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The efficacy of traditional Chinese medicine is determined by its bioactive 
components, which exhibit variability depending on environmental conditions 
and hereditary influences. In this study, we focus on Cynomorium songaricum 
Rupr., a medicinally significant species facing sustainability challenges. However, 
the ecological drivers governing its distribution, as well as the relationship 
between environmental factors and bioactive components, remain unclear. 
Thus, we sampled 28 representative distribution areas of C. songaricum in 
China. Employing Maximum Entropy (MaxEnt) modeling, we projected current 
and future (2050s-2090s) habitat suitability under four emission scenarios. 
Notably, species distribution exhibited expansion (8.03%-29.06% range 
increase across scenarios) with precipitation of the wettest month (BIO13) and 
soil pH emerging as key drivers (combined contribution >49%). Ultra-

performance liquid chromatography (UPLC) fingerprinting combined with 
machine learning regression was applied to quantify six key bioactive 
components in C. songaricum, 3,4-dihydroxybenzaldehyde, catechin, 
epicatechin, ursolic acid, total phenolics, and crude polysaccharides—revealing 
significant concentration variations among geographically distinct populations. 
Slope gradient (slope), min temperature of coldest month (BIO6), precipitation of 
coldest quarter (BIO19), sunshine duration in growing season(hsdgs), and 
isothermality (BIO3) were identified as key regulatory factors influencing the 
accumulation of multiple components. Specifically, slope acted as a key shared 
negative regulator for 3,4-dihydroxybenzaldehyde, catechin, and crude 
polysaccharides. BIO6 served as a key shared positive regulator for catechin 
and total phenolics, while functioning as a key negative regulator for ursolic acid. 
BIO19 was identified as a key shared negative regulator for catechin and 
epicatechin. Hsdgs acted as a key positive regulator for ursolic acid while 
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negatively regulating crude polysaccharides. Additionally, BIO3 served as a key 
shared positive regulator for both ursolic acid and total phenolics. This study 
provides the scientific basis for enabling targeted cultivation zones that balance 
therapeutic compound yield with arid ecosystem conservation. 
KEYWORDS 

Cynomorium songaricum Rupr., environmental factors, habitat suitability, machine 
learning models, bioactive components, high-quality growing zones 
1 Introduction 

Climate change significantly impacts the distribution of various 
ecosystems, and the effects of future climate change will likely 
modify the habitat, scope, and distribution of myriad species (Li 
et al., 2022). According to the Intergovernmental Panel on Climate 
Change (IPCC) special report “Global Warming of 1.5 °C”, the 
average global surface temperature is anticipated to rise 1.5°C 
between 2030 and 2052 (Allen et al., 2018). Climate warming and 
increasingly extreme weather events (severe droughts, heavy 
rainfalls, heat waves, cold snaps) can significantly alter species 
habitats  and  phenology.  These  changes  have  triggered  
environmental challenges such as altered spatial patterns of 
species. Consequently, biodiversity and sustainable development 
are increasingly threatened (Kerr et al., 2007; Li et al., 2014, Li et al., 
2019; Shen et al., 2021). Dryland ecosystems, which cover 
approximately 40% of the Earth’s terrestrial surface, play a critical 
role in the global carbon cycle (Wang et al., 2022c). Driven by both 
climate change and natural climate variability (e.g., El Niño/ 
Southern Oscillation), global warming is expected to increase 
environmental variability, including fluctuations in precipitation, 
temperature, and soil conditions (Wang et al., 2022c). These 
combined stresses collectively intensify the impact of climate 
change on plant distribution in arid regions. Extreme drought 
events triggered by precipitation variability can initiate hydraulic 
failure in plants, leading to tissue-level hydraulic collapse and 
cytorrhysis in affected cells (McDowell et al., 2022). Meanwhile, 
drought-induced carbon starvation may compromise the energy 
supply required to sustain water transport, while also weakening 
plant defense against insects and/or pathogens, ultimately 
exacerbating xylem embolism (McDowell et al., 2022). 
Salinization induced by climate change is a common risk in arid 
regions, where salt accumulation in the rhizosphere may exceed 
plant tolerance thresholds, leading to osmotic stress and nutrient 
imbalance, ultimately limiting plant growth (Hassani et al., 2021). 

