSP3-7.0 1,955,612 55.4

Vanilla trigonocarpa Euglossa asarophora Present 619,237

SSP2-4.5 67,845 - 89.0

SSP3-7.0 59,830 - 90.2
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4.1 Varying effects of climate change on
the distribution of Vanilla and its
pollinators

Climate change is expected to cause a decline in the area of

suitable habitat of the modeled Vanilla species, as orchids are known

to have higher extinction rates, tend to inhabit narrower habitats, and

are more susceptible to disturbances than many other plants

(Gravendeel et al., 2004; Cozzolino and Widmer, 2005; Swarts and

Dixon, 2009; Shrestha et al., 2021). Also, the only Vanilla SDM study

(Armenta-Montero et al., 2022) comparing present and future habitat
Frontiers in Plant Science 08
suitability of V. planifolia predicted a progressive reduction in both

cultivated and natural distribution areas. Conversely, our models

forecasted varying results among Vanilla species, with a net

expansion in area of suitable habitat predicted for some species and

a net contraction for others. These findings align with previous

studies showing varying responses of orchids to climate change,

even among closely related species currently occupying similar

habitats (e.g., Evans et al., 2020; Kolanowska et al., 2020;

Smallwood and Trapnell, 2022; Qiu et al., 2023; Liu et al., 2024).

The area with suitable habitat of four species is predicted to

decrease by 2050, with greater declines in the SSP3-7.0 compared
FIGURE 2

Maps showing the range overlap between animal-pollinated Vanilla species and their corresponding pollinator(s) under present climate conditions
(left) and predicted climate change scenarios SSP2-4.5 (middle) and SSP3-7.0 (right) for 2050. Projections were made for the entire geographical
extent of (sub)tropical America but interpretation was restricted to the area encompassed by the convex hulls (red dotted line) under the assumption
that models are extrapolated more outside these hulls. Areas outside the hulls were given a lighter color.
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tothe SSP2-4.5 scenario. The higher vulnerability of these species to

climate change may be due to the prevalence of species-specific

plant traits and adaptations to specific climate conditions leading to

narrower environmental niches, amongst others. For example, V.

inodora only inhabits cloud forests and lowland sites with more

than 2500 mm of rainfall (Soto Arenas and Dressler, 2010), while V.

palmarum mainly occurs in hot and semi-arid regions with a long

dry season (e.g., Caatinga and Atlantic Forest of Brazil). Moreover,

V. palmarum has a phorophyte specificity with certain palm species

(Householder et al., 2010; Barberena et al., 2019 and references

herein), and considering this phorophyte dependency in future

models might result in even stronger declines. As stated before by

Aitken et al. (2007) and shown in previous studies (e.g., Thuiller

et al., 2005; Kolanowska, 2023; Fan and Luo, 2024; Cho et al., 2024;

Wysocki et al., 2024), these kind of specificities can greatly limit a

plant’s distribution under changing environmental conditions.

The models predicted an increase in area with suitable habitat

for the remaining seven Vanilla species, meaning that climate

conditions for these species may become more favorable by 2050.

For example, V. odorata has a large distribution and naturally grows

in a range of bioclimatic regions (Jiménez et al., 2017). This wide

niche breadth possibly leads to a higher tolerance to changing

environmental conditions, as previously observed in species
FIGURE 3

Map indicating currently protected areas where the range of a Vanilla species and its pollinator(s) was predicted to overlap in 2050 (dark brown),
currently unprotected areas with a predicted range overlap between a Vanilla species and its pollinator(s) in 2050, which could be prioritized new
conservation areas (light brown), and areas that harbor populations that may need ex situ conservation or assisted migration as they are found in
areas that are predicted to become unsuitable by 2050 (blue). We used the species V. pompona and the SSP2-4.5 scenario as an example.
TABLE 3 Overview of the proportion of range overlap between a Vanilla
species and its known pollinator(s) located within protected areas, and
this under model predictions for present and future (SSP2-4.5 and SSP3-
7.0) climate conditions.

Vanilla species Scenario Proportion of shared suit-
able area within protected

areas (%)

Vanilla hartii
Pollinators: Euglossa
cybelia, E. tridentata

Present 55.6

SSP2-4.5 39.6

SSP3-7.0 31.3

Vanilla planifolia
Pollinators:
Euglossa dilemma

Present 31.0

SSP2-4.5 14.7

SSP3-7.0 15.9

Vanilla pompona
Pollinators: Eulaema
cingulata, E. meriana,
E. nigrita

Present 41.9

SSP2-4.5 21.0

SSP3-7.0 16.8

Vanilla trigonocarpa
Pollinators:
Euglossa asarophora

Present 42.5

SSP2-4.5 4.5

SSP3-7.0 4.0
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withwider niche breadths (e.g., Carrillo-Angeles et al., 2016; Evans

et al., 2020). V. phaeantha seems to be more common in the drier

lowland tropical rainforests (Soto Arenas and Dressler, 2010;

Karremans et al., 2020). Future changes in precipitation will vary

regionally, with some areas projected to become hotter and drier,

especially in South America (Castellanos et al., 2022; Feron et al.,

2024), hence driving the expansion of xerophytic species.

