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De novo assembly and
comparative analysis of the
first complete mitogenome in
Distylium (Distylium racemosum)
Yaling Wang, Zhongxiao Zhang, Xinru Chen, Honghe Li,
Chi Ma and Penghui Guo*

School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
The genus Distylium (Hamamelidaceae) is highly valued for its applications in

ornamental horticulture, industry, and construction. Although plastid

genomes (p las tomes) of mul t ip le Dis ty l ium spec ies have been

characterized, no mitochondrial genomes (mitogenomes) have been

reported for this genus. In this study, we assembled and annotated the

complete mitogenome of Distylium racemosum using HiFi sequencing data.

The mitogenome comprises a longer circular chromosome and a shorter

linear chromosome (904,264 bp in total length), revealing a structurally

complex conformation. We annotated 67 genes, including 43 protein-

coding genes (PCGs), 21 tRNA genes, and three rRNA genes. Analyses

identified exceptionally high repetitive sequence content, with 304 simple

sequence repeats, 1,508 dispersed repeats, and 50 tandem repeats,

representing the highest repeat content among Saxifragales mitogenomes

to date. Additionally, 49 mitochondrial plastid DNA sequences were detected,

including only one complete plastid-derived gene (trnC-GCA) transferred to

the mitogenome. We predicted 697 RNA editing sites across 42 PCGs, further

underscoring the genome’s dynamic evolution. Phylogenetic reconstruction

based on mitogenomes and plastomes from 18 species indicated D.

racemosum occupied a basal position within Saxifragales, which is

consistent with the APG IV classification system. This study provides the

first comprehensive mitogenomic resource for the Distylium genus, offering

valuable insights for molecular classification, species identification, and

germplasm conservation of Distylium plants.
KEYWORDS
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1 Introduction

Distylium racemosum, a flowering plant in the genus Distylium

(Hamamelidaceae), is endemic to Asia. This evergreen shrub or

small tree inhabits warm-temperate lowland forests, distinguished

by dense branching, persistent dark-green foliage, and a compact

growth form (Dong et al., 2021). Its ornamental appeal is enhanced

by clusters of small red flowers produced in spring. The Distylium

species exhibits notable resistance to airborne pollutants, including

sulfur dioxide and chlorine, making it particularly suitable for urban

greening in industrial and mining zones. Notably, Distylium

chinense demonstrates exceptional ecological adaptability, serving

as a key species for soil conservation and embankment stabilization

(Liu et al., 2014; Xiang et al., 2020).Distylium species also engages in

a unique ecological interaction with the aphid Nipponaphis

distychii, which induces large gall formation on leaves. These galls

accumulate tannins, compounds historically utilized as natural dyes

(Ismayati et al., 2024). Furthermore, the wood of Distylium is

exceptionally dense and durable, rendering it valuable for

construction applications such as housing and vehicle

manufacturing (Yagi et al., 2019).

Mitochondria, semi-autonomous organelles possessing

independent genetic material and distinct replication and

expression systems, are critical for cellular respiration and

metabolic regulation (Dyall et al., 2004; Gray et al., 1999; van Loo

et al., 2002). Unlike animal mitochondrial genomes (mitogenomes,

typically 10–20 kb) and plant plastid genomes (plastomes, generally

100–200 kb), which exhibit size conservation (Liu et al., 2022; Wu

et al., 2022), plant mitogenomes display substantial size variation,

ranging from 66 kb in Viscum scurruloideum to 18.99 Mb in

Cathaya argyrophylla (Huang et al., 2024; Skippington et al.,

2015). These genomes are pivotal for elucidating cytoplasmic

male sterility mechanisms and developing molecular breeding

applications (Han et al., 2024; Xiao et al., 2020). However, plant

mitogenome assembly remains technically challenging due to

extreme structural plasticity, long repetitive sequences, and

frequent horizontal transfer of nuclear mitochondrial DNA

(NUMTs) and mitochondrial plastid DNA (MTPTs) (Han et al.,

2022; Sun et al., 2024). To date, over 34,000 complete plastomes

have been reported in Chloroplast Genome Information Resource

(CGIR) (https://ngdc.cncb.ac.cn/cgir), while the NCBI Nucleotide

database (https://www.ncbi.nlm.nih.gov/) currently contains fewer

than one thousand complete mitogenomes for plants (last accessed:

February 28th, 2025) (Huang et al., 2025; Wang J. et al., 2024). This

disparity highlights the complexity and technical challenges

associated with plant mitogenome assembly and annotation.