Secondary metabolites play a key role in helping plants with 
diverse genetic backgrounds adapt to environmental changes and are 
therefore highly sensitive to climate fluctuations (Sun et al., 2023). In 
recent years, sustained interest in natural medicines and functional 
plant ingredients has sharply increased global demand for research 
and development of physiologically active secondary metabolites 
02 
from medicinal plants. However, because the synthesis of these 
components remains technically challenging, medicinal plants 
continue to be the primary source of such bioactive components 
(Sun et al., 2023). Their responses to environmental factors are highly 
variable: elevated CO2 concentrations and higher temperatures 
generally enhance phenolic compounds such as chlorogenic acid 
and rutin (Ghasemzadeh et al., 2012; Nguyen et al., 2019; Guo et al., 
2020), yet decreases have also been reported (Chang et al., 2016; Jia 
et al., 2016). Simulated nitrogen deposition can promote plant growth 
and primary metabolism, but may suppress phenolic biosynthesis 
(Sun et al., 2020). Moreover, climate variables often exert non-linear 
effects; in tomatoes, temperature, relative humidity, and CO2 

concentration all influence the photosynthetic rate. Notably, the 
highest photosynthetic rate was not observed during the period 
with the highest CO2 concentration (Chen et al., 2025; Devadze 
et al., 2025). Because the accumulation of these compounds is 
typically governed by multiple interacting ecological drivers, 
establishing quantitative relationships between environmental 
change and key pharmacologically active constituents remains 
challenging. Given that the overall therapeutic efficacy of medicinal 
plants relies on the synergistic actions of multiple components, a 
systematic approach is urgently needed to assess how environmental 
changes affect herbal quality. 

The accelerated warming that has been observed in dryland 
regions over recent decades is expected to continue, with deserts 
projected to warm faster than many other terrestrial areas. Relative 
to the historical period (1961–1990), surface warming in drylands is 
projected to reach approximately 6.5°C under the high-emissions 
scenario (RCP8.5) and about 3.5°C under the low-to-moderate 
emissions scenario (RCP4.5) by the end of this century (Stringer 
et al., 2021). The ongoing rise in temperature is anticipated to 
further intensify drought stress and habitat degradation, posing 
dual challenges to the geographic distribution and medicinal quality 
of medicinal plants. Therefore, it is urgently necessary to integrate 
habitat suitability modeling with evaluations of phytochemical 
responses, in order to support the conservation and sustainable 
utilization of medicinal plant resources in dryland regions. 

Cynomorium songaricum Rupr. is a precious holoparasitic plant 
endemic to arid regions, primarily distributed in the desert areas of 
Central and East Asia, and has been used as both food and medicine 
by local populations for centuries (Zhang et al., 2023). The host 
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plants of C. songaricum are mainly Nitraria spp (Zhou et al., 2009). 
The Pharmacopoeia of the People’s Republic of China 2020 
highlights its historical usage primarily for the treatment of 
impotence, premature ejaculation, and spermatorrhea (Xu et al., 
2021). Contemporary pharmacological investigations reveal the 
presence of phytochemical constituents including phenolic acids, 
polysaccharides, and triterpenoids in C. songaricum, which have the 
effect of anti-oxidant, anti-viral, anti-obesity, anti-diabetes, anti-
Alzheimer, and alleviates of memory impairment (Ma et al., 2010; 
Chen et al., 2020; Cheng et al., 2021; Wang et al., 2022b; Zhang 
et al., 2022). The commercial demand for C. songaricum herbs has 
rapidly increased over the years due to its high medicinal values 
(Wang et al., 2022a). However, migration of suitable habitats and 
the interference of human community have resulted in degradation 
of the natural habitats of C. songaricum. Currently, C. songaricum is 
classified as a second-level protected plant species in the list of 
“National Key Protected Wild Plants” (Lu et al., 2022). Although 
earlier studies have shown that C. songaricum growing in desert– 
steppe and saline–alkali habitats exhibit distinct metabolic profiles 
(Zhang et al., 2022, Zhang et al., 2024d), the quantitative 
relationship between environmental variation and C. songaricum 
bioactive components has yet to be reported. 

