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Species of Agapetes are recognized for their radish-like tubers, which possess
significant medicinal properties. Resolving the long-standing phylogenetic
controversies between Agapetes and its relatives is crucial for facilitating the
utilization of this genus. However, the scarcity of molecular data has persistently
constrained such investigations. In this study, we generated the first high-quality
chloroplast (cp) genome assemblies for three pharmacologically important
Agapetes species: A. malipoensis, A. guangxiensis, and A. obovata, with
genome sizes of 172,729, 176,291, and 180,574 bp, respectively. Phylogenetic
analyses based on both complete chloroplast genomes and nuclear internal
transcribed spacer (ITS) sequences supported the monophyly of Agapetes and
Vaccinium, with bootstrap values of 100% and 63%, respectively. More
intriguingly, the chloroplast phylogeny placed the Agapetes clade nested
within Vaccinium. Moreover, the ITS phylogeny revealed that species of
Agapetes were intermixed with those of Vaccinium. This intermixed pattern
was further supported by hierarchical clustering based on relative synonymous
codon usage (RSCU) and the abundance of repetitive sequences, including
simple sequence repeats (SSRs) and dispersed repeats. Species of the two
genera exhibited no significant differences in other chloroplast genomic
features, including proportions of protein-coding genes and non-coding
regions, GC content across all quadripartite structural regions, IR boundary
shift, and tandem repeats. These findings provide novel molecular evidence
supporting the taxonomic merger of the medicinally important genera Agapetes
and Vaccinium. This work establishes a critical foundation for future
investigations into the evolutionary origins of medicinal traits, pharmaceutical
exploration, and the precise species delimitation of Agapetes and Vaccinium.
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1 Introduction

Agapetes (Ericaceae) is primarily distributed from the eastern
Himalayas to Southeast Asia. This genus comprises approximately
115 species, with 63 of them native to China (Tong et al., 2024;
POWO, 2025; Zou et al,, 2025). Species of Agapetes are primarily
epiphytic, growing on tree trunks in dense forests or lithophytic on
rocky outcrops in open shrublands (Conlon, 2015). They are highly
prized in horticulture for their pendulous, bell-shaped flowers that
exhibit vibrant colors (Conlon, 2015). Agapetes are also known for
their radish-like tubers, which contain a diverse range of secondary
metabolites, such as phenols, tannins, polysaccharides, saponins,
flavonoids, lactones, coumarins, organic acids, and sterols (Yan
etal., 2019). These metabolites are useful for dispersing blood stasis,
relieving pain, promoting diuresis, reducing swelling, and providing
anti-inflammatory effects (Chen et al., 1990). Tubers of certain
Agapetes species are traditionally used to enhance lactation and
support postpartum recovery in nursing mothers (Jariya et al,
2011). For the further development and utilization of Agapetes
species, it is essential to clarify the phylogenetic position of
this genus.

The taxonomic delineation between Agapetes and its close
relative Vaccinium has long been debated. In Agapetes, the corolla
is usually elongated, tubular, narrowly funnel-shaped, or
campanulate; stamens are slightly adherent and encircling the
style or free; pedicels are often thickened toward the apex,
sometimes becoming cup-shaped; plants are usually epiphytic,
rarely terrestrial (Stevens, 1972, 1985; Vander Kloet, 1988; Fang
et al., 2005). In Vaccinium, the corolla is relatively short, typically
urceolate or campanulate, rarely tubular; stamens are free and do
not encircle the style; the apex of the pedicel is generally not
thickened; plants are usually terrestrial, occasionally epiphytic
(Stevens, 1972, 1985; Vander Kloet, 1988; Fang et al., 2005). Some
researchers have argued for merging the two genera into Vaccinium
based on their morphological similarities (Stevens, 1985; Kron et al.,
2002; Vander Kloet, 2004). Phylogenetic results based on internal
transcribed spacer (ITS) and matK gene sequence indicated that
Agapetes are closely related to Vaccinium (Kron et al., 2002). The
similarity of rolB/C-like gene sequences between Vaccinium and
Agapetes suggests that they may share a common origin (Zhidkin
et al, 2023). All these investigations indicate the difficulty in
separating Agapetes and Vaccinium as different genera. Stronger
molecular evidence is required, given the low resolution of existing
phylogenetic signals.

