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University, Wuhan, China
Plant disease poses a great threat to crop production. The mechanisms

underlying plant-pathogen interactions are critical research topics worldwide.

In recent years, significant breakthrough studies have been reported, broadening

our understanding of plant immunity. Based on these findings, many strategies

have been developed to improve plant defense against various diseases. Here, we

summarize these strategies and their applications in studies aimed at promoting

crop resistance. Besides domain swapping, gene shuffling, and randommutation,

three additional strategies have been developed in the last decade. The first

strategy is gene editing of host susceptibility (S) genes to prevent pathogen

infection. Editing of Mlo and DMR6 gene in many species are good examples of

this approach. The second strategy is editing the promoters of host S genes or

resistance (R) genes. This strategy is widely used to counteract Xanthomonas,

such as modifying the promoters of LOB1 and SWEET genes in several crops to

enhance resistance. The third strategy is designing R gene products, especially

nucleotide-binding and leucine-rich repeat (NLR) receptors. This approach is

based on the growing knowledge of the structural features and mechanisms of

NLRs, which have seen significant advances recently. To date, all NLR-

engineering attempts have focused on rice paired NLRs, such as Pikp-1/Pikp-2

(allelic to Pikm-1/Pikm-2) and RGA4/RGA5. The bioengineering of these NLRs

provides a promising method to combat diverse pathogens. Detailed studies in

many crops are also discussed in this review, organized around these strategies.

In summary, with progresses in understanding plant immune mechanism, many

innovative molecular strategies are available to mitigate the threat of plant

pathogens in the future.
KEYWORDS
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An overview of plant pathology
development

Plants are very important to human society. Besides releasing

oxygen, they provide food, fruits and even clothing for our survival.

In the world today, the population is continually growing and the

demand for more crops is also increasing every day, which brings

more pressure on crop production. In agriculture, crop yield is

threatened by many biotic and abiotic stresses. Various pathogens

constitute the main biotic stresses in nature, which have caused

significant yield losses throughout history.

To solve these problems, the first step is to understand whether

plants can develop resistance to pathogens. In the 1950s, the gene-

for-gene hypothesis was proposed by Flor, based on his studies on

flax rust. In this model, the resistance occurs when the plant’s

resistance (R) gene and the pathogen’s avirulence (Avr) gene are

both present. This hypothesis demonstrates that plants can

genetically resist pathogens and laid the foundation for crop

disease resistance breeding and molecular plant pathology. Since

the 1990s, hundreds of Avr and R genes have been cloned from

different pathogens and plants, benefitting the improvement of

crop breeding.

Based on the accumulation of knowledge about Avr and R genes,

researchers have begun to realize that plants have developed many

strategies to overcome the invasion of pathogens during evolution.

Unlike vertebrates, plants lack an adaptive immune system and rely

entirely on innate immunity to defend against pathogens. This type of

immunity is highly evolved and comprises two tiers of response. The

first layer of defense takes place on or outside the plant cell membrane,

which can respond to pathogen invasion immediately. Usually,

pathogens possess small conserved molecules, called pathogen-

associated molecular patterns (PAMPs) or microbe-associated

molecular patterns (MAMPs), on their surface. Plants utilize

membrane-anchored receptors, known as pattern recognition

receptors (PRRs), to recognize PAMPs and trigger PAMP-triggered

immunity (PTI). The PTI process is effective against a broad range of

pathogens. The most well-known PRRs are FLS2 and CERK1, which

are receptor-like kinases (RLKs) for bacterial flagellin and fungal chitin

respectively (Gomez-Gomez and Boller, 2000; Miya et al., 2007).

However, this immunity is relatively weak, and many pathogens can

release effectors or other molecules to suppress it. Meanwhile,

pathogens can also inject other effectors into plant cells to

manipulate host metabolism and gene expressions for their survival

and reproduction. This process is called effector-triggered susceptibility

(ETS). To counteract ETS, plants evolved a second layer of defense,

known as effector-triggered immunity (ETI), which involves the

recognition of pathogen effectors by different kinds of resistance (R)

gene products. This model is commonly referred to as the ‘zig-zag’

model (Jones and Dangl, 2006). Pathogen effectors are highly diverse,

even among strains of the same species, resulting in ETI specificity.

The ETI process usually induces a strong immune response, often

accompanied by hypersensitive response (HR) that limits pathogen

spread in a very short time. Nonetheless, immutable boundaries do not

exist between PTI and ETI, and they are indispensable and function

together in nature sometimes (Yuan et al., 2021).
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Plant R genes function in diverse ways
to defend against pathogens

Among all the cloned R genes, NLR-encoding genes constitute

the largest group and are present in almost all land plants (Gao

et al., 2018). Typical NLRs share similar protein structures except

for their N-termini, which are categorized into coiled-coil (CC)

motif, Toll/Interleukin-1 receptor (TIR) domain and resistance to

powdery mildew 8 (RPW8) domain. Based on this, typical NLRs are

classified as CC-NLRs (CNLs), TIR-NLRs (TNLs) and RPW8-NLRs

(RNLs) (Maruta et al., 2022). Recently, significant progresses have

been achieved in NLR protein structure and mechanism studies. It

has been revealed that CNLs and TNLs can interact with pathogen

effectors directly or indirectly, while RNLs primarily mediate

downstream signaling of CNLs and TNLs (Zhang et al., 2022b).