Previous plastome sequencing of 12 Distylium species has

established a phylogenomic framework for understanding the

genus’s evolution (Dong et al., 2021). Despite these advances,

comprehensive genomic resources for Distylium (particularly

nuclear and mitochondrial genomes) remain critically limited. To

date, the mitogenomes of Distylium species remain entirely

unexplored, and their phylogenetic relationships based on

mitogenomic data are still uncleared. While mitogenomes have
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been assembled for numerous Saxifragales species, only two

unannotated mitogenomes from Hamamelidaceae (Rhodoleia

championii and Loropetalum chinense) are available in the NCBI

database, with none reported for Distylium. This gap underscores

the necessity to prioritize mitogenome sequencing and annotation

in Hamamelidaceae. Such initiatives will advance our

understanding of evolutionary trajectories within the family and

improve phylogenomic resolution across Saxifragales.

In this study, we successfully assembled and annotated the

mitogenome of D. racemosum, establishing the inaugural

mitochondrial genomic resource for the Distylium genus. We

comprehensively characterized the mitogenome’s structural features,

repeat content, RNA editing sites and MTPTs, filling a critical gap in

genomic data for this genus. Comparative genomic analyses and

phylogenies reconstructed from mitochondrial and plastid protein-

coding genes (PCGs) further clarified evolutionary relationships. These

results provide foundational resources for molecular taxonomy, species

discrimination, and germplasm conservation in Distylium, while

elucidating broader evolutionary dynamics within Saxifragales.
2 Materials and methods

2.1 DNA extraction and sequencing

Fresh leaves of D. racemosum were collected from Nanjing

Forestry University (Nanjing, China; 32°08′ N, 118°82′ E) and

immediately frozen at −80°C for downstream analysis. High-quality

genomic DNA was extracted using the CTAB method (Arseneau

et al., 2017). DNA integrity and purity were verified via 1.0%

agarose gel electrophoresis and quantified using a NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific) (Shi et al.,

2023). Sequencing libraries were prepared with the SMRTbell

Express Template Prep Kit 2.0 (PacBio Biosciences, California,

USA) using high-molecular-weight DNA. High-fidelity (HiFi)

sequencing data was subsequently performed on the PacBio

Revio platform.
2.2 Assembly and annotation of D.
racemosum mitogenome

The HiFi sequencing data were processed with PMAT v2.0 (Bi

et al., 2024a) to assemble the D. racemosum mitogenome using

parameters ‘-t hifi -m -F 0.2 -T 50’ in ‘autoMito’ mode. The raw

assembly graph was resolved and visualized with Bandage (Wick

et al., 2015). Annotation of the D. racemosum mitogenome was

carried out using the online program PMGA (http://

47.96.249.172:16084/home) (Li et al., 2024). Then the rRNA

genes (rRNAs) and tRNA genes (tRNAs) were verified using

BLASTn and tRNAscan-SE v2.0, respectively (Camacho et al.,

2009; Chan et al., 2021; Chen et al., 2015). Finally, the genome

map of D. racemosum mitogenome was visualized using PMGmap

with default parameters (Zhang et al., 2024).
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2.3 Detection of repeat sequences and
prediction of RNA editing sites