Most chloroplast (cp) genomes are characterized by a typically
circular quadripartite structure consisting of one large single copy
(LSC), one small single copy (SSC), and two copies of the inverted
repeat (IR) region, which look like LSC-IRb-SSC-IRa-LSC (Palmer,
1983; Daniell et al,, 2016). Sequences at the ends of the IR regions
are regarded as IR boundaries (Daniell et al., 2016). The mutation
rate of the cp genome is moderate, approximately one-third that of
nuclear genes and three times that of mitochondrial genes (Drouin
et al, 2008). These properties made cp genomes an ideal tool for
plant phylogenetic study and species identification (Wang et al.,
2024). Moreover, such applications have been widely implemented
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in plants, including an increasing number of medicinal plants,
driven mainly by improvements in sequencing technology,
assembly methods, and bioinformatic tools (Wu and Ge, 2012;
Wang et al., 2024).

Phylogenetic investigation based on the cp genome revealed the
closer relationship between Houttuynia cordata and Aristolochia,
laying the groundwork for further studies of these taxa (Zhu et al,,
2020). The analysis of the cp genomes in Carpesium and
Atractylodes illuminates the interspecific relationships and
evolutionary history of these medicinal plants, providing new
molecular markers for species identification and genetic diversity
research (Wang et al., 2021; Shi et al,, 2022). Cp genomes based on
research on the evolutionary relationship between Paeonia ostii and
relatives offer potential chances for enhancing peony yield (Guo
et al,, 2018). These studies not only enrich the available data on cp
genomes of medicinal plants but also offer novel avenues for genetic
improvement and breeding of these valuable species.

Overall, Agapetes species possess important medicinal
attributes. Clarifying the phylogenetic circumscription of Agapetes
is a prerequisite for accurately identifying species within this genus
and the utilization of its pharmaceutical potential. DNA sequence,
especially the cp genome, is effective data for the construction of
phylogenies. Existing research about phylogenetic relationships
between Agapetes and allied taxa predominantly relied on
morphological characteristics or short DNA sequence fragments
(e.g., chloroplast gene matK) (Camp, 1940; Vander Kloet, 1988,
2004). In this study, we investigated the phylogenetic position of
Agapetes using complete cp genome sequences. Concurrently, we
obtained extensive ITS sequence data from Agapetes and related
taxa, particularly Vaccinium, to conduct large-scale phylogenetic
analyses and comparative assessments. This integrated research
provides robust evidence for resolving the systematic evaluation
of Agapetes.

2 Materials and methods
2.1 Plant materials

All three Agapetes species, namely, A. malipoensis, A.
guangxiensis, and A. obovata used in this work, are native to
Malipo County, Yunnan Province, China (Supplementary Figures
S1, 52). Before sampling, based on morphological characteristics, the
three species were identified by taxonomist Chao Zhang from the
School of Life Sciences, Guizhou Normal University, and Su Zhang
from the School of Forestry, Beijing Forestry University
(Supplementary Figure S2). Fresh leaves were collected from one
individual of A. malipoensis (23.0496°N, 104.8130°E), A. guangxiensis
(23.1837°N, 104.8279°E), and A. obovata (23.0449°N, 104.8209°E),
respectively. The sampled leaves were rinsed with sterile water, dried
with absorbent paper, and then put into tea bags, which were sealed
inside plastic bags together with moisture-absorbing silica gel and
appropriately labeled for long-term storage and DNA extraction. One
voucher specimen for each of the three species was deposited in the
Herbarium of Guizhou Normal University with special voucher
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numbers: GZUB-20240925-0001 for A. malipoensis, GZUB-
20240925-0002 for A. guangxiensis, and GZUB-20240925-0003 for
A. obovata.

2.2 DNA extraction and sequencing

Total DNA was extracted from the leaves of the three Agapetes
species using the modified cetyltrimethylammonium bromide
(CTAB) method (Doyle and Doyle, 1987). The DNA was then
fragmented using ultrasonication, followed by purification, end-
repair, 3’ adenylation, and ligation of sequencing adapters. Finally,
after fragment size selection using agarose gel electrophoresis, PCR
amplifications were performed to generate the sequencing library.
Ilumina NovaSeq 6000 was used for final sequencing with paired-
end (PE) mode, generating raw reads of 150 bp. The raw reads were
filtered using fastp v0.23.4, and adapters, primers, and reads whose
average score was lower than Q5 or ambiguous bases (denoted as
“N”) more than five were dropped (Chen, 2023).