All three NLRs classes can be assembled into resistosomes to trigger

resistance, inducing Ca2+ influx and producing small bioactive

molecules (Figure 1) (Wang et al., 2019a; Ma et al., 2020; Jacob

et al., 2021). These breakthroughs advance our understanding of

plant innate immunity and enable applications in breeding

practices, such as wheat Sr35 (Zhao et al., 2022).

Meanwhile, many crop NLRs are atypical, which contain

additional integrated domains (IDs), including WRKY, kinase,

heavy metal-associated (HMA), and zinc-finger BEAF and DREF

(zf-BED) domains (Zhang et al., 2022b). In several atypical NLRs,

the IDs act as ‘integrated decoys’ to bind pathogen effectors

(Figure 1) (Jones and Dangl, 2006). However, not all the IDs

serve as decoys; for example, the zf-BED domains of rice XA1

and XA14 could not directly interact with pathogen effectors

(Zhang et al., 2020; Yoshihisa et al., 2022). Additionally, many

atypical NLRs require partner NLRs, usually known as ‘helper

NLRs’, to form NLR pairs (also called paired NLRs) and confer

resistance (Jones et al., 2016). In rice, many cloned blast R genes

encode NLR pairs, such as RGA4/RGA5, Pikp-1/Pikp-2 and its

allelic genes (Zhang et al., 2022b).

RLKs and receptor-like proteins (RLPs) represent another

major class of R gene products. Although classified as PRRs in

many reports, their discoveries stemmed from the gene-for-gene

hypothesis. The examples include Xa21 and Cf-9 (Figure 1). Xa21 is

the first cloned R gene in rice and confers resistance to bacterial

blight (Song et al., 1995). Cf-9 is the first cloned tomato R gene for

resistance to the fungus Cladosporium fulvum (Jones et al., 1994).

Xa21 protein is an RLK containing an extracellular leucine-rich

repeat (LRR) domain and an intracellular kinase domain, while Cf-

9 is an LRR-RLP lacking the kinase domain (Jones et al., 1994; Song

et al., 1995). There are also some other RLKs that contain different

kinds of extracellular domains, such as the XA4 and Pi-d2. XA4 is a

cell wall-associated kinase (WAK) conferring bacterial blight

resistance in rice, and Pi-d2 contains an extracellular B-lectin

domain and mediates rice blast resistance (Chen et al., 2006; Hu

et al., 2017).

Besides NLRs and RLKs, another interesting class of R gene

products is the executors. The executor R genes harbor special

effector binding elements (EBEs) in their promoters and can be

induced by transcription activator-like effectors (TALEs) secreted
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by Xanthomonas, which includes many species that can infect large

numbers of crops worldwide (Figure 1) (Timilsina et al., 2020;

Zhang et al., 2022a). The common feature of these executors is that

they trigger significant defense responses, even cell death (Zhang

et al., 2015). To date, all the reported executor R genes originate

from pepper and rice. Among them, Bs3 and Bs3-E encode flavin-

dependent monooxygenase (FMO) homologs. The others,

including Bs4C-R, Xa7, Xa10, Xa23 and Xa27, all encode small

special proteins with low similarity to known proteins (Zhang et al.,

2015, 2022).

Notably, there are many special recessive R genes. These genes

can be considered as mutations of susceptibility (S) genes targeted

by pathogen effectors (Figure 1) (Timilsina et al., 2020; Zhang et al.,

2022a). The well-known examples of this class include barley

mildew resistance locus O (mlo) and rice xa13 genes. Mlo encodes

a seven-transmembrane (7-TM) protein that negatively regulates

cell death and plant defense (Buschges et al., 1997; Piffanelli et al.,

2002). Homozygous mlo mutants can confer resistance to powdery

mildew fungus in barley (Buschges et al., 1997). The recessive xa13

results from a mutation in the EBE of OsSWEET11, which is

targeted by Xanthomonas oryzae pv. oryzae (Xoo) effector PthXo1

(Chu et al., 2006; Yang et al., 2006; Moscou and Bogdanove, 2009).

Xoo TALEs can also bind to the EBEs of other SWEET genes in rice,

and mutations in these EBEs have generated other recessive R genes,

such as xa25 and xa41(t) (Liu et al., 2011; Hutin et al., 2015).

Some recessive R genes are alternative forms of the corresponding

S genes, because they are essential components for gene expression or
Frontiers in Plant Science 03
translation (Figure 1). The rice xa5 gene encodes a protein harboring a

V39E amino acid substitution in the gamma subunit of the basal

transcription factor IIA 5 (TFIIAg5) (Iyer and McCouch, 2004; Jiang

et al., 2006). In Xa5-carrying rice, Xoo TALEs hijacks TFIIAg5 for

inducing host gene expression. In contrast, the mutated TFIIAg5V39E

blocks TALE binding and leads to passive resistance (Zhang and

Wang, 2013; Yuan et al., 2016). Similar results have been found in

cloning of R genes against viruses. The potyviruses use a genome-

linked viral protein, VPg, to recruit host eukaryotic translation

initiation factor 4E (eIF4E) or its isoform eIF(iso)4E for viral

replication (Wang and Krishnaswamy, 2012). Coincidentally, many

R genes mediating resistance to different potyviruse species were

finally found to be variants of eIF4E or eIF(iso)4E (Wang and

Krishnaswamy, 2012).