This study aims to address these challenges through two 
interconnected objectives: 1) Climate-resilient habitat planning: 
Identify the current and future suitable habitats of C. songaricum 
under climate change, quantify centroid migration of these habitats, 
and pinpoint stable refugia for conservation prioritization. 2) 
Quality-driven cultivation zoning: Decipher the nonlinear 
relat ionships  between  environmental  factors  and  the  
accumulation of key bioactive components using machine 
learning, thereby delineating regions suitable for high-quality 
cultivation. These findings will provide the scientific basis for the 
conservation and sustainable utilization of C. songaricum and the 
planning of high-quality and highly suitable C. songaricum 
planting areas. 
2 Materials and methods 

2.1 Sample collection and species 
occurrence records 

A total of 252 C. songaricum samples from 28 sites of the 5 
representative production areas in China (Inner Mongolia, Ningxia, 
Gansu, Qinghai, and Xinjiang) were collected in 2020 and 2021 
during field tours, and identified by Prof. Guilin Chen. The baseline 
distribution data of C. songaricum were obtained from the Global 
Biodiversity Information Facility, GBIF (https://www.gbif.org/), the 
Chinese Virtual Herbarium, CVH (https://www.cvh.ac.cn), the 
National Specimen Information Infrastructure, NSII (http:// 
www.nsii.org.cn), iPlant (https://www.iplant.cn/) and previous 
literatures (Wang et al., 2022b; Zhao et al., 2023; Wang et al., 
2021; Miao et al., 2021) (data access deadline November 2024). To 
reduce the influence of spatial autocorrelation in species data, we 
applied a spatial filtering method that selects only one record per 1 
Frontiers in Plant Science 03 
km×1 km grid. As a result, we obtained 249 effective occurrence 
records for model calculations (Supplementary Figure S1; 
Supplementary Table S1). 
2.2 Construction of machine learning 
models 

2.2.1 Environmental variables 
The multicollinearity of variables within the same data type may 

affect prediction accuracy. To address this, pairwise Pearson 
correlation coefficients (r) were calculated across variable pairs. 
Following established thresholds in ecological niche modeling, 
variables with |r| < 0.8 were retained to balance information 
retention and collinearity control. We selected the variable that 
was most likely to be related to the growth of C. songaricum (Zhang 
et al., 2024b). The 40 variables selected for modeling included 22 
bioclimatic variables, 3 terrain data, and 15 soil factors. All these 
variables (spatial resolution of 30s and raster data of about 1.0 ×1.0 
km2) were downloaded from the Worldclim, National Earth System 
Science Data Center (https://www.geodata.cn), and Earth System 
Grid Federation (Supplementary Table S2). 

For predicting future distributions, four shared socioeconomic 
pathways (SSP126, SSP245, SSP370, and SSP585) were downloaded 
(EC-Earth3). SSP126 (radiation intensity of 2.6 W/m²) reflects a 
low-emission scenario, SSP245 (radiation intensity of 4.5 W/m²) 
reflects a medium-emission scenario, SSP370 (radiation intensity of 
7.0 W/m²) represents a high-medium emission scenario, and SSP 
585 (radiation intensity of 8.5 W/m²) corresponds to a high-
emission scenario (Cheng et al., 2024a). Three periods (2050s, 
2070s, and 2090s) were chosen to predict the potential 
distribution. Moreover, based on the condition that soil and 
terrain factors remain static over the next few decades, only 
climatic factors were used for future periods in this study, while 
soil and terrain factors were used for the current period. Finally, 21 
environmental variables were retained to run the model. 