2.3 Assembling, annotation, and
assessment of chloroplast genomes

Filtered reads of A. malipoensis were first assembled using
NOVOPlasty v4.2 (Dierckxsens et al., 2017). Then, the assembled
contigs were further aligned to the NT database of NCBI, so that the
contigs from the cp genome were identified. Filtered reads of A.
guangxiensis and A. obovata were mapped to published cp genomes
with bowtie2 v2.2.4 in very-sensitive-local mode to identify cp
genome derivation (Langmead and Salzberg, 2012). SPAdes
v3.10.1 was used to generate the primary contigs based on k-
mers, including 55-mer, 87-mer, and 121-mer (Bankevich et al,
2012). For the three species, SSPACE v2.0 was applied for cp
genome scaffolding based on contigs (Boetzer et al, 2011). The
gaps in the cp genomes were then filled using Gapfiller v2.1.1
(Boetzer et al., 2012).

Online platform cpGAVAS2 was employed for the predictions
of protein-coding genes (PCGs), rRNA genes, and tRNA genes of
the three cp genomes (Shi et al, 2019). Their quadripartite
structures were identified based on homologous alignments to
their relatives using MUMmer v3.1 (Supplementary Table S1)
(Marcais et al, 2018). To assess the results of assembling and
annotating, the online tool PMGmap was used to visualize the three
cp genome circular maps (Zhang et al., 2024). Finally, the three
assemblies were submitted to NCBI with specific accession numbers
(Supplementary Table S1).

2.4 Data sources and phylogenetic
analyses

The three cp assemblies of Agapetes and high-quality cp

genomes of their 12 relatives downloaded from NCBI GenBank
were used for further investigations (Supplementary Table S1).
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Relative synonymous codon usage (RSCU) values were calculated
for all protein-coding genes across the chloroplast genomes using
CodonW v1.4.2 (https://codonw.sourceforge.net/). The resultant
RSCU matrix was subjected to hierarchical clustering and
visualized through a heatmap generated with the online platform
ChiPlot (https://www.chiplot.online/).

For chloroplast phylogenomic analyses, the PCG sequences of
these cp genomes were first extracted using PhyloSuite v1.2.3 based
on annotation results (Xiang et al., 2023). Single-copy genes of these
species were then concatenated as one supergene alignment, after
multiple sequence alignment (MSA) implemented with MAFFT
v7.475 and further refined with Gblocks v0.9b (Castresana, 2000
Katoh and Standley, 2013). ModelFinder v1.6.12 was employed to
find the best substitution models for chloroplast phylogenomic
reconstruction based on Bayesian inference (BI) and maximum-
likelihood (ML) frameworks (Kalyaanamoorthy et al., 2017). BI-
based chloroplast phylogenomic relationships were reconstructed
by MrBayes v3.2.7 with the GTR+F+I+G4 substitution model
(Ronquist et al., 2012), and two independent runs were employed
for convergent results. For each run, two million generations were
performed with sampling every 1,000 generations, and the first 25%
were discarded as burn-in. The ML reconstructions were
implemented using IQ-tree v2.2.2.7 with the GTR+F+R2
substitution model and 5,000 bootstrap replicates (Nguyen et al.,
2015). Solanum melongena was used as an outgroup in both BI and
ML chloroplast phylogenomic analyses.

The ribosomal DNA sequences of the nuclear genomes of A.
malipoensis, A. guangxiensis, and A. obovata were assembled from
their filter reads mentioned above using GetOrganelle v1.75 (Jin
etal, 2020). Subsequently, their ITS sequences, including ITS1, 5.8S
ribosomal DNA, and ITS2, were extracted using ITSx vI1.1.3
(Bengtsson-Palme et al., 2013). ITS sequences of related species
were downloaded from NCBI GenBank (Supplementary Table S2).
The same methods were used in ITS, ITSI, ITS2, and chloroplast
genome phylogenetic reconstructions, but the best substitution
model was TNe+G4 for BI and TN+F+G4 for ML estimation, and
the outgroup was Gaultheria griffithiana. Multisequence alignment
of ITS was visualized by Jalview v.2.11.4.0 (Waterhouse et al., 2009).
Phylogenetic trees were visualized with tvBOT (https://
www.chiplot.online/tvbot.html).