Other R gene products also exhibit great functional diversity

(Figure 1). The first cloned plant R gene, Hm1 in maize, encodes an

enzyme that detoxifies the Helminthosporium carbonum (HC) toxin

from Cochliobolus carbonum (Johal and Briggs, 1992). Wheat Yr36

encodes a kinase-START domain protein that phosphorylates other

proteins to increase reactive oxygen species (ROS) and suppresses

photosynthesis during stripe rust infection (Fu et al., 2009; Wang

et al., 2019b). The rice STV11 gene encodes a sulfotransferase that

converts salicylic acid (SA) into sulphonated SA (SSA) during the

resistance to rice stripe virus (RSV) (Wang et al., 2014a). Due to space

limitations, other cloned plant R gene products are not discussed

here. Collectively, all these R genes provide a foundation for

developing new breeding strategies to enhance crop resistance.
FIGURE 1

Model of different R gene products in plant-pathogen interactions. The products encoded by cloned R genes primarily include NLRs, RLKs/RLPs,
executors and enzymes. Recessive R genes are usually mutations of S genes, including protein variants and promoter mutations.
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Strategies for improving crop
resistance

Strategy 1. Domain swapping and gene
shuffling of R genes

Domain swapping is a technique to construct chimeric genes or

proteins formed by exchanging functional domains. Gene shuffling,

in contrast, involves generating constructs through PCR

amplification using homologous R genes as templates. Both

methods have long served as the strategic approaches in plant

immunity research to identify critical sequences or residues in

cloned R gene products (Figure 2). The earliest application of

these methods can be traced back to the studies on flax L and

tomato Cf4/9 loci (Ellis et al., 1999; Wulff et al., 2001). The L locus

harbors multiple allelic NLR genes that confer strain-specific

resistance against the flax rust fungus Melampsora lini via

recognition of distinct effector proteins. Intragenic exchanges

among these genes had produced chimeric genes, which revealed

the TIR and LRR domains as key determinants of resistance

spectrum (Ellis et al., 1999).

These methods have also been used to generate novel R genes

with enhanced specificity. Using the L locus again as an example, L5

and L6 are two alleles that confer resistance to different variants of
Frontiers in Plant Science 04
the fungal effector AvrL567. After domain swapping, a chimera

protein exhibited recognition of a previously non-recognized

AvrL567 variant when expressed in tobacco (Ravensdale

et al., 2012).

Practically speaking, the value of these methods lies on

discovering the critical functional residues in R gene products,

rather than exploiting for novel recognition profile. Both

approaches require homologous R genes as initial templates,

making them particularly suitable for NLR- and RLK-encoding

genes, as recombination within LRR domains would expands

combinatorial possibilities (Figure 2). However, the templates

would also be the limits of the resistance spectrum potential in

most cases, and the new recognition profiles are often limited within

the same pathogen species (Zhao et al., 2009; Ravensdale

et al., 2012).
Strategy 2. Random mutation of R genes

Mutation is the engine of evolution. As a result, random

mutagenesis has emerged as a common strategy to expand R gene

recognition profiles (Figure 2). For instance, Rx encodes an NLR

that confers resistance to potato virus X (PVX) by recognizing its

coat protein, CP-TK. Error-prone PCR was used to mutate the LRR

domain of Rx. After screening more than two thousand clones,
FIGURE 2

Comparison of different strategies to improve plant disease resistance. The five strategies were compared based on effectiveness, development time,
cost, specificity, and crop applicability.
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mutants with broader recognition spectra for CP-KR variants and

poplar mosaic virus (PopMV) were identified (Farnham and

Baulcombe, 2006). In another mutant library targeting the

remaining regions of Rx, several mutants with increased

resistance to PopMV were also obtained (Harris et al., 2013). The

potato NLR R3a detects Phytophthora infestans effector AVR3a but

shows limited response to the AVR3aEM variant. By constructing a

random mutant library of R3a, researchers successfully isolated

multiple variants with enhanced sensitivity to AVR3aEM, thereby

broadening its resistance spectrum (Segretin et al., 2014).

Similar studies have been reported in other pathosystems to

generate artificially evolved R genes with expanded recognition

specificity by using random mutagenesis (Sueldo et al., 2015). The

efficiency varies across different R genes. The critical requirement is

generating sufficient mutants to ensure adequate coverage of the whole

variations (Figure 2) (Farnham and Baulcombe, 2006; Segretin et al.,

2014; Sueldo et al., 2015). Therefore, the balance between outcome and

cost should be considered before performance.
Strategy 3. Gene editing of S genes

In the last decade, gene editing has emerged as one of the most

attractive technologies in research. It has developed spans from zinc

finger nucleases (ZFNs) and transcription activator-like effector

nucleases (TALENs) to clustered regularly interspaced short

palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)

system (Wang and Doudna, 2023). These technologies enable

precise modification of target genes/sequences for specific

purposes. Consequently, their applications have rapidly expanded

from functional genomic study to crop improvement (Zhang et al.,

2022a; Wang and Doudna, 2023). For improving disease resistance,

editing crop S genes represents a straightforward strategy in practice

(Figure 2; Table 1).

The best-characterized example is loss-of-function mutations in

theMlo gene. The barleymlomutants have provided durable broad-

spectrum resistance against almost all Blumeria graminis f.sp.

hordei (Bgh) isolates in agriculture since the late 1970s (Kusch

and Panstruga, 2017). The mlo gene was isolated via map-based

cloning almost three decades ago (Buschges et al., 1997). It encodes

a seven-transmembrane protein that is critical for mediating

powdery mildew susceptibility. As a calcium-regulated

calmodulin-binding protein, MLO protein suppresses host

defense reactions including cell wall reinforcement and

hypersensitive responses, facilitating pathogen invasion (Piffanelli

et al., 2002). Subsequent studies demonstrated that loss function of

Mlo confers resistance in over 10 plant species, including

Arabidopsis, wheat, and grapevine (Kusch and Panstruga, 2017).