Simple sequence repeats (SSRs) in the D. racemosum

mitogenome were identified using the online platform MISA

(https://webblast.ipk-gatersleben.de/misa/) (Beier et al., 2017). The

thresholds for the minimum number of repetitions were set as

follows: 10 for mononucleotides, 5 for dinucleotides, 4 for

trinucleotides, and 3 for tetranucleotides, pentanucleotides, and

hexanucleotides. Dispersed repeats were detected using the

program vmatch-2.3.1with parameters ‘-d -p -h 3 -l 30 -best 5000

-noscore -noidentity -absolute’ (Kurtz et al., 2001). Additionally,

tandem repeats in the mitogenome were identified using Tandem

Repeats Finder v4.09 (https://tandem.bu.edu/trf/trf.html) with

default parameters (Benson, 1999). All repeat elements were

manually verified and then visualized using the ggplot2 package

in R.

RNA editing, a post-transcriptional process involving the

insertion, deletion, or substitution of nucleotides in RNA

transcripts, plays a critical role in expanding transcriptional and

functional diversity within mitochondrial genes (Fan et al., 2019).

To construct reference sequences, we extracted coding sequences

for all PCGs from the D. racemosum mitogenome (Yang et al.,

2023a). Subsequently, the RNA editing sites in the D. racemosum

mitogenome were predicted using the Deepred-Mt software (Edera

et al., 2021), with a probability threshold set at 0.9 to ensure high-

confidence identification.
2.4 Analysis of MTPTs and collinearity

To identify the MTPTs inD. racemosum, the complete plastome

of D. racemosum was obtained from NCBI with accession number

of NC_059886. Subsequently, BLASTn was utilized to detect

homologous fragments between the mitogenome and plastome of

D. racemosum with the following parameters: ‘-word_size 9 -evalue

1e-5 -reward 2 -gapopen 5 -gapextend 2 -penalty -3 -outfmt 6’

(Camacho et al., 2009; Chen et al., 2015). Fragments with a

matching rate ≥80% and lengths ≥30 bp were selected for further

analysis. The selected fragments were manually annotated to

determine their locations within the mitogenome and plastome.

The results of MTPTs were finally visualized using Circos (v0.69-5)

(Zhang et al., 2013).

To investigate the mitogenome structure of D. racemosum, we

downloaded three additional Saxifragales mitogenomes (Paeonia

lactiflora, Ribes meyeri, and Rhodiola tangutica) from the NCBI

database (Supplementary Table S1). Collinear blocks were identified

using BLASTn with stringent criteria applied: only alignments with

a minimum length of ≥200 bp and a minimum identity of ≥80%

were retained for further analysis. The results were visualized using

NGenomeSyn to facilitate structural comparisons (He et al., 2023).
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2.5 Phylogenetic analysis

For the construction of phylogenetic trees for both

mitochondria and plastids, we obtained the mitogenomes and

plastomes of 17 additional species via the NCBI Nucleotide

database, with Sorghum bicolor designated as the outgroup.

Detailed species information and corresponding accession

numbers are provided in Supplementary Table S1. We extracted

18 shared conserved PCGs from mitogenomes and 59 common

conserved PCGs from plastomes using a self-written python script.

Then we performed multiple sequence alignment utilizing MAFFT

v7.4 (Katoh and Standley, 2013). After trimming the results using

trimAl v1.4 (Capella-Gutiérrez et al., 2009), the maximum

likelihood (ML) trees were reconstructed using IQ-TREE v2.0.3

with 1000 bootstrap replicates (Minh et al., 2020). The evolutionary

model ‘GTR+F+I+G4’ was selected as the fittest model for both

mitochondrial and plastid ML trees based on Bayesian Information

Criterion (BIC) scores. Finally, the ML tree results were visualized

using the online tool iTOL v5 (https://itol.embl.de/) (Letunic and

Bork, 2021).
3 Results

3.1 Characteristics of the D. racemosum
mitogenome

Using the Revio sequencing platform, we generated 865,212

HiFi reads totaling 15.49 Gb, with an N50 value of 14,470 bp

(Table 1). The mitogenome structure of D. racemosum exhibited

significant complexity upon disentangling the mitogenome graph

using Bandage (Figures 1A, B), consisting of a dominant circular

molecule (834,429 bp) and a smaller linear fragment (69,835 bp)