2.5 Analyses of repetitive sequences

Simple sequence repeats (SSRs) in cp genomes of Agapetes
species and their relatives were identified by the online tool Misa
with the following search parameters (motif length—min. no. of
repetitions): 1—10 (mononucleotide), 2—5 (dinucleotide), 3—4
(trinucleotide), 4—3 (tetranucleotide), 5—3 (pentanucleotide),
and 6—3 (hexanucleotide) (Beier et al., 2017). Dispersed repeats,
including forward, reverse, complemented, palindromic, and
reverse-complemented repeats of these species, were reported by
REPuter online version, and the parameters, including hamming
distance, minimal repeat size, and maximum computed repeats,
were set as 3, 30, and 5,000 (Kurtz, 2001). Tandem repeats were
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detected using the online tool TRF (Benson, 1999). Visualization of
the results was performed in R v4.3.2 using the ggplot2 package
(Wickham, 2016). Multisequence alignment of repeats was
visualized by the R package ggmsa (Zhou et al., 2022). Finally,
CPJdraw v1.0.0 was used to analyze and visualize the IR region
boundaries of these cp genomes (Li et al, 2023). The online
platform ChiPlot (https://www.chiplot.online/) was used to
visualize the counts of SSRs and dispersed repeats.

2.6 Chloroplast genomic comparisons

The online platform mVISTA was used to calculate and show
variations of cp genomes between Agapetes species and relatives
with the Shuffle-LAGAN alignment model, and Agapetes
malipoensis was set as the reference (Brudno et al., 2003; Frazer
et al., 2004). For each cp genome, the GC content of different
regions, protein-coding gene content, and proportions of coding
and non-coding regions were calculated by PhyloSuite v1.2.3 (Xiang
etal., 2023). The cp genomes were also divided into three groups by
taxa: AGA (Agapetes), VAC (Vaccinium), and OUT (other taxa).
Then, the generalized linear model (GLM) in IBM SPSS Statistics 26
was applied for between-group variation detection of GC content,
gene content, etc.

3 Results

3.1 Cp genomic characteristics of the three
Agapetes species

For A. malipoensis, A. guangxiensis, and A. obovate, 5.67, 12.49,
and 10.37 Gb of pair-end short reads were generated, respectively
(Supplementary Table S3). Their assembled cp genomes were
characterized by conserved quadripartite structures (LSC, SSC,
and two IR regions), with lengths of 172,729, 176,291, and
180,574 bp and GC content of 36.67%, 36.47%, and 36.65%
(Figure 1; Supplementary Table S4). Annotations of the three cp
genomes were highly consistent. In A. malipoensis, 130 genes,
consisting of 85 protein-coding genes, 37 tRNA genes, and 8
rRNA genes, were predicted. According to functions and
structures, these genes were divided into four categories:
photosynthesis-related genes, self-replication-related genes, other
genes, and genes of unknown function (Supplementary Tables S5-
7). Photosynthesis-related genes were classified into six groups,
namely, subunits of photosystems I and II, NADH dehydrogenase,
cytochrome b/f complex, ATP synthase, and the large subunit of
Rubisco. Self-replication-related genes consist of large/small
ribosomal subunit proteins, subunits of RNA polymerase,
ribosomal RNAs, and transfer RNAs. The two conserved
hypothetical chloroplast ORFs, ycf3 and ycf4, were viewed as
genes of unknown function. Matk, cermA, and two copies of ccsA
were contained in other genes (Supplementary Tables S5-7). We
identified 22 genes that have undergone duplication, including
psaC, psbA, trnR-ACG, ccsA, and others. Specifically, 11 of these
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duplicated genes are protein-coding genes, 4 are rRNA genes, and 7
are tRNA genes (Supplementary Tables S5-7).

3.2 Phylogenetic status of Agapetes

Chloroplast genomes of the three Agapetes species and their 12
relatives from five families were used to reconstruct an ML
phylogeny, which was generally consistent with the APG IV
classification system (Figure 2a). The ML phylogeny was
supported by bootstrap values larger than 89% for all internal
nodes (Figure 2a). Solanum melongena of Solanaceae was set as
an outgroup. Species from Theaceae, Actinidiaceae, Clethraceae,
and Ericaceae formed four distinct clades. Two Gaultheria species
of Ericaceae formed a single clade. The three Agapetes species
formed a clade nested in Vaccinium, with a significantly larger
genetic distance to V. japonicum, V. macrocarpon, and V. oxycoccos
than to other species within Vaccinium (Figure 2a). This
relationship was also supported by BI (Supplementary Figure S4a).