Using different gene editing tools, Mlo-edited plants have been

generated in wheat and cucumber (Table 1). Unlike barley, bread

wheat is hexaploid, and only complete loss of all the three Mlo

homologs, TaMLO-A1, TaMLO-B1 and TaMLO-D1, had led to the

resistance to Blumeria graminis f. sp. tritici (Bgt) (Wang et al.,

2014b; Li et al., 2022b). Although cucumber is a diploid, it has many

Mlo homologs. Triple mutants of CsaMLO1, CsaMLO8 and
Frontiers in Plant Science 05
CsaMLO11 were generated by CRISPR/Cas system and exhibited

complete resistance to Podosphaera xanthii (Tek et al., 2022).

Downy Mildew Resistant 6 (DMR6) is an S gene first identified

in Arabidopsis and then applied in many crops (Table 1). It encodes

a salicylic acid 5-hydroxylase (S5H) that converts salicylic acid (SA)

into 2,5-Dihydroxybenzoic acid (2,5-DHBA) and plays a negative

role in plant immunity (Zhang et al., 2017). The Arabidopsis dmr6

mutants displayed resistance to Hyaloperonospora parasitica, the

pathogen of downy mildew (DM) (van Damme et al., 2008). The

potato genome contains two DMR6 homologs. CRISPR/Cas9-

generated deletion mutants of StDMR6–1 showed increased

resistance to the oomycete pathogen Phytophthora infestans,

which is the causal agent of late blight (Kieu et al., 2021).

Inactivation of SlDMR6–1 by CRISPR/Cas9 made tomato

resistant to a broad spectrum of pathogen, including bacteria,

oomycetes, and fungi (Thomazella et al., 2021). In grapevine,

CRISPR/Cas9 editing of VviDMR6–1 and VviDMR6–2 could

reduce the susceptibility to downy mildew (Giacomelli et al.,

2023; Djennane et al., 2024). Knocking-out of BoDMR6 in

cabbage resulted in lower disease index of black rot and clubroot

(Zhang et al., 2025). Editing MusaDMR6 in banana and ObDMR6

in sweet basil enhanced their resistance to Xanthomonas campestris

pv. musacearum (Xcm) and Peronospora belbahrii respectively

(Hasley et al., 2021; Tripathi et al., 2021). In rice, the homologs of

DMR6, also called OsS5H1, OsS5H2, and OsS5H3 , were

simultaneously edited by CRISPR/Cas9. The triple mutant

exhibited stronger resistance to Xoo and Magnaporthe oryzae (M.

oryzae) than any single mutants (Liu et al., 2023).

Other attempts at S gene editing have also been carried out

(Table 1). To combat potyviruses, eIF4E1, nCBP-1 and nCBP-2 were

modified in Arabidopsis and cassava (Bastet et al., 2019; Gomez

et al., 2019). To overcome citrus canker, the CsLOB1 gene was

mutated using CRISPR/Cas9 technology (Jia et al., 2017). The wheat

kinase gene TaPsIPK1 was recently discovered as an S gene, and its

inactivation by CRISPR/Cas9 conferred resistance to wheat stripe

rust (Wang et al., 2022). In tomato, CRISPR/Cas9-mediated

mutagenesis of SlBs5, SlBs5L and SlPMR4 increased the resistance

to bacterial spot, powdery mildew and late blight (Santillan

Martinez et al., 2020; Li et al., 2022a; Ortega et al., 2024).

Knocking out StDND1 and StCHL1 made potato plants resistant

to late blight (Kieu et al., 2021). Editing Pi21, Bsr-d1 and TFIIAg5/
Xa5 genes mimicked the resistance of pi21, bsr-d1 and xa5 in rice

(Tao et al., 2021; Gupta et al., 2023; Yang et al., 2023). Meanwhile,

gene editing of rice RESISTANCE TO BLAST1 (RBL1), maize

ZmNANMT and cabbage BoBPM6 could even result in broad-

spectrum resistance (Li et al., 2023; Sha et al., 2023; Zhang

et al., 2025).

S gene inactivation has been attracting increasing attention in

studies because of its high effectiveness. However, there are still

some considerations to be noted. The most important consideration

is that knockout of many S genes could lead to unexpected

developmental impairments (Figure 2). This phenomenon has

been observed in multiple crops. To address this, one option is to

select alternative S genes for editing, while another is to screen

large-scale mutant populations for ideal phenotypes. The later
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TABLE 1 Plant S genes edited for improving disease resistance in recent studies.