(Figure 1C). The complete mitogenome spans 904,264 bp with

96.9× average coverage, a GC content of 46.28%, and contains 67

genes occupying 5.01% (45,287 bp) of the sequence (Supplementary

Table S2). These include 43 PCGs (37,845 bp, 4.19%), three rRNA

genes (5,861 bp, 0.65%), and 21 tRNA genes (1,581 bp, 0.17%). All

24 core mitochondrial PCGs (atp1, atp4, atp6, atp8, atp9, ccmB,

ccmC, ccmFC, ccmFN, cob, cox1, cox2, cox3,matR,mttB, nad1, nad2,

nad3, nad4, nad4L, nad5, nad6, nad7 and nad9) and 15 variable

PCGs (rpl2, rpl5, rpl10, rpl16, rps1, rps3, rps4, rps7, rps10, rps12,

rps13, rps14, rps19, sdh3, and sdh4) were identified (Table 2).

Notable features include three copies of atp1, two copies of rps19

and sdh3, and nad1 presenting on both the circular and

linear molecules.

The mitogenome harbors 23 introns (18 cis-spliced and 5 trans-

spliced; Supplementary Figure S1), collectively spanning 30,760 bp

(3.40% of the genome; Supplementary Table S2). A total of 37 PCGs

start with ATG, while cox1, nad1, and nad4L use ACG as their start

codon. The start codons for mttB, rpl16, and rps4 remain
frontiersin.org

https://webblast.ipk-gatersleben.de/misa/
https://tandem.bu.edu/trf/trf.html
https://itol.embl.de/
https://doi.org/10.3389/fpls.2025.1586341
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1586341
unresolved. Stop codons included TAA (21 PCGs), TAG (8), TGA

(11), and CGA (3) (Supplementary Table S3). The complete

mitogenome of D. racemosum has been deposited in NCBI

Nucleotide database under accessions PQ594873 and PQ594874.
3.2 Analysis of repeats

SSRs were widely distributed throughout the mitochondrial

genome. Using the online platform MISA, we identified 304 SSRs,

including 74 mononucleotide, 53 dinucleotide, 42 trinucleotide, 122

tetranucleotide, 12 pentanucleotide, and one hexanucleotide repeat

units (Figure 2A; Supplementary Figure S2; Supplementary Table

S4). Analysis of dispersed repeats revealed 1,508 sequences (≥30 bp)

spanning 68,859 bp (7.61% of the total genome length), comprising

748 direct and 760 palindromic repeats (Supplementary Table S5).

Most of the dispersed repeats (1,481 repeats) were shorter than 100

bp, while four exceeded 500 bp (Figure 2B), with the maximum

length reaching 6,180 bp (Supplementary Table S5). Additionally,

50 tandem repeats (8–50 bp in length) with copy identities ≥75%

were detected (Figure 2C; Supplementary Table S6).

To further characterize repeat element patterns in Saxifragales

mitogenomes, we performed comparative analyses of SSRs,

dispersed repeats, and tandem repeats across four species: D.

racemosum, Tiarella polyphylla, Ribes nigrum, and P. lactiflora.
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The D. racemosum mitogenome harbored the highest abundance

of all three repeat types. SSR profiling revealed six conserved repeat

categories (mono- to hexanucleotide) across all species (Figure 2A).