ITS sequences are nuclear genome-derived DNA commonly
used for phylogenetic investigations. The ITS region comprises
ITS1, 5.8S rDNA, and ITS2. ITS sequences from more species of
Agapetes and Vaccinium were used for further validation of their
relationship based on ML and BI methods (Figures 2b, S3, S4b).
Sequences of Gaultheria griffithiana were used as an outgroup. The
ITS phylogeny also supported the monophyly of the two genera.
However, the species were intermixed and did not form two distinct
groups corresponding to the current circumscription of Agapetes
and Vaccinium (Figures 2b, S4b). Similar phylogenetic relationships
were found from ITS1 and ITS2 based on ML and BI methods
(Supplementary Figure S5). This result was also supported by
hierarchical clustering based on the RSCU (Supplementary Figure
S6; Supplementary Table S8).

Morphological similarities also provided additional support to
the DNA sequence phylogenies. The flowers of A. guangxiensis were
similar to those of V. vitis-idaea (Supplementary Figure S2). The
fruits of A. obovata were similar to those of V. vitis-idaea, V. henryi,
and V. dunnianum (Supplementary Figure S2). Most species of
Agapetes and Vaccinium possessed five triangular calyx lobes with
an outer surface often glabrous (Supplementary Tables 59, S10).
Their corollas were usually tubular or urceolate (Supplementary
Tables S9, S10). Similarities in other parts were also recorded,
including the style, filament, fruit, leaf, and phenology
(Supplementary Tables S9, S10).

3.3 Low cp genome variation between
Agapetes and Vaccinium

Chloroplast genomes of the three Agapetes species and their 12
relatives were compared, with A. malipoensis as the reference
(Figure 3). The similarity between Agapetes and Vaccinium was
much more than that between Agapetes and other taxa, including
protein-coding regions, especially the genes ndhG, ndhE, ndhF,
atpF, atpH, atpl, rps2, and rpoCl, and the IR region (Figure 3).
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regions.

There were more conserved non-coding sequences for Agapetes and
Vaccinium than for Agapetes to other species. Species in Agapetes
and Vaccinium shared almost identical coding sequences except for
the genes rps3 and ndhF (Figure 3). Their variations were mainly
found in non-coding regions, including the IR region and intergenic
regions like trnM-CAU-psal, petA-trnE-UUC, rpoB-ropA, trnV-
GAC-1pl23, rpsl6-rrnl6, and rps3-rpsl15 (Figure 3).

3.4 Cp genomic composition similarity of
Agapetes and Vaccinium species

According to taxonomy, the 15 cp genomes were categorized
into groups AGA (Agapetes), VAC (Vaccinium), and OUT (other

Frontiers in Plant Science

taxa) (Figure 4a). The GC content of these cp genomes ranged from
36.47% to 37.71% (Figure 4A; Supplementary Table S11). The
overall GC content of the entire chloroplast genome showed no
significant differences in pairwise comparisons among the three
groups (Figure 4a; Supplementary Table S11). The GC content of
the SSC region (27.32%~31.94%) was the lowest compared to other
regions (35.52%~43.05%) for all species (Figure 4a; Supplementary
Table S11). In the SSC, LSC, and IR regions, the GC content
difference was not significant between groups AGA and VAC (p
> 0.05), but significant (p < 0.001 or p < 0.05) between them and
group OUT (Figure 4a; Supplementary Table S11). A similar
pattern was detected for gene number, proportion of coding
sequences, and non-coding sequences of the cp genomes of the
three groups (p < 0.001) (Figure 4b; Supplementary Table S12).
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3.5 Repeat sequence characteristics of
Agapetes and Vaccinium species

Comparative analyses revealed striking differences in SSR
distribution patterns. Chloroplast genomes of Agapetes and
Vaccinium species harbored significantly higher SSR abundance
(73-107 loci; V. ashei to V. corymbosum) than other taxa (33-73
loci; C. fargesii to G. griffithiana) (Supplementary Table S13). While
mononucleotide SSRs dominated across all species (predominantly
A/T repeats) (Supplementary Table S13), their relative contribution
to total SSR content was notably lower in Agapetes/Vaccinium
compared to outgroups (Figure 5a). Notably, A. obovata uniquely
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shared G/C mononucleotide SSRs with four Vaccinium species (V.
angustifolium, V. corymbosum, V. macrocarpon, V. oxycoccos)
(Supplementary Table S13). Furthermore, hexanucleotide SSRs
showed marked taxonomic divergence: Agapetes and Vaccinium
contained 3-11 such loci, contrasting sharply with only one in G.
griffithiana and C. fargesii, and complete absence in four other
relatives (Supplementary Table S13).