S gene Host
Editing
tool

Pathogen
Disease
name

Reference

Mlo barley N.A.
Blumeria graminis f.
sp. Hordei

powdery
mildew

Buschges et al., 1997

TaMLO-A1, TaMLO-
B1, TaMLO-D1

wheat
TALEN,
CRISPR/Cas9

Blumeria graminis f.
sp. Tritici

powdery
mildew

Wang et al., 2014b; Li et al., 2022b

CsaMLO1,
CsaMLO8,
CsaMLO11

cucumber CRISPR/Cas9 Podosphaera xanthii
powdery
mildew

Tek et al., 2022

DMR6 Arabidopsis N.A. Hyaloperonospora parasitica
downy
mildew

van Damme et al., 2008

StDMR6-1 potato CRISPR/Cas9 Phytophthora infestans late blight Kieu et al., 2021

SlDMR6-1 tomato CRISPR/Cas9

Pseudomonas syringae
pv. tomato

bacterial
speck

Thomazella et al., 2021

Xanthomonas gardneri,
Xanthomonas perforans

bacterial spot

Phytophthora capsici
phytophthora
blight

Pseudoidium neolycopersici
powdery
mildew

BoDMR6 cabbage CRISPR/Cas9

Xanthomonas campestris
pv. campestris

black rot
Zhang et al., 2025

Plasmodiophora brassicae clubroot

VviDMR6-1,
VviDMR6-2

grapevine CRISPR/Cas9 Plasmopara viticola
downy
mildew

Giacomelli et al., 2023; Djennane et al., 2024

MusaDMR6 banana CRISPR/Cas9
Xanthomonascampestris
pv. musacearum

Xanthomonas
wilt

Tripathi et al., 2021

ObDMR6 sweet basil CRISPR/Cas9 Peronospora belbahrii
downy
mildew

Hasley et al., 2021

OsS5H1,
OsS5H2, OsS5H3

rice CRISPR/Cas9

Xanthomonas oryzae
pv. oryzae

bacterial
blight Liu et al., 2023

Magnaporthe oryzae blast

eIF4E1 Arabidopsis
CRISPR-Cas9-
cytidine
deaminase

Clover yellow vein virus / Bastet et al., 2019

nCBP-1, nCBP-2 cassava CRISPR/Cas9
Cassava brown streak virus,
Ugandan cassava brown
streak virus

brown streak Gomez et al., 2019

CsLOB1 citrus CRISPR/Cas9 Xanthomonas citri subsp. citri canker Jia et al., 2017

TaPsIPK1 wheat CRISPR/Cas9
Puccinia striiformis f.
sp. Tritici

wheat
stripe rust

Wang et al., 2022

SlBs5, SlBs5L tomato CRISPR/Cas9
Xanthomonas gardneri,
Xanthomonas perforans

bacterial spot Ortega et al., 2024

SlPMR4 tomato CRISPR/Cas9 Oidium neolycopersici
powdery
mildew

Santillan Martinez et al., 2020

SlPMR4 tomato CRISPR/Cas9 Phytophthora infestans late blight Li et al., 2022a

StDND1 potato CRISPR/Cas9 Phytophthora infestans late blight
Kieu et al., 2021

StCHL1 potato CRISPR/Cas9 Phytophthora infestans late blight

(Continued)
F
rontiers in Plant Scienc
e
 06
 frontiersin.org

https://doi.org/10.3389/fpls.2025.1586375
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1586375
approach has proven feasible in wheat and rice. Knockout of Mlo

homologs in wheat caused reduced plant height and grain yield.

Through screening additional mlo mutants, the Tamlo-R32 mutant

without growth penalties was recently identified (Li et al., 2022b).

The rbl1mutant exhibited many growth defects in rice, whereas the

rblD12 mutant, generated via multiplex gene editing, achieved a

balance between growth and resistance (Sha et al., 2023).

The success in S gene inactivation-mediated resistance has

extended its application to studies on resistance negative regulators.

Some negative regulator genes even function similarly to S genes in

plant-microbe interactions. For example, the GbWAKL14 gene

negatively regulated defense response by modulating reactive oxygen

species (ROS) levels, and its CRISPR/Cas9-mediated inactivation

enhanced the wilt disease resistance in cotton (Zhao et al., 2024).

Although their mechanistic contributions to pathogen invasion may

vary, these genes provide valuable resources for improving crop

resistance. Given the limited availability of cloned R and S genes in

certain crops, modification of negative regulators offers a viable short-

term alternative option.
Strategy 4. Promoter editing for resistance

Besides editing the coding sequences of crop S genes, promoter

modification is another strategy for improving resistance, especially
Frontiers in Plant Science 07
when combating Xanthomonas. Many Xanthomonas species exploit

TALEs to induce the host S genes to acquire nutrients and induce

disease symptoms. As a result, artificially editing EBEs in S gene

promoters will attenuate their expression activation, mimicking the

function of some recessive R genes (Figure 2; Table 2). In citrus, the

CsLOB1 gene is induced by Xanthomonas citri subsp. citri (Xcc)

effector PthA4. It has been reported in many studies that editing the

PthA4 EBE in CsLOB1 promoter significantly reduced or even

eliminated the canker symptoms (Jia et al., 2017, 2019; Jia and

Wang, 2020; Jia et al., 2022, 2024). Xanthomonas axonopodis pv.

manihotis (Xam), also called Xanthomonas phaseoli pv. manihotis

(Xpm), causes bacterial blight in cassava. Its major virulence

effector, TAL20, upregulates the expression of MeSWEET10a

during infection. Editing the TAL20 EBE in MeSWEET10a

promoter resulted in bacterial blight resistance in cassava (Elliott

et al., 2024; Wang et al., 2024c). Moreover, using a DMS3-ZF

system, which fused the artificial zinc-fingers (ZFs) to a DNA

methylation-related protein, the methylation within and around

the EBETAL20 was increased. This modification prevented the

transcription activation of MeSWEET10a and decreased the

disease symptoms in cassava (Veley et al., 2023). Bacterial blight

and bacterial leaf streak disease in rice are both caused by

Xanthomonas, and several rice S genes targeted by TALEs have

been identified until now. OsSWEET11 (also called Xa13 or Os8N3),

OsSWEET13, and OsHXK5 are activated by Xoo effectors PthXo1,
TABLE 1 Continued

S gene Host
Editing
tool

Pathogen
Disease
name

Reference

Pi21 rice CRISPR/Cas9 Magnaporthe oryzae blast
Yang et al., 2023 (combined with editing OsSULTR3;6
promoter); Tao et al., 2021 (combined with editing Bsr-
d1 and Xa5)

