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the production of
triterpenoid saponins
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1School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China, 2Chemical
Drug Testing Laboratory, Weifang Inspection and Testing Center, Weifang, Shandong, China,
3Dongying High level Talent Research Center, Dongying, Shandong, China
Triterpenoid saponins are a class of plant secondary metabolites with significant

biological activities and are widely used in the pharmaceutical and nutritional

supplement industries. However, the production of triterpenoid saponins is

limited by their complicated biosynthetic pathways and the availability of

glycosyl donors. UDP-glycosyltransferases (UGTs) play a key role in the

glycosylation of triterpenoid saponins, significantly enhancing their structural

diversity, solubility, pharmacological activity, and bioavailability. Therefore, the

identification and modification of efficient, specific, and stable UGTs have

attracted attention. This review focused on the advances in the glycosylation

of triterpenoid saponins, with a particular emphasis on the application of

multi-omics approaches in UGT mining. The combination of genomics,

transcriptomics, and metabolomics has provided powerful tools for UGT

screening, significantly improving the efficiency and accuracy of UGT

identification. Additionally, the methods based on gene clusters, phylogenetic

analysis, and the plant secondary product glycosyltransferase (PSPG) motif also

offer new perspectives for UGT identification. Besides, the application of

synthetic biology platforms has provided innovative approaches for high-

throughput screening and functional validation of UGTs, laying a theoretical

foundation for the functional modification of UGTs. We also discussed the latest

research progress on UGT modification including directed evolution and rational

design. These strategies, through amino acid mutations and structural

optimization, are expected to enhance UGT catalytic activity, thermal stability,

and broaden substrate specificity. Moreover, the diversity and availability of

glycosyl donors directly influence the efficiency of glycosylation reactions and

the diversity of the products. Thus, we discussed glycosyl donor synthesis,

including in vitro and in vivo synthetic strategies. By optimizing metabolic

pathways and introducing key enzyme genes, engineered microorganisms can
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efficiently synthesize various glycosyl donors, providing abundant substrates for

glycosylation reactions. These studies offer new opportunities and challenges for

the synthesis and application of triterpenoid saponins, promoting their

industrial potential.
KEYWORDS
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1 Introduction

Triterpenoids are a class of terpenoid compounds with a basic

skeleton formed by six isoprene units (C5H8). They can exist in free

form or be conjugated with sugars to form glycosides or esters.

Notably, triterpenoid saponins are widely distributed in nature and

demonstrate significant pharmacological activities, including anti-

inflammatory, antifungal, antibacterial, antiparasitic, and

anticancer effects (Singh et al., 2024; Xu et al., 2024; Dong et al.,

2023) (Figure 1). The biosynthesis of triterpenoids begins with the

condensation of isopentenyl pyrophosphate (IPP) and dimethylallyl

pyrophosphate (DMAPP), catalyzed by farnesyl pyrophosphate

synthase (FPPS) to form the C15 molecule farnesyl pyrophosphate

(FPP). Two molecules of FPP undergo a “head-to-head”
02
condensation to form the linear C30 molecule squalene, which is

then oxidized to yield the important precursor 2,3-oxidosqualene,

possessing the triterpene skeleton. Squalene is oxidized to 2,3-

oxidosqualene by the squalene epoxidase (SQLE) enzyme, which

is a cytochrome P450 enzyme. This oxidation step is crucial as it

introduces an epoxy group at the 2,3 positions of squalene, forming

a reaction intermediate that serves as a branch point for different

triterpene biosynthetic pathways. SQLE uses molecular oxygen and

NADPH as cofactors to facilitate this oxidation process, which is the

rate-limiting step in triterpene biosynthesis. 2,3-oxidosqualene

enters various branched metabolic pathways under the action of

different oxidosqualene cyclases (OSCs), leading to the formation of

various cyclic precursors (Hazra et al., 2023) (Figure 2a). Next, the

structural diversity of triterpenes arises from cyclization and
FIGURE 1

Classification diagram of partial triterpenes.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1586295
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hao et al. 10.3389/fpls.2025.1586295
oxidation steps, their pharmacological versatility is further

amplified by glycosylation—a process mediated by UGTs (Li

et al., 2023; Hucheng et al., 2023), which transfer activated sugar

units from sugar nucleotide donors to a receptor, forming stable

glycosidic bonds. According to the CAZy database, enzymes

responsible for the glycosylation of small, lipophilic molecules in

plants belong to the Glycoside Hydrolase Family 1 (GT1) and UDP-

dependent glycosyltransferase (UGT) superfamily. Although more

than 20,000 members have been identified in this family, less than

2% of them have been characterized (CAZy database statistics).

UGTs play a key role in the structure and pharmacological

properties of triterpenoid saponins (Gloster, 2014; Wilson and

Tian, 2019).

Multi-omics methods including genomics, transcriptomics, and

metabolomics, have become powerful tools mining UGT genes

involved in triterpenoid saponins biosynthesis, enabling the

systematic correlation of gene expression, metabolite profiles, and

enzyme activity. Besides, genome clustering, phylogenetic analysis,

and PSPG motif-based screening methods have offered new

perspectives for identifying UGTs (Wang et al., 2023a). The PSPG

motif is a conserved domain involved in glycosyl donor binding and

is particularly important for identifying functional UGTs (Andong

et al., 2022). Furthermore, the application of synthetic biology

plat forms has provided innovat ive methods for the

high-throughput mining and functional validation of UGTs.
Frontiers in Plant Science 03
Glycosylation efficiency fundamentally depends on glycosyl

donor availability. The diversity and accessibility of these donors

directly influence reaction efficiency and product diversity. Key

donor molecules include D-glucose (D-Glu), D-galactose (D-Gal),

D-glucuronic acid (D-GlcA), L-rhamnose (L-Rha), D-xylose (D-

Xyl), and L-arabinose (L-Ara), as established in current research

(Kurze et al., 2022). This highlights the essential role of UDP-sugar

biosynthesis in glycoside production. Existing manufacturing

strategies divide into chemical synthesis and biological

approaches. Due to the structure complexity of glycosyl donors,

the steps for their chemical synthesis are costly and highly toxic,

making it difficult to achieve their mass production., while

engineered microbial systems (e.g., E. coli, yeast) have become

main production platforms. Through metabolic engineering and

enzyme optimization, these biological systems have demonstrated

potential donor synthesis capabilities, overcoming traditional

limitation of substrates (Cravens et al., 2019; Lu et al., 2023).

Recent studies have prioritized pathway engineering and

heterologous production over basic UGT characterization,

emphasizing integrated multi-omics and synthetic biology

frameworks (Reed et al., 2023; Zhao et al., 2024; Xu et al., 2024).

This review systematically examined advancements in triterpenoid

glycosylation research, particularly highlighting multi-omics

strategies for UGT discovery (Li et al., 2023; Wang et al., 2021a).