The D. racemosum mitogenome exhibited the highest number of

tetranucleotide repeat units, totaling 122. The number of dispersed

repeats varied among species, but the length distributions were

conserved: 30–49 bp repeats predominated, while only a few

exceeded 500 bp (Figure 2B).
3.3 Analysis of MTPTs and prediction of
RNA editing events

A total of 49 MTPTs were identified in the D. racemosum

mitogenome (Supplementary Table S7), spanning 23,278 bp with

≥80% sequence similarity to the plastome. These MTPTs account

for 14.63% of the plastome and 2.57% of the mitogenome,

respectively (Figure 3). Most MTPTs ranged from 30 to 500 bp in

length, while five exceeded 1,000 bp, including the longest fragment

(7,710 bp). Only six plastid-derived genes were retained within

these MTPTs: five partial genes (accD, rbcL, ccmC, trnL-CAA, trnY-

GUA) and one complete gene (trnC-GCA).

A total of 697 RNA editing events were identified in the PCGs of

the D. racemosum mitogenome (Supplementary Table S8). The

nad4 gene displayed the highest number of RNA editing sites, with

55 events detected, whereas no RNA editing events were observed in

the sdh3 gene (Figure 4). RNA editing sites were distributed

unevenly across codon positions: 229 (32.85%) occurred at first

positions, 434 (62.27%) at second positions, and 34 (4.88%) at

third positions.
3.4 Analysis of whole-genome collinearity

We performed a comparative analysis to investigate the

mitogenome collinearity among the four selected Saxifragales species.

Extensive sequence rearrangements were evident between the D.

racemosum mitogenome and those of the other species analyzed

(Figures 5A, B). Between D. racemosum and R. tangutica, we

identified 77 locally collinear blocks (LCBs; 81,121 bp), representing

31.52% of the R. tangutica mitogenome (Figure 5B; Supplementary

Table S9). Similarly, a comparison of D. racemosum and R. meyeri

revealed 129 LCBs, covering 183,570 bp and accounting for 37.92% of

the R. meyeri mitogenome (Supplementary Table S9).
3.5 Phylogenetic analysis

To determine the phylogenetic position of D. racemosum, a ML

tree was constructed using 18 conserved mitochondrial PCGs from

17 plant species, with S. bicolor designated as the outgroup. The

phylogenetic analysis revealed that D. racemosum clustered with

four Saxifragales species (R. meyeri, R. tangutica, P. suffruticosa, and

P. lactiflora), and occupied a basal position within the Saxifragales

(Figure 6A). The topology received strong nodal support for the
TABLE 1 The length and depth of each assembled contig in
Distylium racemosum.

Chromosome
Contig
name

Coverage
(x)

Length
(bp)

Mitochondrial chromosome 1 Contig1 92.7 280,969

Contig2 95.7 146,422

Contig3 94.4 80,355

Contig4 111.9 69,965

Contig6 92.7 58,502

Contig7 65.6 55,886

Contig8 88.4 53,467

Contig9 97.0 35,347

Contig10 76.0 16,908

Contig11 93.9 12,405

Contig12 180.5 4,548

Contig13 208.0 3,335

Contig14a 1,774.4 1,901

Contig15 265.9 1,630

Contig16 190.2 461

Contig17 178.6 360

Mitochondrial chromosome 2 Contig5 73.5 69,835

Total/Average 17 99.6 904,264
acp-derived.
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Saxifragales phylogeny (bootstrap value = 97). Notably, the five

Saxifragales species were positioned at the base of the Superrosids,

which is a sister group to the Rosids. To further validate our

findings, we reconstructed the phylogenetic tree using plastome

sequences. Phylogenetic reconstruction using plastid genomes

(plastomes) yielded congruent results (Figure 6B), with

topological congruence between mitogenome- and plastome-

derived trees confirming the reliability of our phylogenetic

inferences.
4 Discussion

4.1 Variety of structure and size in
mitogenomes of Saxifragales species

Plant mitogenomes are organized into diverse structural

conformations—including circular, linear, and complex branched

molecules due to frequent recombination events (Bi et al., 2024b;