The chloroplast genomes of Agapetes and Vaccinium species
exhibited significantly higher numbers of dispersed repeat elements
(1,163-3,405 repeats) compared to their Ericaceae relatives
(Figure 5¢; Supplementary Table S14). Specifically, the congeneric
species G. griffithiana and G. fragrantissima contained 943 and 822
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repeats, respectively (Figure 5¢; Supplementary Table S14). In
contrast, only 37-144 dispersed repeats were identified in
chloroplast genomes of phylogenetically distant taxa (Figure 5¢;
Supplementary Table S14). Notably, palindromic repeats and
forward repeats dominated in all species, and reverse and
complement repeat elements were not detected in the majority of
analyzed species (Figures 5¢, S7; Supplementary Table S14).
Hierarchical clustering based on SSRs and dispersed repeat
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IR

abundance also supported the intermixed phylogeny of Agapetes
with Vaccinium species (Figures 5b, d).

Most tandem repeats across all species were short motifs (<50
bp) (Supplementary Figure S8). Interestingly, a 219-bp tandem
repeat motif was identified exclusively in Ericaceae, including
species in Agapetes, Vaccinium, and Gaultheria (Supplementary
Figure S8; Supplementary Table S15). Strikingly, consensus
sequence alignment of the 219-bp tandem repeats revealed
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minimal divergence between Agapetes and Vaccinium (4 fixed
nucleotide substitutions), contrasting sharply with their
divergence from Gaultheria (22 substitutions) (Figure 5e).

3.6 Conservation of IR region boundaries

Compared to other taxa, most species in Agapetes and
Vaccinium possessed characteristics like LSC regions from 104 to
107 kb, IR regions longer than 32 kb, and SSC regions less than 3.1
kb in length (Figure 6). In Agapetes, Vaccinium, and Gaultheria, IR-
LSC junctions were consistently flanked by trnH, psbA, trnV, and
trnK, while IR-SSC boundaries contained rpl32 and ndhF. Notably,
almost all species of Vaccinium and Agapetes shared identical gene
and gene order at IR boundaries, contrasting with Gaultheria and
distantly related taxa (Figure 6). Overall, the IR region boundaries
showed no significant expansion or contraction between Agapetes
and Vaccinium, whereas considerable variation was observed in
other taxa (Figure 6). It is therefore difficult to distinguish species of
Agapetes and Vaccinium based on the lengths of the LSC and SSC
regions or shifts in IR boundaries.

4 Discussion

Species of Agapetes and Vaccinium possess significant
medicinal and nutritional value. The two genera exhibit
numerous shared morphological features (Supplementary Figure
S2; Supplementary Tables S9, S10). For example, both conform to
the typical floral structure of Ericaceae, characterized by a 5-lobed
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calyx, a 5-lobed corolla, 10 stamens, and a single style. They possess
leathery leaf blades arranged alternately or nearly verticillate,
corollas that are usually tubular or campanulate, and a calyx tube
adnate to the ovary. Their phenology is also similar, typically
flowering in spring to summer and fruiting in autumn to winter.
The distinction between the two genera mainly relies on the
morphology of the pedicel and calyx tube, with leaf venation
providing supplementary characters (Supplementary Figure S2;
Supplementary Tables S9, §10). For example, in terms of pedicel
morphology, Agapetes typically has a pedicel that expands into a
club-like shape and is glabrous and longer, while Vaccinium has a
pedicel that does not thicken and is shorter and occasionally
pubescent. Regarding the calyx, the calyx in Agapetes is larger and
variable in shape, whereas the calyx in Vaccinium is smaller and
mostly bell-shaped or tubular. Additionally, in terms of leaf
characteristics, Agapetes leaves are mostly oblong or lanceolate,
with secondary veins and fine veinlets often prominently raised and
frequently anastomosing on the adaxial surface. In contrast,
Vaccinium leaves are mostly orbicular or ovate, with highly
variable venation (Fang et al, 2005) (Supplementary Figure S2;
Supplementary Tables S9, S10). Because there appears to be
intergradation between these characters (Stevens, 2004), no
unified morphological criterion for Agapetes and Vaccinium has
been established to date.