We investigated innovative engineering tactics spanning genetic/
FIGURE 2

Overview of Triterpene Glycosyltransferase Research. (a) Triterpene Biosynthetic Pathways; (b) Discovery of UGTs (Uridine 5’-diphosphate
Glucosyltransferases); (c) Modification of UGTs; (d) Glycosyl donor Biosynthetic Pathways; (e) Microbial Production of Triterpene Compounds.
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protein modifications and evaluates both chemical and biological

glycosyl donor production methods. These developments create

new possibilities for optimizing triterpenoid saponin biosynthesis

while presenting challenges for industrial applications (Figure 2).
2 Multi-strategy UGT mining for
triterpene biosynthesis

UGTs enzymes play critical roles in the post-modification of

triterpenoid compounds, significantly contributing to their

structural diversity. However, many UGT genes responsible for

these modifications remain largely unexplored. Extensive studies

have been performed on glucosyltransferases and glucuronic acid

transferases, while far fewer investigations have focused on other

UGTs, such as those responsible for the transfer of galactose, xylose,

mannose, fucose, and arabinose (Li et al., 2014). In recent years, the

omics technologies have provided new perspectives and tools for

the identification and characterization of UGTs involved in

triterpene glycosylation (Table 1). The combination of genomics,

transcriptomics, and metabolomics allows researchers to

systematically analyze the functions and mechanisms of UGTs

from multiple dimensions (Dai and Shen, 2022). Additionally,

strategies based on gene clusters, phylogenetic analysis and the

presence of PSPG motifs have enhanced the efficiency and accuracy

of UGT mining (Figure 2b). Furthermore, the application of

synthetic biology platforms offers innovative approaches to

explore and engineer these enzymes for improved catalytic

efficiency and specificity. This review comprehensively explored

the application of multi-omics approaches in the screening of UGTs

related to triterpene glycosylation. It also analyzed strategies based

on gene clusters, phylogenetic analysis and PSPG motifs, and

discuss the advancements in synthetic biology platforms.
2.1 Multi-omics approaches for screening
glycosyltransferases involved in
triterpenoid glycosylation

Plant genomics and transcriptomics have provided extensive

insights into structural genes, facilitating the identification of those

involved in the biosynthesis of valuable secondary metabolites in

plants (Jendoubi, 2021). Among various multi-omics approaches,

genomics clarifies the structure, function, evolution, localization,

and editing of genomes (You, 2023). Transcriptomics focuses on

identifying and quantifying RNA, offering valuable insights into

gene expression profiles under specific conditions and over time

(Zhang et al., 2023). Metabolomics complements genomics and

transcriptomics by uncovering the metabolic responses of

organisms to external stimuli, environmental changes, or genetic

modifications, thus providing a comprehensive view of cellular

processes (Figure 2b). By integrating data from these three omics,

researchers can systematically identify and screen UGT candidates

involved in the biosynthesis of triterpenoids (Alami et al., 2023;

Song et al., 2023).
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2.1.1 Genome-based screening of
glycosyltransferases involved in
triterpenoid glycosylation

In plant genomics, gene annotation technology provides

important clues to parse key DNA sequences. By tracking the

common features of plant genomes, researchers can more clearly

delineate evolutionary trajectories and taxonomic relationships.

Notably, genome annotation data can also aid in the prediction of

potential UGTs candidate genes (Song et al., 2023). Taking the G.

uralensis genome study as an example, the Xu team accurately

targeted UGT1A1 from 22 candidate UGTs and confirmed that the

enzyme has efficient catalytic characteristics for the biosynthesis of

glycyrrhizic acid GL and GAMG (Xu et al., 2021). The next results

showed that GuGT14 and GuUGT73P12 could synergistically

catalyze the directional connection of glucose and glucuronic acid

at the C-3 position of the parent nucleus to form the characteristic

glycyrrhizic acid (Xu et al., 2021). Genome analysis of A. chinensis

Bunge discovered two gene groups for triterpene production: a 350

kb cluster containing multiple biosynthetic genes including

oxygenase homologs and BAHD family members (Sun et al.,

2023b). While identifying the gene clusters involved in triterpene

biosynthesis by using triterpene pathway synthesis genes with

known functions, such as OSCs and cleavage enzymes (CYPs), it

also promotes the mining and identification of UGT on their

synthetic pathways. Based on G. uralensis genome insights,

researchers successfully identified UGT73C33, which specifically

modified the 3-C position of triterpene cores (Zhang et al., 2020).

This evidence confirmed that systematic examination of gene

clusters associated with metabolic pathways can significantly

improve the accuracy of UGT identification.

2.1.2 Transcriptome-based screening of
glycosyltransferases involved in triterpenoid
glycosylation

Compared with genomics, transcriptomics provides

information into the temporal and spatial variations in gene

expression. Thus, differentially expressed gene (DEG) and gene

co-expression analyses are used to identify candidate genes (Rosati

et al., 2024). In plants, triterpenoid biosynthesis usually occurs

under biotic and abiotic stresses, and the genes related to

triterpenoid synthesis get activated or upregulated due to

increased triterpenoid accumulation after methyl jasmonate

(MeJA) or dark treatment. Analyzing DEGs between treated and

untreated plants has proven effective in identifying candidate genes

related to triterpenoid synthesis. Han et al. utilized transcriptomic

data from C. asiatica to screen 75 putative UGTs. Functional

validation revealed that CaUGT1 specifically transfers glucose to

the C-28 carboxyl group of asiatic acid and madecassic acid (De

Costa et al., 2017). Based on a similar strategy, Zhou et al. identified

51 UGTs from the C. asiatica transcriptome and found that

CaUGT73C7 and CaUGT73C8 could catalyze asiaticoside

synthesis while capturing CaRRT that specifically transfer

rhamnose. With these findings, the team achieved total synthesis

of asiaticoside in S. cerevisiae with a yield of 772.3 mg/L (Zhao et al.,
frontiersin.org
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TABLE 1 Identification method for glycosyltransferase of triterpenoids.