Interestingly, our models predicted an increase in suitable habitat

for V. planifolia. Previous research forecasted a progressive

reduction in suitable area for this species in Mexico (Armenta-

Montero et al., 2022). However, this study only used occurrence

data from Mexico, which may lead to an overestimation of climate

change impacts as a consequence of only covering a part of the

species’ niche (Barbet-Massin et al., 2010). Our dataset included V.

planifolia occurrence records across its entire native distribution

range (Mexico to Colombia, Karremans et al., 2020).

The pollinator models predicted a decrease in suitable habitat, with

greater declines expected for the smaller Euglossa bees compared to the

larger Eulaema bees. Insect pollinators face worldwide declines due to

climate and land use change, with species emerging earlier,

phenological mismatching with floral resources, or changing range

distributions (Whipple and Bowser, 2023). Most SDM studies of bees –

generally seen as the most important plant pollinator group (Ollerton,

2021) – focused on the widespread bee genera Bombus and Apis, and

forecasted contractions in distribution ranges, except for common

species with larger niche breadths and dispersal capabilities (e.g., Casey

et al., 2015; Kerr et al., 2015; Rasmont et al., 2015; Jacobson et al., 2018).

Studies on other bee genera are scarce and have led to varying results.

In the Neotropical realm, for example, research on orchid bees took

primarily place in Brazil, with several species predicted to becomemore

restricted under climate change (e.g., Giannini et al., 2012, 2013, 2020;

Faleiro et al., 2018), while the suitable habitat of other species has been

predicted to expand (e.g., Silva et al., 2015; Nemésio et al., 2016;

Teixeira et al., 2018). Overall, however, a decrease in abundance,

distribution, and diversity is expected for most orchid bees (Faleiro

et al., 2018), and these changes are likely to disrupt plant-pollinator

interactions, such as the ones between Vanilla species and their known

Euglossini pollinators.
4.2 Climate-induced reductions in Vanilla-
pollinator range overlap

Our models predicted varying responses for the modeled

Vanilla species, with some species experiencing a contraction and

others an expansion in the area of suitable habitat. However, a

decrease in suitable habitat was predicted for all modeled

pollinators, leading to strong reductions in range overlap between

the animal-pollinated Vanilla species and their pollinators

(Table 3). Pronounced declines were predicted for V. planifolia

and V. trigonocarpa, species dependent on a single pollinator

species (or at least with only one pollinator species known so far),

as the area in suitable habitat of their pollinators (Euglossa dilemma

and E. asarophora, respectively) within the distribution range of the

corresponding Vanilla species is already limited at present. So
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despite the predicted increase in suitable habitat for the Vanilla

species, their pollinator-dependency might imperil the remaining

populations of these species.

The importance of assessing the distributions of both a plant and

its pollinator(s) to predict the potential effects of a changing climate

on a plant’s future distribution has been repeatedly recognized (e.g.,

Araújo and Luoto, 2007; Van der Putten et al., 2010; Engelhardt et al.,

2020), especially for orchids given their specialized interactions with

pollinators (e.g., McCormick and Jacquemyn, 2014; Robbirt et al.,

2014; Ackerman et al., 2023). Tsiftsis and Djordjević (2020), for

example, predicted a stronger decrease in suitable habitat for Ophrys

species in models that integrated pollinator interactions compared to

the ones without. Kolanowska et al. (2021a; 2021b; 2023). observed

similar trends in other orchids (e.g., Leporella, Limodorum,

Traunsteinera). Specifically, they predicted an expansion of the

orchid’s geographical ranges under climate change, but due to the

negative effects of climate change on their pollinators, their range

overlap was predicted to decrease. These studies demonstrate a clear

trend of plant-pollinator decoupling under climate change, affecting

the distribution and genetic structure of corresponding species, and

potentially leading to increased isolation (Karremans, 2024). In

accordance with abovementioned studies, we highlight the

importance of accounting for the highly specialized relationships

between orchids and their pollinators to obtain more accurate

insights into potential distributional changes under changing

environmental conditions. Considering the observed plant-

pollinator decoupling, the future may look brighter for autogamous

species such as V. bicolor, V. chamissonis and V. mexicana, for which

our models predicted increases in habitat suitability.

Pollinator specificity is common in the orchid family, with a

median number of only one pollinator species, especially for species

employing some means of deceit (Scopece et al., 2010; Ackerman

et al., 2023). It is, however, possible that some of the animal-

pollinated Vanilla species modeled in our study have more

pollinators than the ones we identified based on the limited

available literature, which could lead to higher functional

redundancy and thus more resilient plant-pollinator networks.