As a consequence, classifications based solely on traditional
morphology and short DNA markers (e.g., matK) have remained
controversial, and the taxonomic boundaries as well as intergeneric
relationships between Vaccinium and Agapetes are still unresolved
(Tsai et al., 2003; Hummer et al., 2017; Becker et al., 2024). The
plant cp genome is characterized by moderate evolutionary rates
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and is cost-effective for sequencing and assembling (Ane et al., 2005;
Wang et al., 2024). Furthermore, chloroplast genomes possess
abundant phylogenetic information, making them powerful tools
for addressing taxonomic controversies, particularly among closely
related species that are difficult to distinguish with conventional
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markers (Li et al., 2022; Xia et al., 2022; Wang et al., 2023, 2024; Kan
et al, 2024; Liang et al, 2025). Nevertheless, Agapetes remains
critically deficient in plastome data and related investigations,
which impedes both the exploitation of its medicinal potential
and the resolution of its taxonomic placement.
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This study sequenced and assembled chloroplast genomes from  100%; BI posterior probability = 1) (Figures 2a, S4a). The phylogenies
three Agapetes species (Figure 1; Supplementary Tables S1, §3-S7).  were also consistent with the APG IV classification system (Byng et al.,
Combined with publicly available data from allied taxa (including  2016). These convergent results robustly support the reliability of our
Vaccinium), we reconstructed Ericaceae phylogenies using both ML chloroplast phylogenomic reconstruction.
and BI frameworks (Figures 2a, S4a). The resulting trees exhibited Based on the chloroplast phylogenomic relationships described
topological congruence between ML and BI phylogenies with  above, we found that the Agapetes clade was nested within
maximum statistical support at all internal nodes (ML bootstrap =  Vaccinium (Figures 2a, S4a). This appears to support merging
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both genera into a single taxonomic unit. To further validate this
finding, we expanded our DNA sampling to include nuclear
genome-derived DNA of eight Agapetes and seven Vaccinium
species (Supplementary Table S2), targeting the ITS regions
(ITS1, 5.8S rDNA, and ITS2)—widely used markers for nuclear
phylogenetics in plants (Liu et al., 2006).

Following multiple sequence alignment (Supplementary Figure
S3), we reconstructed nuclear DNA phylogenies using both ML and
BI methods for full ITS, ITSI, and ITS2 (Figures 2b, S4b, S5).
Despite low statistical support, the phylogenetic results showed
topological stability across all datasets and analytical methods:
Agapetes and Vaccinium species are paraphyletic within a shared
monophyletic clade (Figures 2, 54, S5). Both the cp genome and ITS
phylogenies exhibit small cumulative branch lengths between the
species of Agapetes and Vaccinium, indicating that there are not
large differences among these species. Although chloroplast
genomes and ITS-based nuclear sequences reconstructed nested
monophyletic clade for species of Agapetes and Vaccinium, these
findings require further validation with large-scale sampling across
the genus. Hierarchical clustering based on RSCU, abundance of
SSRs, and dispersed repeats also supported the close relationship
between Agapetes and Vaccinium species (Figures 5b, d; S6;
Supplementary Tables S8, S13, S14).

The three Agapetes species (A. malipoensis, A. guangxiensis, and
A. obovata) formed a monophyletic clade in the chloroplast
phylogenomics, but they were dispersed across three distinct
clades in the ITS-based nuclear phylogeny (Figures 2, 54, S5). The
discordance between ITS and cpDNA phylogenies likely stems from
distinct evolutionary histories of chloroplasts (maternally inherited
organellar genomes) versus nuclear DNA (biparentally inherited).
Furthermore, in rapidly radiating lineages, species-level phylogenies
often cannot be accurately reconstructed from single-gene analyses
due to processes like hybridization or incomplete lineage sorting
(ILS) (Huerta-Sanchez et al., 2014; Edelman et al., 2019; Shen et al.,
2021). The overlap in flowering periods of species from the two
genera may facilitate hybridization between them (Supplementary
Table S9). Another potential source of this discordance is
interplastomic recombination (Li et al., 2025). Of course, the low
statistical support of ITS, ITS1, and ITS2 phylogenies could also be
caused by hybridization, ILS, or limited sequence variations.

Further comparative analyses to chloroplast genomes revealed
minimal disparities in genome length, GC content, and encoded
genes among species of Agapetes and Vaccinium (Figures 3, 43
Supplementary Tables S11, S12). SSRs are extensively distributed
across chloroplast genomes (Xia et al., 2022). Our study found that
A/T-type mononucleotide repeats were prevalent among the 15
investigated plant species (Figures 5a, b; Supplementary Table S13),
consistent with prior research indicating their predominance and
rarity of C/G repeats (Kuang et al., 2011). The number of SSRs in
the chloroplast genomes of the three Agapetes is similar, with a
negligible difference from the quantity found in Vaccinium
(Figures 5a, b; Supplementary Table S13). Moreover, both genera
contain a higher number of hexanucleotide repeat types. In
contrast, there is a large difference in the total number of SSRs
between species of Agapetes—Vaccinium and other species, with
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other species either lacking or containing only one type of
hexanucleotide repeat. This result indicates that the SSR
composition in Agapetes is similar to that in Vaccinium.