Gene source Function Gene ID Excavation means References

UGT73CZ2 Q. saponaria glycosyl transferase OQ241425.1 Transcriptome,Genome, Gene cluster (Martin et al., 2024)

CSLM1, CSLM2 Q. saponaria UDP-glucuronyl transferase
OQ107253.1
OQ107265.1

Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT73CU3 Q. saponaria UDP-galactosyl transferase OQ107259.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT73CX1 Q. saponaria C3-xylosyltransferase OQ107254.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT73CX2 Q. saponaria C3-rhamnosyl transferase OQ107255.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT74BX1 Q. saponaria C28-fucosyltransferase OQ107250.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT91AR1 Q. saponaria C28-rhamnose transferase OQ107251.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT91AQ1 Q. saponaria C28-xylosyltransferase OQ107264.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT73CY3 Q. saponaria C28-xylosyltransferase OQ107263.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT73CY2 Q. saponaria C28-apiose OQ107262.1 Transcriptome,Genome, Gene cluster (Liu et al., 2024)

UGT1A1 G. uralensis Udp-glucuronide transferase – Genome (Xu et al., 2021)

GuGT14 G. uralensis UDP-glucuronyl transferase MK534521.1 Genome (Xu et al., 2021)

GuUGT73P12 G. uralensis UDP-glucuronyl transferase BBN60804 Genome, Transcriptome (Xu et al., 2021)

PgUGT71A27 P. ginseng C20-glycosyltransferase KM491309.1 Transcriptome (Le et al., 2021)

PgUGT71A53 P. ginseng C20-xylosyltransferase – Transcriptome (Le et al., 2021)

PgUGT74AE2 P. ginseng C3-glucosyltransferase A0A0A6ZFR4 Transcriptome (Le et al., 2021)

PgUGT71A54 P. ginseng C6-xylosyltransferase – Transcriptome (Le et al., 2021)

PgUGT94Q2 P. ginseng C3/C20-glucuronyl transferase A0A0A6ZFY4 Transcriptome (Le et al., 2021)

PgUGT74AE4 P. ginseng C3-glycosyl transferase – Transcriptome (Le et al., 2021)

PvfUGT1,
PvfUGT2

P. Vietnamensis C20/C24-glycosyltransferases – Transcriptome (Sufang et al., 2024)

PqUGT1 P. quinquefolius glycosyl transferase – Transcriptome (Bihuan et al., 2024)

AeCSL1 A. elata C3-glycosyl transferase AE06G00237 Transcriptome (Hyokchol, 2024)

AeCSL2 A. elata C3-glycosyl transferase AE06G00238 Transcriptome (Hyokchol, 2024)

PnUGT3498 P. notoginseng C3-glycosyl transferase – Transcriptome (Li, 2023)

PnUGT4291 P. notoginseng C3-glycosyl transferase – Transcriptome (Li, 2023)

PnUGT6350 P. notoginseng C3-glycosyl transferase – Transcriptome (Li, 2023)

AmGT11 A. membranaceus glycosyl transferase – Transcriptome, Genome (Xu et al., 2024)

AmGT36 A. membranaceus 6-O-glucosylation – Transcriptome, Genome (Xu et al., 2024)

AmUGT7 A. membranaceus C3-glycosyl transferase – Transcriptome (Duan et al., 2023)

AmUGT15 A. membranaceus C6-glycosyl transferase – Transcriptome (Duan et al., 2023)

AmGT1, AmGT5 A. membranaceus C3-glycosyl transferase
A0A2D2CI62
-

Transcriptome (Barbi et al., 2010)

AmGT9 A. membranaceus C25-glycosyltransferase – Transcriptome (Barbi et al., 2010)

AcCSL1 A. chinensis C3-glycosyl transferase A0A0A9XC01
Metabolome,genome, transcriptome,
gene cluster

(Sun et al., 2023b)

OAGT P. zingiberensis UDP-glucuronyl transferase A0A385MJ20 Transcriptome (Tang et al., 2019)

UGT73C10,
UGT73C11

B. vulgaris C3-glucuronyl transferase AFN26666.1 CDNA expression library screening (Augustin et al., 2012)

UGT73C33 G. uralensis C3-glucuronyl transferase – Genome (Zhang et al., 2020)

(Continued)
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2024). The Sui team successfully identified two P450 enzymes and

three UGTs as candidate genes for saikosaponin synthesis through

the B. chinense transcriptome study (Sui et al., 2011).

The gene co-expression theory suggests that genes related to

metabolic pathways have synergistic expression characteristics.

Based on this principle, Chung et al. found a strong expression

association between GmCSyGT1 and soybean saponin synthesis

genes in the G. max co-function network database (Chung et al.,

2020). Using GmyGTs as a probe, the researchers further identified

GuCSyGT and LjCSyGT homologues in the transcriptome of G.

uralensis and L. japonicus. Cross-species co-expression analysis

confirmed the central role of CSyGTs in the synthesis of legume

saponins, and the S. cerevisiae system verified that CsyGTs could

catalyze the formation of glycyrrhetine-3-O-monoglucuronide

(Chung et al., 2020). QS-21, a b-aromatic alcohol pentacyclic

triterpene, contains three hydroxyl sites (glucuronic acid,

galactose, xylose) and three carboxyl sites (fucose, rhamnose,

xylose). The complexity of QS-21 molecular structure makes its

chemical synthesis extremely challenging. Martin et al. analyzed the

genes related to QS-21 synthesis based on the transcriptome data of

saponins and achieved the compound heterologous synthesis in

tobacco chassis through a 20-step catalytic reaction (Martin et al.,

2024). Yao et al. performed RNA sequencing on different tissues of

A. elata (Miq.), screened 64 triterpene skeleton synthesis related

genes, 254 CYP450 and 122 UGTs, and identified 5 oleanolic acid 3-

O-glucosyl transferase candidate genes through expression profiling

(Cheng et al., 2020). The research team also identified key UGTs

gene clusters involved in triterpene glycosylation, including

PgUGT71A27, PvfUGT1, PqUGT1, etc., through transcriptome

analysis of P. ginseng, P. Vietnamensis, P. quinquefolius and other

species (Le et al., 2021; Sufang et al., 2024; Bihuan et al., 2024).

Transcriptome analysis offers a strategic approach for

pinpointing UGT enzymes essential for triterpenoid modification.

By tracking gene expression patterns under varying conditions,

scientists can isolate environmentally responsive genes and validate

their biochemical functions.

2.1.3 Multiple omics screening of
glycosyltransferases for triterpenoid glycosylation

Multi-omics integration strategy has shown unique advantages

in gene function analysis (Luo, 2015). Integrating different omics
Frontiers in Plant Science 06
data significantly improves the efficiency and accuracy of UGTs

identification (Liu et al., 2022).

Integrated genomic and transcriptomic strategies effectively

pinpoint UGTs involved in triterpene glycosylation. Advanced

sequencing technologies create gene maps that identify functional

genes and track their evolutionary changes (Wang and Huo, 2022).

Transcriptome analysis tracks UGT expression patterns under

various conditions, identifying key metabolic pathway elements

(Zhang et al., 2025). Notable advances included Zhou et al.

discovered of 42 saponin-related SmUGTs distributed across 12

chromosomes in S. mukorossi (Zhou et al., 2024), and Wu et al.

studied identifying 145 grapefruit UGTs through conserved motif

analysis combined with developmental stage expression patterns

(Wu et al., 2020). Jiang et al. analysed P. notoginseng data to isolate

27 UGTs, including PnUGT33 that efficiently extended sugar chains

on ginsenosides, achieving 51mg/L Rg3 yields in lab cultures (Jiang

et al., 2022).

Combining transcriptomics and metabolomics to link gene

activity to metabolite production enables precise functional

analysis of UGT enzymes (He, 2022). This approach clarified how

UGTs operate within biochemical pathways (He et al., 2021).