Bsr-d1 rice CRISPR/Cas9 Magnaporthe oryzae blast Tao et al., 2021 (combined with editing Pi21 and Xa5)

TFIIAg5/Xa5 rice CRISPR/Cas9
Xanthomonas oryzae
pv. oryzae

bacterial
blight

Tao et al., 2021 (combined with editing Pi21 and Bsr-d1)

TFIIAg5/Xa5 rice Prime editing
Xanthomonas oryzae
pv. oryzae

bacterial
blight

Gupta et al., 2023 (combined with knock-in EBE into
xa23 promoter)

RBL1 rice CRISPR/Cas9

Xanthomonas oryzae
pv. oryzae

bacterial
blight

Sha et al., 2023
Magnaporthe oryzae blast

Ustilaginoidea virens false smut

ZmNANMT maize CRISPR/Cas9

Cochliobolus heterostrophus
southern
leaf blight

Li et al., 2023Setosphaeria turcica
northern
leaf blight

Fusarium verticillioides
Fusarium
stalk rot

BoBPM6 cabbage CRISPR/Cas9

Fusarium oxysporum Fusarium wilt

Zhang et al., 2025
Xanthomonas campestris
pv. campestris

black rot

Plasmodiophora brassicae clubroot
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TABLE 2 Types of promoter editing to enhance plant disease resistance in recent studies.

Edited Corresponding
Pathogen

Disease
name

Reference

Xanthomonas citri subsp.
citri (Xcc)

canker
Jia et al., 2017, 2019; Jia and Wang, 2020; Jia
et al., 2022, 2024

Xanthomonas axonopodis
pv. manihotis (Xam)

bacterial blight
Veley et al., 2023; Elliott et al., 2024; Wang
et al., 2024c

vrXa7
Xanthomonas oryzae pv.
oryzae (Xoo)

bacterial blight

Ni et al., 2021
Xanthomonas
oryzae pv. oryzicola (Xoc)

bacterial
leaf streak

Xanthomonas
oryzae pv. oryzicola (Xoc)

bacterial
leaf streak

Xu et al., 2021; Yang et al., 2023 (combined
with editing Pi21)

Xanthomonas
oryzae pv. oryzicola (Xoc)

bacterial
leaf streak

Wang et al., 2024a

Xanthomonas oryzae pv.
oryzae (Xoo)

bacterial blight
Kim et al., 2019; Li et al., 2019 (combined with
editing TMS5 and Pi21); Li et al., 2020; Gupta
et al., 2024 (combined with other editings)

alC,
Xa7

Xanthomonas oryzae pv.
oryzae (Xoo)

bacterial blight
Eom et al., 2019; Oliva et al., 2019; Xu et al.,
2019; Schepler-Luu et al., 2023; Liu et al., 2024

Xanthomonas oryzae pv.
oryzae (Xoo)

bacterial blight Wei et al., 2021

Xanthomonas oryzae pv.
oryzae (Xoo)

bacterial blight
Gupta et al., 2023 (combined with
editing TFIIAg5)

Xanthomonas oryzae pv.
oryzae (Xoo),
Xanthomonas
oryzae pv. oryzicola (Xoc)

bacterial blight,
bacterial
leaf streak

Wang et al., 2024b
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Type S gene(s) Host Editing tool
cis-element effector

1 CsLOB1 citrus

CRISPR/Cas9, CRISPR-
Cas12a, CRISPR-SpCas9p,
LbCas12a-D156R,
Cas12a/CBE

EBEPthA4 -LOBP PthA4

2 MeSWEET10a cassava DMS3-ZF, CRISPR/Cas9 EBETAL20 TAL20

3

OsSWEET11,
OsSWEET14

rice CRISPR/Cas9
EBEPthXo1,
EBEPthXo3, EBEAvrXa7

PthXo1, PthXo3, A

OsSULTR3;6 rice CRISPR/Cas9 EBETal2g Tal2g

4 OsSULTR3;6 rice CRISPR/Cas9 EBETal2g/Tal5d Tal2g/Tal5d

5
OsHXK5;
OsSULTR3;6

rice CRISPR/Cas9 EBETal10a, EBETal2g Tal10a, Tal2g

6
OsSWEET11
(Xa13/Os8N3)

rice CRISPR/Cas9; Prime editing EBEPthXo1 PthXo1

7
OsSWEET11,
OsSWEET13,
OsSWEET14

rice CRISPR-Cas9/Cpf1
EBEPthXo1, EBEPthXo2,
EBETalC, EBETalF,
EBEPthXo3, EBEAvrXa7

PthXo1, PthXo2, T
TalF, PthXo3, Avr

8 xa23 rice

CRISPR/Cas9 knock-in EBEAvrXa23 AvrXa23

Prime editing knock-in EBEPthXo1 PthXo1

CRISPR/Cas9 knock-in 10 EBEs
PthXo1, PthXo3,
AvrXa23,
Tal9aBLS256, etc.
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PthXo2, and Tal10a, respectively; OsSWEET14 is induced by four

Xoo TALEs, PthXo3, AvrXa7, TalC, and TalF, which bind distinct

EBEs; TheOsSULTR3;6 gene is targeted by Xanthomonas oryzae pv.

oryzicola (Xoc) effectors Tal2g and Tal5d (Zhang et al., 2022a). As a

result, editing the EBEs in these genes led to resistance in rice, and

different combinations of these edits had shown broader resistance

spectra in multiple studies (Eom et al., 2019; Kim et al., 2019; Li

et al., 2019; Oliva et al., 2019; Xu et al., 2019; Li et al., 2020; Ni et al.,

2021; Xu et al., 2021; Schepler-Luu et al., 2023; Yang et al., 2023;

Gupta et al., 2024; Liu et al., 2024; Wang et al., 2024a).