Ellestad et al. (2021), for example, using a landscape-based

approach rather than SDMs, considered all Euglossa and Eulaema

species as potential pollinators to determine the present distribution

of V. planifolia, and predicted a larger potential distribution of this

species when including the abovementioned Euglossini. Yet, their

results must be interpreted with caution, as previous studies (e.g.,

Watteyn et al., 2022, 2023b) demonstrated the need for a

morphological fit between vanilla flowers and bees for pollen

removal to occur, restricting effective pollinator species to the

ones showing a perfect fit with specific flower traits. This

morphological fit could be used to select potential effective

pollinators to be considered in future SDMs.

The existing knowledge gap in Vanilla pollination research

clearly limits the current possibilities of SDMs, and thereby also the

conservation efforts that can be informed by such modeling.

Moreover, limited occurrence data further restricts the assessment

of climate change effects on Vanilla-pollinator range overlap, as only

11 of the in total 63 Neotropical Vanilla species had enough
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occurrence records to model them, of which only four species are

known to be animal-pollinated. Taking collaborative action to

improve our knowledge on basic biological and ecological aspects is

urgently needed to overcome these challenges (Karremans, 2023,

2024). This also includes data on other biotic interactions such as the

ones between orchids and their seed dispersers, as well as microbial

leaf litter and soil communities and mycorrhizae. Recent studies

focusing on animal-mediated seed dispersal in Vanilla identified a

wide range of seed dispersers of severalVanilla species, including bees

(euglossine and stingless bees) and mammals (rodents, marsupials)

(Karremans et al., 2023b, 2023a, Pansarin and Suetsugu, 2022b;

Pansarin, 2024, 2025), providing the necessary information to

assess potential future limitations in Vanilla distributions due to

spatial mismatches with both pollinators and seed dispersers. In

addition, Vanilla species also seem to depend on specific micro-

organisms to ensure seed germination in situ (i.e., symbiotic

germination) (e.g. Porras-Alfaro and Bayman, 2007; Alomia et al.,

2017; Wong et al., 2024). A large knowledge gap still exists regarding

this topic and future work untangling these symbiotic relationships

would contribute to develop more comprehensive Vanilla

conservation strategies. Finally, additional information on the

effects of climate change on, for example, pollen germination and

viability, and pollinator foraging, reproduction and emergence could

further enhance our understanding of howVanilla species could keep

pace with global warming predictions.
4.3 Priority conservation areas for Vanilla
and its pollinators

The loss of a subset of functionally important pollinator species

can have a disproportionate impact on plant-pollinator networks

(Leitão et al., 2016), and great concern exists about the possible

disruptive effects of land use and climate change on the relationships

between orchids and their complex ecological interactions

(Karremans, 2023). Our models are a first step to indicate range

overlap between aVanilla species and its pollinator(s), and to assess if

these areas are currently under protection or not. The map created for

V. pompona (Figure 3) (maps for other species can be found in the

Supplementary Figure S3) specifies in situ conservation areas as well

as areas potentially holding populations that may need ex situ

conservation or assisted migration. Specifically, areas with suitable

habitat for V. pompona and its pollinators (i.e., range overlap) are

areas that need conservation prioritization (especially areas currently

holding known V. pompona populations). Yet, the priority further

depends on the location, with areas of range overlap inside protected

areas (less concern as already protected) or outside of protected areas

(priority areas for establishing new conservation areas) protected

areas. Areas predicted to become unsuitable in the future but

currently holding V. pompona populations may require ex situ

conservation (i.e. in botanical gardens or seed banks) or assisted

migration to green areas (i.e. existing protected areas overlapping

with area suitable for Vanilla and pollinator species in 2050). We

need to recognize, however, that these outcomes may shift when

more information would become available on Vanilla pollinators.
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4.4 Concluding remarks

Although an increase in habitat suitability may be expected for

some Vanilla species based on changes in climatic conditions, there are

several other factors besides climate (e.g., habitat destruction and

degradation, ecological interactions) that are limiting the geographical

extent of a species. Our study showed that climate change may lead to

reduced overlap in suitable habitats for Vanilla species and their

pollinators, thereby causing plant-pollinator decoupling and possibly

affecting the survival of Vanilla populations. Moreover, the predicted

proportion of shared future habitat is relatively limited. The spatially

explicit recommendations made using the modeled distribution ranges

and range overlap are a first step to develop comprehensive

conservation strategies for Vanilla and its pollinators across the

Neotropics. Future studies could integrate detailed information on

species population biology and life-history dynamics, behavior

plasticity and genetic adaptation as well as land management and

restoration strategies to further refine conservation priorities.
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Damián, A., and Léotard, G. (2020). A reappraisal of neotropical Vanilla. With a
note on taxonomic inflation and the importance of alpha taxonomy in biological
studies. Lankesteriana 20, 395–497. doi: 10.15517/lank.v20i3.45203

Karremans, A. P., Watteyn, C., Scaccabarozzi, D., Pérez-Escobar, O. A., and Bogarıń,
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