Taking the non-model medicinal plant A. flaccida as an example,

Zhan et al. systematically identified the enzymes involved in the

triterpene saponins synthesis pathway, including the key enzymes

of the mevalonate pathway (MVA) and the methylerythritol

phosphate pathway (MEP), through combined transcriptome and

proteome analysis. In addition, 126 CYP450 enzymes and 32 UGTs

were identified as triterpene modification candidate genes (Zhan

et al., 2016). Wang et al. used the combined transcriptomics and

metabolomics to predict genes related to triterpene and flavonoid

synthesis pathways in B. rapa, and found that ERF transcription

factors may play an important role in the synergistic synthesis of the

two kinds of compounds (Wang et al., 2024). Rai group has

successfully discovered candidate genes for C. officinalis triterpene

synthesis by combining LC-QTOF-MS metabolomics and RNA-seq

transcriptome data (Rai et al., 2020). Through multi-omics analysis

of different tissues of B. chinense, He et al. revealed the difference of

saikosaponin synthesis pathways in roots, stems, leaves, and

flowers, and found that the regulation of P450 genes Bc95697 and

Bc35434 may improve saponin production (He et al., 2021). Chen

et al. identified 69 terpenoids in C. paliurus, of which triterpenoids
TABLE 1 Continued

Gene source Function Gene ID Excavation means References

UGT73F24 G. uralensis C30-glucuronyl transferase – Genome (Zhang et al., 2020)

GmCSyGT1 G. max C3-glucuronyl transferase Glyma.06G324300 Transcriptome,co-expression (Chung et al., 2020)

GuCSYGT G. uralensis C3-glucuronyl transferase Glyur003152s00037491 Transcriptome,co-expression (Chung et al., 2020)

LjCSYGT L. japonicus C3-glucuronyl transferase Lj3g3v1981230 Transcriptome,co-expression (Chung et al., 2020)

CaUGT1 C. roseus C28-glucuronyl transferase C6ZRH7 Transcriptome (Kaminaga et al., 2004)

CaUGT73C7
CaUGT73C8

C. asiatica C28-glucuronyl transferase
CM025783.1.1337
CM025783.1.1336

Transcriptome (Zhao et al., 2024)

UGT74AG5 I. asprella UDP-glucuronyl transferase – Transcriptome (Ji et al., 2020)
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accounted for more than 80%, and identified key genes in the

triterpenoid synthesis pathway by transcriptome co-expression

analysis (Chen et al., 2024). These reseach demonstrated that

multi-omics integration technology provides an effective case for

exploring the mechanism of secondary metabolism in non-

model plants.

Integrated genomic, transcriptomic, and metabolomic

approaches have proven particularly effective for studying

exploration of plant systems, from evolutionary relationships to

specialized metabolite production (Fu et al., 2021; Yang et al., 2023).

Liu et al. developed a multi-stage screening method that involved in

triterpene saponin biosynthesis in P. vulgaris, using multi-omics

integration to identify key biosynthetic genes. Their enzyme

validation protocol established an efficient framework for the

discovery of key enzymes including UGTs (Liu et al., 2025). Feng

et al. mapped tissue-specific metabolic profiles in I. hylonoma,

combining multi-omics data to mine regulatory genes controlling

triterpene production, including CYP450 enzymes and

transcription factors (Feng et al., 2024).

Liu et al. integrated multi-omics data from P. vulgaris using

phylogenetic analysis and co-expression networks, successfully

identifying two OSCs, three CYP716s, and four UGT73s from

hundreds of gene family members. Heterologous expression

confirmed the function of these genes matched computational

predictions (Liu et al., 2025). Lin et al. identified four CYP genes,

one UGT, and associated transcription factors as key regulators of

triterpene saponin biosynthesis in E. phaseoloides through multi-

omics analysis (Lin et al., 2022). P. bretschneideri Rehd. genome

data, Li et al. predicted 178 UGTs and linked 11 to arbutin

glycosylation using transcriptomic and metabolomic correlation

studies, which promoted the understanding of the glycosylation

mechanism in pear plants (Li et al., 2022). Martin et al. identified

the triterpene glycosyltransferase UGT73CZ2 (Martin et al., 2024)

through multi-omics analysis of Q. saponaria, and Hassan et al.

found that CSLM1 and CSLM2 in Q. saponaria (Hassan et al.,

2024), Liu et al. further analyzed UGT73CU3, UGT73CX2 and

other series of transferases in Q. saponaria (Liu et al., 2024). Xu

et al. targeted AmGT11 and AmGT36 based on the multi-omics

data of A. membranaceus (Xu et al., 2024), and Feng et al. revealed

the regulatory network of triterpene saponins synthesis through the

multi-omics study of I. hylonoma (Feng et al., 2024). These cases

demonstrated that multi-omics integration has become a powerful

tool to analyze the complex metabolic networks in plants.
2.2 Screening of glycosyltransferases for
triterpenoid glycosylation based on gene
clusters

The structural complexity of natural products frequently

mirrors the evolutionary sophistication of their biosynthetic gene

clusters (BGCs) (Jensen, 2016). Molecular phylogenetics helps track

gene evolution and identify relationships between related

sequences. Notably, clustering patterns of terpenoid-modifying

enzyme genes create opportunities for targeted gene discovery.
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Specialized databases now exist for gene cluster prediction,

including BAGEL4 (prokaryotic ribosome synthesis analysis),

antiSMASH (bacterial/fungal/plant secondary metabolism),

plantiSMASH (plant-specific cluster detection), and PRISM

(secondary metabolism prediction) (Blin et al., 2023; Kautsar

et a l . , 2018; Skinnider et a l . , 2020) . For tr i terpene

glycosyltransferase identification, plantiSMASH analysis of Q.

saponaria genomes revealed candidate genes Qs0321930 and

Qs0321920 near CYP716A297 (Guo et al., 2018), while later

studies detected co-expression patterns between CSL genes and

QsbAS1 (Reed et al., 2023). Plant metabolic gene clusters have

proven particularly valuable for research. The clustering tendency

of terpenoid genes enables functional gene discovery through

neighborhood analysis (Bharadwaj et al., 2021). In A. chinensis

aescin synthesis, Sun et al. identified critical cluster components:

AcCYP716A275 (C-14 hydroxylation), AcCYP716A278 (C-19

hydroxylation), AcCSL1 (C-3 glucuronidation), and AcBAHD3/6

(C-22 acetylation) (Sun et al., 2023b). These findings illuminate

cluster component synergy and advance natural product

biosynthesis understanding. Modern bioinformatics tools like

BAGEL4 and antiSMASH now drive systematic BGC prediction

and analysis (Jones et al., 2024; Chakraborty, 2022). These

platforms accelerate both known gene validation and novel

enzyme discovery, supporting metabolic pathway elucidation and

pharmaceutical innovation.
2.3 Screening of Glycosyltransferases for
triterpenoid glycosylation based on PSPG
motif and phylogenetic analysis