2.2.2 MaxEnt model processing 
The MaxEnt v3.4.1 software integrates environmental variables 

and distribution data for predicting species distribution and habitat 
(Cheng et al., 2024a). The MaxEnt v3.4.1 was parameterized as a 
75% training set, 25% test set (Shen et al., 2022). It utilized a 
“bootstrap” method as a maximal iteration model, with a maximum 
number of repetitions of 10,000, repeated 10 times. The percent 
contribution of each environmental variable was evaluated using 
the jackknife method (Zhang et al., 2019). Model accuracy was 
evaluated using the receiver operating characteristic (ROC) curve 
and the area under the curve (AUC), with values of 0.9 < AUC < 1.0 
indicating excellent predictive performance (Carrell et al., 2023. The 
ROC curve generated by the MaxEnt model illustrates an AUC 
value of 0.956 for the C. songaricum distribution model based on 21 
environmental variables (Supplementary Figure S2). 

The suitability was divided into four grades by Jenks’ natural 
breaks, namely, no suitability (0–0.07), low suitability (0.07–0.24), 
medium suitability (0.24–0.47), and high suitability (0.47–0.95), to 
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obtain the potential distribution area of C. songaricum (Cheng 
et al., 2024a). 
2.3 Chemical composition analysis 

2.3.1 Chemicals and reagents 
3,4-Dihydroxybenzaldehyde, catechin hydrate, epicatechin, 

ursolic acid and sucrose standards reagents were purchased from 
Yuanye Bio-Technology Co., Ltd. (Shanghai, China). Ethanol of 
UPLC grade was supplied by Fisher Scientific (Geel, Belgium). 
Phosphoric acid and acetic acid were supplied by Aladdin 
Biochemical Technology Co., Ltd. (Shanghai, China). 

2.3.2 Sample preparation and UPLC analysis 
The plant materials were air-dried in a cool and dry place within 

86.71°–113.32° E and 36.34°–43.08° N, a total of 28 sampling sites 
were selected. Detailed information on the sampling points can be 
found in Supplementary Table S3. Each group contained three 
biological replicates, with each replicate sample consisting of a 
mixture of three C. songaricum individuals. The mixed samples 
were ground into fine powder using a mechanical grinder and 
sieved through a stainless steel sieve (187.5 mm pore size). Each 
sample (0.1 g) was mixed with 5 mL methanol and ultrasonicated at 
25°C for 40 min. The mixture was then centrifuged at 12,000 rpm 
for 6 minutes, and the supernatant was collected. Before UPLC 
analysis, the supernatant was filtered through a 0.22 mm 
hydrophobic syringe filter. 

Chromatographic analysis was performed using a Shimadzu 
UPLC-PDA system (LC-40D xs) equipped with a quaternary 
solvent pump, autosampler, thermostatted column compartment, 
and photodiode array detector (PDA). A Shim-pack GIST C18 
analytical column (100 mm × 2.1 mm, 2 mm) was used for sample 
separation. The mobile phase consisted of acetonitrile (A) and 0.3% 
phosphoric acid solution (B), with a flow rate of 0.2 mL/min. The 
gradient elution program was as follows: initial conditions of 4.5% 
A, increasing to 5% A at 5 minutes, 12.5% A at 9 minutes, 17.4% A 
at 19 minutes, 28% A at 21 minutes, 35% A at 23 minutes, and 
returning to 4.5% A at 23.5 minutes, followed by equilibration for 
5.5 minutes. The column temperature was 25°C, and the injection 
volume was 10 mL. Analytes, including 3,4-dihydroxybenzaldehyde, 
catechin, and epicatechin were detected at a wavelength of 230 nm. 

For optimal chromatographic separation of ursolic acid, the 
mobile phase was composed of acetonitrile (A) and 0.1% acetic acid 
solution (C), with a gradient elution ratio of 85:15 (v/v) for 
acetonitrile and acetic acid solution. The flow rate was 
maintained at 0.2 mL/min, the column temperature was 40°C, 
and the injection volume was 10 mL. Ursolic acid was detected at 
a wavelength of 210 nm. 