Previous research studies have shown that long repeats are
prevalent in genomes, significantly influencing gene expression,
regulation, and plant systematics research (Cavalier-Smith, 2002).
We identified a significant number of forward and palindromic
repetitive sequences in the chloroplast genomes of three Agapetes
and Vaccinium, with a total count exceeding 1,000, which is much
higher than in other genera and species (Figures 5¢, d;
Supplementary Table S14). Furthermore, both Agapetes and
Vaccinium exhibited tandem repeats with similar locations and
repeat unit size. The multiple sequence alignment of the 219-bp
repeat consensus sequence from Agapetes and Vaccinium supports
the close evolutionary relationship between the two
genera (Figure 5¢).

The contraction and expansion of IR boundaries are ubiquitous
in the evolutionary history of plants, often leading to differences in
chloroplast genome size among different species (Kim and Lee,
2004). The three Agapetes and Vaccinium showed minor differences
in the variation characteristics within IR boundaries (Figure 6). This
indicates that there are no substantial differences between the two
genera in this character at this sampling level.

Despite the overall conservation in chloroplast genome
evolution (Figure 3), IR boundary regions and repetitive
sequences (SSRs, tandem repeats, dispersed repeats) exhibit
accelerated evolutionary rate (Ané et al, 2005). The intermixed
pattern between Agapetes and Vaccinium species was not only
revealed in chloroplast genomic and ITS phylogenetic analyses,
but was also supported by hierarchical clustering based on RSCU
and the abundance of rapidly evolving features such as SSRs and
dispersed repeats. Species of the two genera exhibited no large
difterences in other key chloroplast genomic features, including the
structure of coding and non-coding regions, as well as the
dynamically evolving IR boundaries. Given the persistent
morphological controversies between Agapetes and Vaccinium,
coupled with our molecular evidence, we propose to merge the
two genera into a single taxonomic unit. Vaccinium comprises
significantly more species (ca. 500) than Agapetes (ca. 115) (POWO,
2025). Most importantly, Vaccinium was published earlier
(Linnaeus, 1753) than Agapetes (D. Don ex G. Don, 1834)
(POWO, 2025). In accordance with the principle of priority (ICN
Art. 11), we therefore propose to treat Agapetes as a synonym of
Vaccinium. However, before any formal taxonomic change can be
enacted, large-scale sampling of cp genomes from numerous species
(especially undersampled Asian tropical species) should be
conducted, where the cp genomes provided in this study will be
valuable references.

This study has limitations requiring further improvement.
Given the extensive harvesting of Agapetes species for medicinal
purposes by local communities, we could only obtain three readily
accessible species, each represented by a single individual. Future
efforts will implement optimized sampling strategies to collect
multiple individuals across taxa, while advancing nuclear
genome-scale investigations. By employing hundreds of nuclear
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genes for coalescent-based species tree reconstruction, we aim to
minimize confounding effects from hybridization or incomplete
lineage sorting. Concurrently, we will explore the genomic
foundations of medicinal traits of Agapetes through comparative
transcriptomics and functionally validate key biosynthetic genes via
qPCR profiling across tissues, or transgenic approaches using CDB
transformation systems (Cao et al., 2023).

5 Conclusion

To resolve the persistent controversy regarding the taxonomic
circumscription of Agapetes and Vaccinium, we completed the
sequencing, assembly, phylogenetic, structural, and characteristic
analyses of the chloroplast genomes of three Agapetes species for the
first time. According to phylogenetic results, the two genera are not
reciprocally monophyletic. In the chloroplast phylogenomic
analysis, the three species of Agapetes formed a monophyletic
clade nested within Vaccinium. The ITS phylogeny further
revealed a paraphyletic phylogenetic pattern among species of
Agapetes and Vaccinium. Moreover, the two genera also could not
be distinguished by various chloroplast genomic characteristics,
such as GC content, coding/non-coding region proportion, RSCU,
IR boundary shifts, and rapidly evolving repetitive sequences. Based
on these findings, we propose to merge the two genera into a single
taxonomic unit after large-scale sampling of the cp genome
in Vaccinieae.
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