The characteristic cleft between the N-terminal and C-terminal

domains of UGTs forms a binding cavity that accommodates the

donor and acceptor. The C-terminal conserved PSPG motif is the

signature structural feature of UGTs (Wang et al., 2023a) (Figure 3),

and some of its 44 amino acid residues are highly conserved, which

is directly related to glycosyl donor selection (Chen et al., 2022). The

histidine (H) at the terminal of PSPG motif determines galactose/

arabinose transfer activity, whereas glutamine (Q) dominates

glucose transfer properties. Based on this property, researchers

remodeled the enzyme function by site-directed mutagenesis. The

glucosyltransferase was obtained by replacing H404 of AsAAT1

with proline (P154) by Louveau et al. (Louveau et al., 2018); Rahimi

et al. converted the substrate specificity from UDP-Xly to UDP-Glc

by the H to Q mutation of AtUGT78D3 (Rahimi et al., 2019).

Sequence variation in PSPG motifs can reflect functional

differentiation. According to the N-terminal characteristic

sequence, it can be divided into different subgroups: group A

contains LPEGF, group D contains GW-PQ, group E contains

WAPQ, group G contains WCPQ, group H contains RG-IV, and

group L is characterized by WC-Q (Xueqing et al., 2022) (Figures 4,

5). Novel gene substrate preferences can be predicted by comparing

the known functions of Arabidopsis UGTs with triterpene UGTs

(Rahimi et al., 2019). The phylogenetic analysis in this review

revealed that UGTs with similar PSPG motifs presented clustering
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characteristics on the evolutionary tree (Figure 4), indicating their

functional relevance. This combined analysis strategy based on

phylogenetic trees and PSPG motifs provides a new idea for the

functional prediction and targeted modification of UGTs.
2.4 Synthetic biology platform-based
screening of glycosyltransferases for
triterpenoid glycosylation

Wan et al. developed a modular yeast platform to dissect UGT-

mediated glycosylation in plant natural products (PNPs),

incorporating UDP-Glc and UDP-Xyl dependent enzymes (Wang

et al., 2020). Their system employed a plug-and-play design to

reconstitute PNP biosynthetic pathways in engineered yeast,

enabling targeted investigation of glycosylation steps. Using this

framework, they identified five triterpene glycosyltransferases from

P. notoginseng, including the xylosyltransferase essential for the

biosynthesis of Notoginsenoside R1.

Jian et al. elaborated the limited diversity of characterized

UGT91H enzymes, a bottleneck in synthesizing trisaccharide-

modified saponins. By analyzing evolutionary relationships
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among legume genomes which are rich in triterpenoid saponins,

they selected 23 candidate genes using known UGT91H sequences

as a seed. The results of functional identification confirmed

conserved catalytic roles across 19 newly identified enzymes,

demonstrating phylogenetic analysis as an efficient method for

expanding this subfamily’s toolkit (Jian et al., 2024).

These parallel studies established complementary strategies:

Wan et al. platform enables pathway reconstruction for functional

validation, while Jian et al. phylogeny-driven approach accelerates

enzyme discovery. Together, they advance both mechanistic

understanding of plant glycosylation and practical tools for

engineering bioactive compound production.
3 Catalytic mechanism of triterpenoid
glycosyltransferases

Triterpene saponins are consisted of glycosyl donors and a

sugar acceptor, which are linked by glycosidylic linkages catalyzed

by UGTs. Glycosylation can be classified into O-glycosidic

(hydroxyl), C-glycosidic (carbon), N-glycosidic (amino) and S-

glycosidic (sulfur) linkages according to the different linkage sites
FIGURE 3

UGT 3D structure diagram.
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(Challinor and De Voss, 2013). Among them, O-glycosylation and

C-glycosylation have attracted much attention because of their

significant effects on the activity of compounds (Wang et al.,

2023a). Glycosyltransferase catalysis generally follows the SN2

nucleophilic substitution mechanism (Figure 6), which consists of

four key steps: substrate recognition, binding, glycosyltransfer, and

product release. The active center of the enzyme binds to the

substrate through hydrogen bonding, ion interaction and van der

Waals force, thereby catalyzing the transfer of sugar groups from

the donor to the acceptor (Xiao-chen et al., 2018).

The C-terminal domain of UGTs is primarily responsible for

recognizing the UDP-glycosyldonor, whereas the N-terminus

specifically binds receptor substrates (Osmani et al., 2009).

Because the C-terminus of different UGTs needs to recognize the

same or similar glycosyl donor, its conservation is higher than that

of the N-terminal domain that recognizes heterologous receptors

(Wang, 2009). An in-depth understanding of the catalytic

mechanism of UGTs will not only help to reveal the law of

natural product synthesis, but also provide a theoretical basis for
Frontiers in Plant Science 09
enzyme engineering. Although natural UGTs play a central role in

the synthesis of triterpene saponins, their catalytic efficiency,

stability and substrate adaptability are often difficult to meet the

needs of industrialization. Optimizing enzyme performance

through protein engineering has become a current research hotspot.
3.1 Engineering of glycosyltransferases for
enhanced catalytic properties

Synthetic biology constructs novel biosynthetic pathways

through cross-species gene recombination. As the core

components of the system, the natural catalytic properties of

enzyme proteins often deviate from the industrial requirements,

which restricts their wide application. Glycosylation modification of

plant natural products is mainly mediated by UGTs (Siedhoff et al.,

2020). However, the catalytic activity, stability, and substrate

specificity of most natural UGTs are relatively low, which limits

their application in the microbial biosynthesis of natural products.
FIGURE 4

Phylogenetic tree analysis of UGTs. The tree is constructedbased on the PSPG motif sequences of UGTs involved in triterpenoidglycosylation. Key
branches are annotated with PSPG groupings to highlight their substrate specificity.
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To address this challenge, enzyme modification technologies have

been developed and can be broadly categorized based on their

underlying principles: traditional enzyme engineering focuses on

directed evolution, while rational and semi-rational redesign

approaches leverage sequence and structural information to

optimize natural enzymes (Guo et al., 2021) (Figure 2c).
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3.1.2 Homology modeling and molecular docking
in protein research