After long-term evolution, some crops have developed

‘imitative’ EBEs for TALEs in the promoters of executor-encoding

genes to trigger defense responses (Zhang et al., 2022a). Using gene

editing tools, promoters of the recessive alleles of executor-encoding

genes could be modified to respond to pathogen invasion. Such

attempts are mainly focused on rice xa23, which encodes the same

executor as Xa23 but lacks the EBEAvrXa23 in its promoter (Table 2).

Using the CRISPR/Cas9 system, EBEAvrXa23 could be knocked into

the xa23 promoter with very low probability, rendering rice plants

resistant to Xoo (Wei et al., 2021). In another study, EBEPthXo1 was

knocked into the xa23 promoter to broaden the resistance spectrum

of TFIIAg5-edited plants (Gupta et al., 2023). Even an artificial EBE

array, which consisted of different EBEs for TALEs of Xoo and Xoc,

could be knocked into the promoter of xa23, conferring broad-

spectrum resistance in rice (Wang et al., 2024b).

To date, promoter modification of non-R or non-S genes for

resistance enhancement remains unreported. This strategy is also

theoretically feasible for genes triggering cell death and defense

responses. However, the cis-elements specially responding to

pathogens are not always clear in many cases, which would limit

the applicability of this approach (Figure 2).
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Strategy 5. Engineering of R gene products

In recent years, rapid developments have taken place in structural

biology. These advancements has provided accumulating details on

interactions between R gene products and pathogen effectors, enabling

the engineering of novel R gene products. Such pioneering attempts

and studies mainly focused on rice blast resistance (Figure 2; Table 3).

The allelic R genes Pikp and Pikm are each composed of two tandem

NLR genes. Both Pikp-1 and Pikm-1 contain a Heavy Metal

Associated (HMA) domain that interacts with effectors from M.

oryzae. Based on structural insights into protein interactions,

specific residues from the Pikm-1 HMA domain were swapped into

Pikp-1. And one mutant, Pikp-1NK-KE, exhibited altered binding to

AVR-PikA and AVR-PikE, effectors recognized by Pikm but not Pikp

(De la Concepcion et al., 2019). Similar engineering was applied to

RGA5, another NLR containing an HMA domain at the carboxyl

terminus. Key residues in RGA5 were replaced with Pikp-1-derived

AVR-PikD-interacting residues. The engineered NLR, RGA5m1m2,

retained the recognition of AVR-Pia and AVR1-CO39 while gaining

additional AVR-PikD specificity (Cesari et al., 2022). However, these

engineered NLRs conferred resistance only in tobacco. Transgenic rice

plants expressing these constructs failed to resist blast disease, possibly

due to insufficient structural data on full-length NLR proteins at the

time (De la Concepcion et al., 2019; Cesari et al., 2022).

With advancements in structural analysis and prediction

techniques, engineering NLRs has become feasible in practice

(Table 3). In a study on RGA5, mutations were introduced into

its HMA domain based on structure predictions to interact with a

non-cognate effector, AvrPib. The engineered NLR, RGA5HMA2,

successfully shifted recognition from AvrPia to AvrPib in both

tobacco and rice (Liu et al., 2021). A similar outcome was observed
TABLE 3 Recent studies on engineering of NLRs.

Case NLR
Engineered
form

Changement Plant Result Reference

1 Pikp-1 Pikp-1NK-KE
mutaion at HMA (based on
Pikm-1)

tobacco
obtained additional recognition profile of
Pikm (in tobacco)

De la Concepcion
et al., 2019

2 RGA5 RGA5HMA2 mutaion at HMA
(structure prediction)

tobacco,
rice

recognized AVR-Pib not AVR-Pia Liu et al., 2021

3 RGA5 RGA5m1m2
mutaion at HMA (based on
Pikm-1)

tobacco
obtained additional recognition profile of
Pikm (in tobacco)

Cesari et al., 2022

4 Pikp-1

Pikp-1OsHIPP19mbl7 mutaion at HMA (based
on OsHIPP19) tobacco,

rice
obtained additional recognition to AVR-PikC
and AVR-PikF

Maidment et al., 2023

Pikp-1SNK-EKE
mutaion at HMA
(structure-guided)

5 Pikm-1 Pikm-1Nano
replacement of HMA
with nanobody

tobacco
obtained the recognition profile of nanobody
(in tobacco)

Kourelis et al., 2023

6 RGA5 RGA5HMA5 mutaion at HMA
(structure based)

tobacco,
rice

recognized AVR-PikD not AVR-Pia Zhang et al., 2024

7 RGA5 RGA5HMA120 mutaion at HMA (based
on HMA120)

tobacco,
rice

recognized AVR-Pita not AVR-Pia Zhu et al., 2025
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with another designed NLR, RGA5HMA5, which altered resistance

specificity from AVR-Pia to AVR-PikD in rice (Zhang et al., 2024).