2.3.3 Preparation and quantitative analysis of 
total phenolic samples 

Total phenolic were extracted using the method described by 
Merve et al (Merve et al., 2023). Total phenolics were extracted by 
adding 20 mL of 63% (v/v) ethanol to 1g of sample powder, 
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followed by ultrasonication at 70°C for 56 minutes. The 
homogenate was centrifuged at 12,000 rpm for 8 minutes, and the 
supernatant was stored at –20°C for analysis. Total phenolic were 
analyzed according to the procedure outlined by Predrag et al 
(Predrag et al., 2017). For phenolic content determination, 0.1 mL 
of the extract was mixed with 0.2 mL of Folin–Ciocalteu reagent and 
2 mL of distilled water. After standing for 3 minutes at room 
temperature, 1 mL of 20% (w/v) sodium carbonate was added. The 
mixture was incubated at 50°C for 25 minutes, and absorbance was 
measured at 765nm using a Multiskan GO 1510 spectrophotometer 
(Thermo Fisher Scientific, Finland). Gallic acid (50–250mg/L) was 
used to generate a standard curve, and total phenolics were 
expressed as gallic acid equivalents (GAE). 

2.3.4 Preparation and quantitative analysis of 
crude polysaccharide fraction samples 

Extraction and analysis of crude polysaccharide fraction were 
performed with a slight modification to the method described by 
Wang et al. (Wang et al., 2010). In brief, C. songaricum powder (1 g) 
was boiled in water (1:5 w/v) for 3 hours, repeated three times, 
followed by precipitation with ethanol at 4°C for 24 hours. The 
mixture was then centrifuged at 12,000 rpm for 15 minutes. The 
resulting precipitate was vacuum freeze-dried to obtain crude 
polysaccharides. Proteins in the crude polysaccharides were 
removed using  the Sevage method (Huang et al., 2010). The 
crude polysaccharides were washed alternately with ethanol, 
acetone, and diethyl ether three times to remove lipid residues 
completely. The phenol-sulfuric acid method (DuBois et al., 1956) 
was employed to determine the polysaccharide content of the crude 
polysaccharide fraction. 

2.3.5 Method validation 
Validation of method for determination of the chemical 

constituents of C. songaricum in terms of linearity, precision, 
stability and reproducibility (Supplementary Table S4). 

Linearity: Evaluating the standard solution within a 
concentration range appropriate for measuring the relevant 
analyte in the matrix sample allows one to assess the solution’s 
linearity. The master batch prepared was diluted using methanol to 
obtain different concentrations of the standard mixture, which was 
analyzed according to the conditions in 2.3.2. to establish the 
calibration curve. Each constituent’s mass concentration (x, mg/ 
mL) was measured and linearly regressed on the corresponding 
peak area (y), to acquire the corresponding regression equations 
and correlation coefficients. The correlation coefficients for the five 
major chemical components exceeded 0.990. 

Intra-day accuracy: Samples of C. songaricum (sample No. MQ1 
for ursolic acid, sample No. JLT13 for others) were taken and the 
peak area RSDarea% of each component was calculated by injecting 
the samples six times consecutively in one day, respectively. The 
intra-day precision ranged from 1.045% to 1.999% (RSD area%). 

Inter-day accuracy: Samples were injected separately for 
3 consecutive days (6 parallel samples on day 1, 3 parallel 
samples on day 2, and 3 parallel samples on day 3), and the 
peak area RSDarea% of each component was calculated. The inter-
 frontiersin.org 
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day precision ranged from 0.939% to 1.941% (RSD area%), which 
was less than 2%, indicating that the instrument’s precision 
was good. 

Stability: The sample solutions of C. songaricum were placed at 
4°C and then sampled at 0, 2, 4, 6, 8, 10, 12, 18, 24 and 36h. The 
peak area of each component (RSDarea%) was calculated. The RSD 
was less than 2%, indicating that all of the constituents had good 
stability throughout 36 hours. The stability ranged from 1.225% to 
1.895%, with RSD area% values all below 2%. 