Zhang et al. investigated the substrate recognition mechanism

of UGT73F24 from G. uralensis towards glycyrrhetinic acid and

UDP-glucose using homology modeling and molecular docking

analysis. Based on the identified recognition mechanism, they
FIGURE 5

UGTs sequence alignment diagram.
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selected amino acids located near the C3-OH group of

glycyrrhetinic acid and the glucose moiety of UDP-glucose, as

well as residues in the substrate-binding pocket, as candidate sites

for site-directed mutagenesis. They identified two key residues, I23

and L84, and the combination of mutations I23G/L84N resulted in

a 4.1-fold increase in activity (Zhang et al., 2020). In a similar study,

Chen et al. analyzed the hydrogen bond interactions between

UGT76G1 from S. rebaudiana and UDP-glucose. They identified

the conserved residues His17 and Asp359, and selected Asn358,

located near the substrate channel, as a target for saturation

mutagenesis. The N358F mutant, when incorporated into a multi-

enzyme reaction system, led to a 60% increase in the yield of

rebaudioside D (Chen et al., 2020). Bi et al. engineered the 1,6-

glucosyltransferase CaUGT3 by substituting valine for residue

T145, thereby converting the enzyme into a xylosyltransferase

capable of catalyzing the conversion of cinnamyl alcohol

monoglucoside (rosin) into rosavin E. Further enhancement of

enzyme activity (2.9-fold increase) was achieved by introducing

the N375Q mutation. The synthesis of rosavin E from glucose was

successfully carried out, reaching a final concentration of 92.9 mg/L,

by combining the CaUGT3T145V/N375Q variant with UDP-Xly

synthase from S. meliloti 1021 (SmUXS) and the enzymes involved

in rosin biosynthesis, all expressed in a phenylalanine-

overproducing E.coli strain (Bi et al., 2022). Li et al. aimed to

address the relatively low catalytic efficiency of triterpene-class

UGTs. They selected UGT74AC1, a glycosyltransferase from S.

grosvenorii, and analyzed its crystal structure. Using this structural

insight as a foundation, they applied directed evolution and

sequence/structure-based engineering to enhance its catalytic

properties. Several resulting UGT variants demonstrated a
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remarkable 102- to 104-fold improvement in catalytic efficiency

for triterpene glycosylation. One of these mutants has 4.17 × 104

times higher catalytic efficiency against mogrol and 1.53 × 104 times

higher catalytic activity against UDP-glucose (Li et al., 2020). Chen

et al. identified the AmGT1G146V/I mutants through sequence

alignment, molecular docking, and site-directed mutagenesis, which

specifically utilize UDP-Xyl while showing no activity toward UDP-

Glc. By combining AmGT1/5/9 and AmGT1G146V/S with the

previously reported AmGT8 and its mutant AmGT8A394F, they

accomplished the combinatorial synthesis of 13 cycloartane-type

saponins from A. membranaceus (Chen et al., 2023).

3.1.2 Directed evolution of enzymes for improved
catalytic performance

Directed evolution mimics natural gene mutation and selection

processes through repeated mutagenesis and screening (Sinha and

Shukla, 2019). This approach identifies enzyme variants with

increased activity, substrate specificity, or thermal stability using

methods, such as random mutagenesis, site-directed mutagenesis,

and DNA recombination (Figure 7A). Although powerful for

engineering triterpene-producing enzymes, the technique faces

chal lenges in managing vast mutation spaces during

combinatorial mutagenesis, complicating optimization efforts

(Thieker et al., 2022).

As for the biosynthesis of ginsenoside, low catalytic efficiency of

UGTs often limits the yields. Researchers solved it by creating

mutant libraries via error-prone PCR and screening variants

through HPLC or fluorescent assays. This strategy was applied to

PgUGT74AE2, resulting in mutants with higher catalytic efficiency

and improved ginsenoside production (Ji et al., 2025). To expand
FIGURE 6

Catalytic mechanism of UGTs.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1586295
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hao et al. 10.3389/fpls.2025.1586295
the substrate range, glycyrrhizin pathway studies combined DNA

recombination with rational design on GmUGAT, and engineered

mutants capable of processing non-native substrates (Guo et al.,

2021). Thermal stability improvements were achieved by evolving

UGT variants through combinatorial mutagenesis, yielding heat-

tolerant enzymes for industrial production (Bian et al., 2024).

The above cases demonstrated the capacity of directed

evolution to increase enzyme activity by screening random

mutations for desirable traits. The improved catalytic efficiency of

PgUGT74AE2 reflected the improved yield, while the GmUGAT

modification expanded the substrate range through optimization of

the binding pocket. Despite the challenges in navigating extensive

mutation field, technological advances promise to streamline

mutant screening processes.
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3.1.3 Rational and semi-rational design in enzyme
engineering

Rational and semi-rational design have become fundamental

approachfor enhancing enzymatic capabilities through structural

and functional insights. These approaches commonly employ

targeted amino acid substitutions or combinatorial mutation

libraries, focusing on improving catalytic traits. Existing sequence

databases combined with crystallographic evidence allow accurate

identification of mutation hotspots, substantially streamlining

experimental workflows while maintaining discovery efficiency.

These strategies also illuminate fundamental structure-function

relationships underlying enzymatic enhancement. Active site

residues and adjacent regions are typically grouped into distinct

layers based on their distance from the binding substrates.
FIGURE 7

Directed evolution. (A) process of directed evolution; (B) study of active sites.
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Structural alterations within active site residues occasionally yield

unexpected stereochemical refinements, whereas mutations at sites

farther from the active center often lead to measurable

improvements in thermal tolerance and operational stability

(Patsch et al., 2024) (Figure 7B). The expanding repository of

high-resolution protein structures, augmented by computational

modeling advancements, has enabled new frameworks for

systematic enzyme engineering. Contemporary semi-rational

p la t forms l ike 3DM and HotSpot Wizard integra te

multidimensional structural data with evolutionary information,

demonstrating particular promise for tailoring biocatalyst

performance (Cho et al., 2021; Bendl et al., 2016). For instance,

3DM uses structure-based multiple sequence alignments to identify

key residues affecting enzyme activity, drawing on structural-

functional relationships from databases like PDB, GenBank,

PubMed, and Swiss-Prot. These predictions are subsequently

validated through multi-site saturation mutagenesis. Similarly,

HotSpot Wizard integrates multiple databases and computational

tools, both structural and evolutionary, to predict residues that

influence enzyme stability, activity, and substrate specificity.

The practical application of these methods is evident in various

case studies. Zhang et al. investigated A. membranaceus and

discovered the first cycloartane-type triterpene glycosyltransferase,

AmGT8, which catalyzes two consecutive glycosylation reactions at

the 3-OH and 2-OH positions of cycloastragenol. Through targeted

semi-rational engineering, researchers developed three AmGT8

variants (A394D, A394F, T131V) that showed specialized

glycosylation patterns at distinct oxygen positions. These

engineered catalysts enabled efficient biosynthesis of Astragalus-

derived saponins through accurate glycosyl moiety attachment

(Zhang et al., 2022). In parallel work, Xie et al. used a structurally

directed mutagenesis technique to redesign the 4aGT from

Synechocystis sp. PCC 6803. By analyzing residue spatial

configurations through HotSpot Wizard, they created iincreased

variants that improved enzymatic hydrolysis efficiency,

subsequently scaled for commercial production (Jingwen et al.,

2024). Comparative analysis of UGT91H_A1 and UGT91H8

revealed an important RTAS motif (R212/T213/A214/S215)

governing substrate preference. Transplantation of this sequence

into UGT91H8 resulted in the UGT91H8_6mu variant, achieving

15.9% catalytic conversion for compound 17 through optimized

binding geometry. Computational modeling showed how this motif

regulates substrate-channel interactions (Jian et al., 2024). Further

reseach demonstrated that GuGT14 engineering yielded H47P and

I182L mutants exhibiting 101.74% and 405.78% activity respectively

versus wild-type. These optimized catalysts significantly improved

Rh2 ginsenoside yields, establishing viable production routes for

this pharmaceutically valuable compound (Yan et al., 2024).