Through large-scale screening of rice HMA domains, HMA120 was

identified as an AVR-Pita-interacting domain. After integrating

HMA120 into RGA5, the chimeric RGAHMA120 could confer

resistance to AVR-Pita-carrying pathogen in rice (Zhu et al.,

2025). Likewise, the HMA domain of OsHIPP19 was able to

interact with AVR-PikC and AVR-PikF with high affinity. Using

structural modeling, two engineered NLRs, Pikp-1OsHIPP19-mbl7 and

Pikp-1SNK-EKE, were generated. Both of them mediated additional

resistance to M. oryzae strains expressing AVR-PikC and AVR-

PikF in rice (Maidment et al., 2023).

The most groundbreaking advance in R gene product

engineering is the fusion of NLRs with nanobodies (Table 3). The

nanobodies are small fragments of camelid antibodies and are

widely used in biotechnology. Replacing the HMA domain with

nanobodies specific to fluorescent proteins (FPs), Pikm-1Nano and

Pikm-2 formed a ‘Pikobody’ that conferred resistance against

Potato virus X (PVX) variants expressing FPs in transgenic

tobacco (Kourelis et al., 2023). The Pikobody established an

artificial adaptive immunity-like system, enabling plants to

combat diverse pathogens, including emerging strains, with

potential applications in future crop production. However, it

should be noticed that no effector-targeted Pikobody has been

engineered to date. As a consequence, more practice is needed to

further optimize the system to enhance its practicality.
Future perspectives

Over three decades of researches have significantly advanced our

understanding of plant defense mechanisms against pathogens.

Although there are still many unknowns, current insights already

provide actionable guidance for crop resistance breeding. Pathogen

invasion relies on multiple steps, many of which involve hijacking and

exploiting proteins or other molecules in host cells for paying the

minimum cost. Conversely, perturbations in pathogen invasion

processes can disrupt pathogen viability and lead to infection failure.

Such dynamics underpin the evolutionary emergence of recessive

resistance genes in plants. As a result, targeted intervention in critical

molecular nodes of pathogen-host interplay will still be a common

strategy in the future. These nodes include both S genes and resistance-

negative regulator-encoding genes. More studies on the editing of both

the coding regions and promoters of these genes will appear, especially

in combination with editing of other functional genes.

With rapid developments in synthetic biology, attempts to

engineer specialized NLRs have already appeared. Although these

attempts have not reached the point where it can be applied in crop

production now, the prospect is broad and attractive. The

‘Pikobody’ system has shown us the possibility that artificial

immune receptor proteins could be a general solution in dealing

with diverse pathogen threats. Nonetheless, more work should be

done to optimize it to meet the needs of different crops.
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Additionally, expanding the spectrum of engineered receptors will

be a key direction in the near future. This could be achieved by

targeting PAMPs or other common features of distinct pathogens,

as well as by combining recognition regions from multiple

receptors. Moreover, synthetic promoters will be another focus.

With the help of pathogen-responsive cis-elements, many genes

could be used to improve crop disease resistance. Currently, such

attempts have been made, such as the ‘promoter trap’ in several

plants to resist Xanthomonas (Zhang et al., 2022a). In the future,

more sophisticated promoters will be engineered to combat

multiple pathogens.

Artificial intelligence (AI) has emerged as a transformative force

in life sciences, redefining many research paradigms. Last year, the

Nobel Prize was awarded to three scientists for their contribution to

computational protein design and protein structure prediction.

Both techniques can be applied in research on plant-pathogen

interaction and crop disease resistance. To date, many direct

interactions between plant R gene products and pathogen

effectors remain unclear. And this challenge will soon be

addressed with the aid of platforms like AlphaFold. Not only can

AI assist in prediction, but structure-based de novo design of plant R

gene products will also be possible in the near future. Recently,

artificial antibodies have been successfully designed through a fully

de nove method and have bound specific epitopes as expected

(Bennett et al., 2025). This approach will facilitate the engineering

of plant immune receptors. In addition, machine learning will play a

key role in identifying essential genes in the response to pathogens

based on multi-omics data and in optimizing CRISPR targets to

increase editing efficiency.

Ecological factors and impacts should be considered in disease

resistance breeding. Plants are colonized by communities of microbes

in nature, which include not only pathogens but also beneficial

microbes. Some of them can protect plants from being infected by

various pathogens. If the plants are engineered to facilitate their

colonization, the disease resistance will be enhanced (Ge and Wang,

2025). Meanwhile, plants and pathogens are co-evolving with each

other. Therefore, the variation and evolution of pathogens should be

considered when engineered R genes are applied in breeding.

Monitoring the effector diversity among different strains from

various locations would provide important information for

adapting engineering strategies.

The strategies discussed here largely rely on transgenic process.

The public’s attitude towards genetically modified organisms

(GMOs) is worth noting. Most of the concerns about GMOs stem

from misunderstandings. Communication and transparent policies

would be useful to change public perception. Scientists should make

more efforts to demonstrate to the public that using gene editing

tools can now minimize changes to crop genomes; policymakers

should let the public know that all the GMOs are regulated by a

series of policies and the GMOs are optional, not mandatory, in

daily life. Open-access databases documenting the safety and

efficacy of edited traits will also be helpful for the public. In

China, the acceptance of GMOs has improved compared with ten
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years ago. With continuous efforts, disease resistance breeding

paradigms will be reshaped in the future.
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