Repeatability: Take 0.1 g powder of C. songaricum, parallel 6 
groups, and measure respectively. The RSD was less than 3%, 
representing good reproducibility and stability of the method. 
The repeatability RSD (%) ranged for peak area (0.526%–2.385%) 
and retention time (0.066%–0.525%) across the five components. 
2.4 Statistical analysis 

The content of six bioactive components of C. songaricum was 
used for principal component analysis (PCA) on samples collected 
from 28 sites. Using partial least squares regression (PLSR), we 
analyzed the correlations between bioactive components of C. 
songaricum and ecological factors, and generated a spatial 
distribution map of the components concentrations. All PLSR 
analyses were run on the SPSSPRO cloud platform https:// 
www.spsspro.com/. Additionally, we trained three regression-
based  machine-learning  models  in  R—Random  Forest  
(randomforest package), Gradient Boosting Decision Tree 
(GBDT; gbm package), and CatBoost (catboost package)—to 
identify the environmental factors that most strongly influence 
the accumulation of bioactive compounds in C. songaricum. The 
statistical analysis was performed using IBM SPSS Statistics version 
27 (IBM Corp., Armonk, NY, USA). One-way analysis of variance 
(One-way ANOVA) was applied to evaluate differences among 
groups. Mean comparisons were conducted using Duncan’s 
multiple range test at a significance level of p ≤ 0.05. 
3 Result 

3.1 Key environmental drivers: BIO13 and 
pH 

Precipitation of wettest month (BIO13) and soil pH 30–60 cm 
were the two most critical environmental factors influencing the 
distribution of C. songaricum, as indicated by the MaxEnt modeling 
results. Additional variables, such as sunshine duration in growing 
season (hsdgs), total phosphorus density in soil (tpd), and max 
temperature of warmest month (BIO5), also contributed to habitat 
suitability, but their importance was relatively lower. The relative 
contributions and permutation importance of these key variables 
were: BIO13 (27.4%, 12.3%), soil pH (21.9%, 13.2%), hsdgs (8.2%, 
12%), tpd (6.9%, 1.5%), and BIO5 (6%, 15.2%) (Table 1). 
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Single-factor response curves indicate that C. songaricum 
reaches peak predicted suitability under the following conditions: 
38.02 mm precipitation (precipitation of wettest month, BIO13; 
suitability range 0.00–202.87 mm), soil pH 9.34 (4.50–9.81), 21590 
h sunshine (sunshine duration in the growing season, hsdgs; 
5982.60–25014.65 h), 0.21 kg m-² total soil phosphorus density 
(tpd; 0.05–0.46 kg m-²), and 33.14°C (maximum temperature of 
warmest month, BIO5; 0.03–45.43°C) (Supplementary Figure S3). 
TABLE 1 Detailed information on the 21 ecological factors used for 
predicting the distribution of C. songaricum. 

Name 
Relative 

contribution 
(%) 

Permutation 
importance 

(%) 
Description 

BIO13 27.4 12.3 Precipitation of 
wettest month 

pH 21.9 13.2 Soil pH 30–60 cm 

hsdgs 8.2 12.0 Sunshine duration in 
growing season 

tpd 6.9 1.5 Total phosphorus 
density in soil 

BIO5 6.0 15.2 Max temperature of 
warmest month 

BIO2 3.9 2.9 Mean diurnal range 
(mean of monthly (max 
temp - min temp)) 

btslt 3.8 2.7 Soil silt content 

BIO19 3.6 7.7 Precipitation of 
coldest quarter 

cf 3.3 3.5 Coarse fragment 
(diameter>2 mm) 

BIO15 2.8 2.9 Precipitation seasonality 
(coefficient of variation) 

BIO6 2.5 3.7 Min temperature of 
coldest month 

cec 2.2 3.6 Cation exchange 
capacity of soil 

SOC 1.7 5.4 Soil organic carbon 

bd 1.5 1.6 Bulk density of soil 

slope 1.3 1.9 Slope gradient 

tn 1.0 3.8 Total nitrogen in soil 

aspect 0.6 0.6 Aspect 

tk 0.6 1.0 Total potassium in soil 

tp 0.4 3.2 Total phosphorus 
in soil 

BIO7 0.3 0.9 Temperature annual 
range (BIO5-BIO6) 

BIO3 0.3 0.5 Isothermality (BIO2/ 
BIO7) (×100) 
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3.2 Habitat changes under different climate 
scenarios 