Han et al., 2024; Wu et al., 2022). For example, Amborella

trichopoda, Rhopalocnemis phalloides, and Panax notoginseng

exhibit highly complex mitogenome architectures shaped by

recombination (Rice et al., 2013; Yang et al., 2023b; Yu et al.,
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2022). Within Saxifragales, structural diversity of mitogenome is

pronounced. T. polyphylla contains three circular chromosomes

(Liu et al., 2024a), while species in Rhodiola genus display

contrasting conformations—R. crenulate has a single circular

chromosome, whereas R. wallichiana and R. sacra possess two

circular chromosomes, reflecting atypical multi-chromosomal

organization (Yu et al., 2023). Our study resolved the D.

racemosum mitogenome as a bipartite structure comprising one

large circular chromosome (834,429 bp) and a smaller linear

fragment (69,835 bp). Recent research indicates that species with

high GC content possess an enhanced ability to thrive in regions

characterized by extremely cold winters or seasonal drought (Lu

et al., 2024; Šmarda et al., 2014). The GC content in Saxifragales

mitogenomes exhibits limited evolutionary variation, ranging from

44.50% (Sedum plumbizincicola) to 46.28% (D. racemosum) (Ding

et al., 2022). The mitogenome size varies significantly across

Saxifragales. In the Crassulaceae and Paeoniaceae families, the

mitochondrial genome size ranges from approximately 180 bp to

260 kb, while Grossulariaceae and Saxifragaceae families span 400–

500 kb, and D. racemosum (Hamamelidaceae) extends to 904,264

bp, which is the longest in Saxifragales to date, suggesting that

Hamamelidaceae species may possess the larger mitogenomes

among Saxifragales.
FIGURE 1

Assembly graphs and genome map of the Distylium racemosum mitogenome. (A) Raw assembly graph. (B) Disentangled assembly graph. (C) The
genome map of the Distylium racemosum mitogenome. Different types of genes were represented by distinct color blocks.
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4.2 D. racemosum mitogenome exhibiting
the highest repeats abundance in
Saxifragales

Repeats are primary drivers of dynamic genomic restructuring

in plant mitochondrial DNA, facilitating recombination-mediated

changes in genome size, gene arrangement, and evolutionary

trajectories (Wang et al., 2025; Wynn and Christensen, 2019).

These structural modifications may ultimately contribute to

phenotypic variation (Bi et al., 2022; Liu et al., 2024b; Tang et al.,

2024; Wang Y. et al., 2024). For example, in Zea mays, repeats

modulate chloroplast gene expression, directly affecting

photosynthetic efficiency and growth (Bedbrook et al., 1977),

while in O. sativa, repeat variations correlate with key agronomic

traits like plant height and tillering capacity (McCarthy et al., 2002).

In the D. racemosum mitogenome, we identified 304 SSRs, 1,508

dispersed repeats (748 direct; 761 palindromic), and 50 tandem

repeats, representing the highest repeat density reported in

Saxifragales mitogenomes (Liu et al., 2024a; Lu et al., 2024; Tang

et al., 2024). This repeat abundance in D. racemosum provides a

plausible explanation for its exceptionally large mitochondrial

genome size in Saxifragales species (904,264 bp). These findings
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provide critical insights into Distylium evolution, underscoring

repeats as drivers of genomic expansion and diversification.
4.3 Relatively abundant and stable RNA
editing events in Saxifragales mitogenomes

RNA editing, a post-transcriptional modification critical for

enhancing transcriptome diversity and producing functional

mitochondrial proteins, is widespread across plant lineages (Edera

et al., 2018; Gommans et al., 2009; Lukes ̌ et al., 2021). Evolutionary
trends reveal limited RNA editing in bryophytes (mosses and