Effective enzyme engineering requires a detailed understanding

of structural-functional relationships governing catalytic behavior,

which enables accurate alterations at key amino acid positions to

achieve desired enzymatic improvements (Qian et al., 2021). The

combination of rational and semi-rational design approaches has

proved very effective in enzyme engineering, not only providing

insights into the mechanisms of enzyme function.
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4 Synthesis of glycosyl donors for
glycosylation reactions

Triterpenoid saponins are composed of a glycoside moiety and

an aglycone linked by glycosidic bonds, catalyzed by UGTs. The

substrates for these enzymes include glycosyl acceptors and donors.

However, the diversity of glycosyl donors in most host cells is

limited, which may not meet the demands for synthesizing complex

natural compounds. Various glycosyl donors can be interconverted

(Figure 2d). Sucrose, under the catalysis of sucrose synthase (SUS),

can produce UDP-Glc. The conversion of UDP-Glc to UDP-Ara

involves three key metabolic enzymes in a three-step process:

dehydrogenation, decarboxylation and epimerization. UDP-Glc is

converted to UDP-GlcA by UDP-glucose dehydrogenase (UGDH).

UDP-GlcA is then catalyzed by UDP-xylose synthase to form

UDP-Xyl. UDP-Xyl is enzymatically transformed into UDP-Ara

through UDP-xylose-4-epimerase (UXE)-mediated structural

rearrangement. Meanwhile, rhamnose mutase (RHM) catalyzes

the conversion of UDP-Glc to UDP-Rha, while UDP-arabinose 4-

epimerase (UAXS) processes UDP-GlcA into UDP-Cel. The same

UDP-GlcA precursor can alternatively yield UDP-galacturonic acid

via UGlcAE activity (Sen and Jian-qiang, 2016) (Figure 8). These

biochemical pathways have driven significant interest in

synthesizing diverse glycosyl donors through exogenous gene

integration, both in laboratory settings and biological systems.
4.1 In Vitro synthesis of glycosyl donors for
glycosylation reactions

In vitro synthesis of glycosyl donors offers flexibility and cost-

effectiveness. Sun et al. screened several key enzymes to facilitate the

production of glycosyl donors in microbial systems. These included

GuSUS1 from G. uralensis, AtUGDH3 and AtUXS3 from A.

thaliana, and PsUGE2 from P. sativum, which collectively enable

the conversion of sucrose into arabinose. The successful production

of arabinose was confirmed by using the arabinose transferase

UGT99D1 in A. sativaL (Sun et al., 2023a). This strategy not only

facilitates the generation of glucose, glucuronic acid, xylose, and

arabinose donors, but also addresses a significant challenge in the

biosynthesis of triterpenoid saponins. Lay the foundation for the

microbial synthesis of natural glycoside compounds. They

successfully achieved the in vitro production of UDP-Ara and

catalyzed the synthesis of Ara-BA in vitro (Figure 9).

UDP-glucose transferase can be coupled with sucrose synthase

to construct synthetic pathways with different glycosyl donors,

using inexpensive sucrose as the substrate for the glycosylation of

natural products. However, the hydrolysis of sucrose leads to the

accumulation of by-product fructose, which reduces the atomic

economy of sucrose and inhibits in situ UDP recycling. To improve

sucrose utilization, Wang et al. first demonstrated that a

polyphosphate-dependent glucose kinase can convert fructose

into fructose-6-phosphate without relying on expensive ATP.

They then introduced the glucose kinase into the UDP-2E
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recycling system, constructing an improved three-enzyme UDP

(UDP-3E) recycling system. This system enhances the glycosylation

efficiency of triterpenoids by phosphorylating fructose, accelerates

sucrose hydrolysis and UDP recycling, and improves the overall

utilization of sucrose (Wang et al., 2023b).

Song et al. conducted a genomic analysis of the Pacific oyster and

identified three genes responsible for catalyzing the conversion of UDP-

Gal, UDP-GlcA, and UDP-Xyl. Enzymatic assays demonstrated that

CGIUGE catalyzes the conversion of UDP-Glc to UDP-Gal, CGIUGD

catalyzes the conversion of UDP-Glc to UDP-GlcA, and CGIUXS

catalyzes the conversion of UDP-GlcA to UDP-Xyl. These findings

enable the in vitro synthesis of UDP-Gal, UDP-GlcA, and UDP-Xyl

using UDP-Glc as the starting substrate (Song, 2017).

Yin et al. cloned 17 key enzyme genes (OcUXS1-6, OcUAXS1/2,

OcUGE1/2,OcUXE1/2,OcRHM1,OcNER1,OcGlcAE1/2/3) involved

in the biosynthesis of diversified natural small molecule glycosides

from O. caudatum, which catalyze the formation of key sugar

nucleotide donors such as UDP-Xyl, UDP-Ara, UDP-Gal, UDP-

GalA, and UDP-Rha. Through functional characterization of these

enzymes, they successfully achieved the in vitro synthesis of UDP-

Xyl, UDP-Ara, UDP-Gal, UDP-GalA, and UDP-Rha using UDP-Glc

as a precursor (Yin, 2016). Jian et al. achieved de novo synthesis of

UDP-Rha in vitro by coupling the GuSUS1-D9, AtRHM2, and

AtNRS/ER genes. The UDP-Rha regeneration system, combined

with UGT, holds great potential for the efficient production of
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glycosylated triterpenoid compounds (Jian et al., 2024). These

studies suggest that in vitro synthesis holds great potential for the

production of diverse glycosyl donors. They also highlight the

potential of E. coli as a host for glycosyl donor synthesis.
4.2 The synthesis of glycosyl donors within
microorganisms

The limitations of in vitro glycosyl donor synthesis highlight the

advantages of microbial production systems that are more efficient,

cost-effective, and scalable. Three microbial platforms including E.

coli, S. cerevisiae, and B. subtilis dominate current research. The

robust metabolism and rapid growth of E. coli enable efficient

protein production, with shorter cultivation cycles making it ideal

for industrial-scale operations (Rosano et al., 2019). S. cerevisiae

stands out for its eukaryotic machinery, particularly the

endoplasmic reticulum, which supports plant enzyme function,

and a natural UDP-Glc reserve that can facilitate synthesis of

glycosyl donor precursors (Long et al., 2024). B. subtilis is

prominent in recombinant protein secretion and application in

agricultural biotechnology (Pramastya et al., 2021).