liverworts) but a marked increase in lycophytes (Rüdinger et al.,

2009; Zhang et al., 2020). Among gymnosperms, the frequency of

RNA editing demonstrates substantial variation, ranging from 99

editing sites inWelwitschia mirabilis to 1,405 in Ginkgo biloba (Fan

et al., 2019; Guo et al., 2016). Angiosperms typically maintain

moderate editing activity (400–500 sites). Notably, Cinnamomum

chekiangense represents an exceptional case, exhibiting an

unprecedented 1,119 RNA editing sites, the highest number

recorded in angiosperms to date (Bi et al., 2016, 2024b). Within

Saxifragales, studies conducted previously revealed substantial RNA

editing activity: 569 sites in P. lactiflora, 653 in Tiarella polyphylla,

and 731 in R. nigrum (Liu et al., 2024a; Lu et al., 2024; Tang et al.,

2024). Our analysis identified 697 C-to-U editing sites across all

PCGs except sdh3, underscoring both the prevalence and

evolutionary conservation of RNA editing in this order. However,

computational predictions necessitate experimental validation

through PCR amplification and Sanger sequencing to confirm

site-specific accuracy.
4.4 Low gene transfer level from plastome
to mitogenome of D. racemosum

The transfer of plastid DNA sequences to mitogenomes, known

as MTPTs, represents a recurrent evolutionary phenomenon in

plant mitogenome evolution (Timmis et al., 2004). As a form of

horizontal gene transfer (HGT), MTPTs exhibit considerable

variation in length and sequence similarity across species (Tang

et al., 2024). In this study, we identified 49 MTPTs in the D.

racemosum mitogenome, with a cumulative length representing

2.57% of the total mitogenome. This proportion surpasses values

reported for P. lactiflora (2.2%), R. nigrum (1.11%), Arabidopsis

thaliana (0.8%), Silene conica (0.2%), and Vigna angularis (0.1%)

(Lu et al., 2024; Sloan and Wu, 2014; Tang et al., 2024), yet remains

lower than those of Michelia figo (5.53%) and Boea hygrometrica

(10.5%) (Wang et al., 2025; Zhang et al., 2012). Gene retention

within MTPTs also varies significantly. Only three plastid-derived

PCGs were retained in D. racemosum—fewer than in P. lactiflora

(10 PCGs), R. nigrum (12 PCGs), and R. wallichiana (7 PCGs), but

more than in R. crenulata (2 PCGs) (Lu et al., 2024; Tang et al.,

2024; Yu et al., 2023). The functional relevance of MTPTs appears
TABLE 2 Gene composition in the mitogenome of
Distylium racemosum.

Group of genes Name of genes

ATP synthase atp1 (×3), atp4, atp6, atp8, atp9

Cytochrome
c biogenesis

ccmB, ccmC, ccmFC, ccmFN

Ubiquinol cytochrome
c reductase

cob

Cytochrome c oxidase cox1, cox2, cox3

Maturases matR

Transport
membrane protein

mttB

NADH dehydrogenase nad1 **##, nad2***#, nad3, nad4***, nad4L, nad5**##,
nad6, nad7****, nad9

Large subunit of
ribosome

rpl2*, rpl5, rpl10, rpl16

Small subunit of
ribosome

rps1, rps3*, rps4, rps7, rps10*, rps12, rps13, rps14,
rps19 (×2)

Succinate
dehydrogenase

sdh3 (×2), sdh4

Ribosome RNA rrn5, rrn18, rrn26

Transfer RNA trnC-GCA (×2), trnD-GUC (×2), trnE-UUC, trnF-
GAA, trnfM-CAU, trnG-GCC, trnH-GUG, trnI-CAU,
trnK-UUU, trnL-CAA, trnM-CAU,
trnN-GUU, trnP-UGG (×2), trnQ-UUG,
trnS-GCU, trnS-UGA, trnW-CCA, trnY-GUA
“*” labeled the number of cis-spliced introns.
“#” labeled the number of trans-spliced introns.
“×” labeled the number of genes.
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minimal due to sequence degradation and lack of RNA editing

(Clifton et al., 2004; Notsu et al., 2002), suggesting these genes likely

have limited functional roles and represent nonessential genomic

remnants (Wang et al., 2007).
4.5 Phylogenetic analysis of D. racemosum
and its relatives

Plant mitogenomes demonstrate a remarkable propensity for

the incorporation of exogenous or migratory DNA sequences,

driving recurrent gains and losses of PCGs (Adams and Palmer,

2003; Garcia et al., 2021; Lu et al., 2024). In this study, we

reconstructed two phylogenetic trees using 18 conserved

mitochondrial and 59 plastid PCGs from 18 plant species. Both

topologies strongly supported the basal divergence of D. racemosum

within Saxifragales. Phylogenetic analyses further resolved

Saxifragales as a basal lineage of Superrosids, emerging as a sister

group to the Rosids, with tree architectures consistent with the

Angiosperm Phylogeny Group IV (APG IV) system (Bremer et al.,
Frontiers in Plant Science 07
2016) . Nonethe le s s , l imi ted mitogenome data f rom

Hamamelidaceae species restricts deeper resolution of

phylogenetic relationships within this clade.
5 Conclusion

In this study, we de novo assembled the first mitogenome of D.

racemosum, comprising a 904,264 bp bipartite structure with a

dominant circular chromosome (834,429 bp) and a smaller linear

fragment (69,835 bp). The mitogenome encodes 67 genes, including

43PCGs, 3 rRNAs, and 21 tRNAs. Repetitive elements dominate the

mitogenome, with 304 SSRs, 1,508 dispersed repeats, and 50 tandem

repeats. Our analysis revealed 49 fragments (23,278 bp) that had been

transferred from the plastome to the mitogenome of D. racemosum,

representing 14.63% of the plastome and 2.57% of the mitogenome.

We predicted 697 RNA editing sites across PCGs, predominantly at

second codon positions (62.3%). Collinearity analysis revealed

pronounced structural divergence between D. racemosum and other

Saxifragales mitogenomes. ML trees reconstructed from mitochondrial
FIGURE 2

Repeat elements detected in the mitogenomes of four Saxifragales species. (A) Type and number of simple sequence repeats in the mitogenomes of
four Saxifragales species. (B) Type and number of dispersed repeats in the mitogenomes of four Saxifragales species. (C) Number of tandem repeats
in the mitogenomes of four Saxifragales species.
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FIGURE 3

Distribution of mitochondrial plastid DNA sequences (MTPTs) in Distylium racemosum. The plastid and mitochondrial genomes of D. racemosum
were illustrated by pink and blue arcs, respectively. The outer circle depicts the GC content of the two mitochondrial chromosomes and the plastid
genome, with adjacent bars indicating the length of MTPTs. Connecting lines between the arcs represented the MTPTs. Detailed information of
MTPTs was shown in Supplementary Table S7.
FIGURE 4

RNA editing events in the Distylium racemosum mitogenome. Characteristics of RNA editing sites across all protein-coding genes in the
mitogenome of Distylium racemosum.
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FIGURE 5

Whole mitogenome collinearity analysis of four Saxifragales species. (A) Collinearity analysis of the four Saxifragales mitogenomes. Strips of varying
colors represented distinct mitogenomes, while linear blocks denoted collinear regions. (B) Distribution of collinear block lengths and counts. Color-
coded legends indicated homologous fragments among the species. The names and NCBI accession numbers of species used in the collinearity
analysis were provided in Supplementary Table S1.
FIGURE 6

The ML trees of 18 plant species. (A) The ML tree based on 59 plastid PCGs. (B) The ML tree based on 18 mitochondrial PCGs. The mitogenome of
Distylium racemosum was highlighted in bold and marked with an asterisk. Sorghum bicolor was chosen as the outgroup. Bootstrap values were
indicated on each branch, and colors represented the respective groups for each species. The plant names and NCBI accession numbers utilized in
the phylogenetic analysis were listed in Supplementary Table S1.
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and plastid genomes congruently resolve D. racemosum as a basal

lineage within Saxifragales. As the first annotated mitogenome in

Hamamelidaceae, this resource will advance comparative studies of

mitochondrial evolution in Hamamelidaceae family and provide a

genomic foundation for taxonomic refinement and applied research.
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