Li et al. achieved de novo synthesis of UDP-Ara through

coordinated expression of UGDH, XylS, and UXE genes, resulting

in rosavin production. Bi et al. optimized UDP-Xly synthesis by
FIGURE 8

Glycosyl donor interconversion diagram.
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overexpressing AtUXS3/SmUXS to produce rosavin E (Bi et al.,

2022). Liu et al. established UDP-Rha/Gal biosynthesis pathway in

E. coli to produce six different flavonoid glycosides (Liu et al., 2023).

Zhao et al. demonstrated the complete madecassoside synthesis

through VvRHM-NRS-mediated UDP-Rha conversion (Zhao

et al., 2024).

S. cerevisiae platforms utilizes native UDP-Glc pools for donor

synthesis. Oka and Jigami engineered yeast strains expressing plant

AtUGD1/AtUXS3 to convert UDP-Glc to UDP-Xyl (Oka and Jigami,
Frontiers in Plant Science 15
2006). Zhang et al. achieved 2.53 g/L 2’-fucosyllactose production

through integrated lactose/GDP-Fuc modules (Zhang et al., 2024b).

These microbial engineering strategies address critical challenges

in triterpenoid saponin biosynthesis by diversifying glycosyl donor

availability (Guihang et al., 2023). While each platform demonstrates

unique strengths –the scalability of E. coli, the eukaryotic

compatibility of yeast, and the secretion capacity of B. subtilis–

future progress requires optimized chassis engineering (Xu et al.,

2020; Shi and Jiang, 2020) and novel host exploration (Tianli et al.,
FIGURE 9

Synthetic Ara-BA in vitro.
TABLE 2 Advantages and disadvantages of glycosyl donors synthesis.

Strategies for glycosyl
donors synthesis

Advantage Disadvantage

In vitro synthesis
Highly controllable.
High product purity.
Strong flexibility.

High cost.
Complex reaction steps.
Difficult to scale up, more suitable for laboratory research.

Synthetic in E. coli

Low cost and easy to culture.
Simple genetic manipulation.
Strong scalability, suitable for industrial production.
Environmentally friendly.

Metabolic balance is challenging.
Substrate utilization limitations, unable to efficiently utilize
certain carbon sources (e.g., sucrose).
Glycosyl donors purity issues, with numerous by-products.
Gene expression stability issues.
Metabolic bottlenecks, such as insufficient UDP-Glc supply.
Product purity concerns.

Synthesized in S. cerevisiae

Efficient sugar metabolism.
Clear biosynthetic pathway.
Yeast-based synthesis of glycosyl donors is more environmentally
friendly compared to chemical synthesis.
Strong scalability, suitable for industrial production.

Synthesized in B. subtilis

High safety.
Strong metabolic engineering capabilities.
Efficient whole-cell catalytic activity.
Strong scalability, suitable for industrial production.
Environmentally friendly.
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2024). Strategic integration of synthetic biology tools will drive

industrial-scale production of bioactive glycosides (Table 2).
5 Conclusion and future perspectives

In recent years, triterpene saponins have made important

breakthroughs in the discovery and modification of UGTs and the

synthesis of glycosyl donors (Li et al., 2023). These advances not only

deepen the understanding of the biosynthetic mechanism of triterpene

saponins, but also open up a new path for their industrial production.

Using microbial platforms to synthesize triterpenoids has become an

efficient and sustainable biomanufacturing strategy: Liu et al. achieved

full synthesis of a complex vaccine adjuvant QS-21 in engineered yeast

in 2024 (Liu et al., 2024); In the same year, Martin et al. completed the

whole biosynthesis of QS-21 in tobacco by integrating a 20-step

reaction (Martin et al., 2024). The Zhao team first synthesized

asiaticoside in S. cerevisiae using oxidase and glycosyltransferase, and

the yield reached 772.3 mg/L (Zhao et al., 2024). Wang et al. increased

ginsenoside Rh2 production to 2.25 g/L by fed-feed fermentation

(Wang et al., 2019). Microbial de novo synthesis of triterpenoid

compounds such as ginsenosides has been achieved by many teams

around the world through systematic metabolic engineering strategies

such as heterologous pathway reconstruction and precursor supply

optimization (Ren et al., 2022). The core of such platforms lies in

pathway design, dynamic regulation and cross-scale optimization.

With the development of synthetic biology tools such as CRISPR

and AI enzyme design, the industrial production of more high-value

triterpenoid compounds is expected to gradually replace the traditional

plant extraction method (Li et al., 2023; Kim et al., 2017) (Figure 2e).

In terms of UGTs discovery and identification, the combination

of genome-transcriptome-metabolome studies has significantly

improved the UGTs screening efficiency (Chen et al., 2024). Gene

cluster mapping, phylogenetic analysis, and application of PSPG

motifs provide new insights into UGTs function (Zhan et al., 2022;

Gharabli and Welner, 2024). In UGTs engineering, rational and

semi-rational design strategies have effectively improved enzyme

activity, substrate specificity, and stability (Chica et al., 2005). By

using directed evolution, UGTs mutants with 2–5 times higher

catalytic efficiency were obtained (Zhang et al., 2024a). In the field

of glycan donor synthesis, the strategy of exogenous gene

introduction has successfully overcome the limitation of the

diversity of glycan donors in host cells: engineered microorganisms

such as E. coli and yeast have been able to efficiently synthesize a

variety of glycan nucleotides (Li et al., 2024; Oka and Jigami, 2006).

Despite progress, the field still faces many challenges.

Functional annotation of UGTs requires a large number of

experimental verification and the complexity of gene clusters and

plant genome diversity increase the difficulty of comprehensive

identification. The prediction of mutation effects in UGTs

engineering is still challenging, and directed evolution is limited

by the large mutation space and high-throughput screening

requirements. The cost of in vitro synthesis of glycosyl donors is

high, and the in vivo synthesis needs to optimize the metabolic

network to improve the efficiency (Zhou et al., 2022).
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In the future, it is necessary to deeply integrate multi-omics data

to analyze the triterpene synthesis regulatory network (Chai et al.,

2023) and develop a high-throughput screening platform to

accelerate UGTs validation and glycodonor pathway optimization

(Kwon et al., 2024). The application of machine learning and AI

technology in enzyme function prediction and metabolic pathway

design will accelerate the construction of efficient microbial

factories (Jang et al., 2022). Developing a novel microbial host

that can expand the synthesis pathway of glycans donors (Tianli

et al., 2024) and in-depth understanding of the regulatory

mechanism of triterpene synthesis will help to improve the yield

of engineered strains (Yuanyuan et al., 2021). Continuous

technological innovation will promote the industrial application

of triterpene saponins in medicine, food and other fields.
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