3.2.1 Current suitable habitat is concentrated in 
north-western China 

Based on the MaxEnt predictions, we delineated and visualized 
the potential range of C. songaricum under the integrated regional 
model (Supplementary Figure S4). Under current climatic 
conditions, suitable habitat is concentrated in north-western 
China. Areas of high suitability are found chiefly in south-western 
Inner Mongolia (Ordos, Wuhai, Bayannur and Alxa); north-eastern 
Gansu (Jiuquan, Jiayuguan, Zhangye, Jinchang, Wuwei, Lanzhou 
and Baiyin); northern Ningxia (Zhongwei, Wuzhong, Yinchuan 
and Shizuishan); central Qinghai (Haixi and Hainan); and north
western Xinjiang (Hami, Bayingolin, Hotan, Changji, Tacheng, 
Bortala, Korgas, Ili, Aksu, Kizilsu and Kashgar). 

Nationwide, the total area classified as suitable amounts to 21.90 
× 105 km², comprising 2.70 × 105 km² of high-suitability habitat, 
6.37 × 105 km² of medium suitability and 12.83 × 105 km² of low 
suitability—together representing 22.81% of China’s land surface 
(Supplementary Table S5). 

3.2.2 Projected suitable habitat areas are 
expected to increase 

C. songaricum is primarily distributed in desert regions, among 
Earth’s most fragile ecosystems. Under the SSP126, SSP245, SSP370, 
and SSP585 scenarios, the MaxEnt model was applied to predict the 
potential suitability habitats for C. songaricum in the 2050s, 2070s, and 
2090s. Figure 1 depicts the spatial distribution of predicted suitable 
habitats for C. songaricum in the future, categorized into unsuitability, 
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low suitability, medium suitability, and high suitability habitats. High-
suitability habitat areas ranged from 33.15 to 39.20 × 104 km² across 
future periods. (Figure 1) (Supplementary Table S5). In the 2050s, 
SSP585 projected the largest high-suitability area (39.63 × 104 km²), 
while SSP245 projected  the smallest (33.15 × 104 km²). For the 2070s, 
SSP585 again yielded the maximum extent (39.48 × 104 km²), while 
SSP370 produced the minimum (35.66 × 104 km²). In the 2090s, the 
greatest area was predicted under SSP585 (40.60 × 104 km²) and the 
least under SSP126 (34.36 × 104 km²). High-suitability habitats are 
projected to shift northward under future climate scenarios. 

Projected suitable habitat areas for C. songaricum expand under 
all future scenarios (Figures 2A–C; Supplementary Table S5). 
Suitable habitat gains concentrate along relatively moist mountain 
and plateau margins, specifically the Altyn-Tagh Fault zone, the 
southeastern Qiangtang Plateau, the eastern Tianshan Mountains, 
and the flanks of the Yinshan Mountains. Losses, by contrast, are 
anchored in hyper-arid deserts and adjacent transition belts, 
including the western and northern Taklamakan Desert, the 
Taklamakan–Kumtag ecotone, the north-western Qiangtang 
Plateau, and the north-eastern Yanshan Mountains. By the 2090s, 
projected increases in suitable habitat areas are 8.03, 14.42, 19.58, 
and 23.38 × 104 km² under SSP126, SSP245, SSP370, and SSP585 
scenarios, respectively (Figure 2C; Supplementary Table S5). 

Overall, it is evident that future climate warming will positively 
impact  the suitable habitats for  C. songaricum, as  reflected in the 
lowest habitat expansion under the SSP126 scenario. Figure 2 
illustrates the dynamic changes in the habitat distribution of C. 
songaricum. Tabulated data confirm these distributional shifts 
under different climate scenarios (Supplementary Table S5). In the 
long term, the four future climate scenarios are projected to increase 
FIGURE 1
 

Habitat suitability for C. songaricum in China under four emission scenarios: 2050s (A1–A4), 2070s (B1–B4), and 2090s (C1–C4).
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in highly and moderately suitable habitats for C. songaricum, with an  
average increase of 10.91 × 104 km² and 12.56 × 104 km², respectively. 

3.2.3 Centroids migration of suitable areas is 
minor 

Supplementary Figure S5 shows the centroid position and shift 
direction for C. songaricum under each time slice and SSP scenario, 
calculated in ArcGIS. The current centroid of the suitable habitat is 
located in Guazhou County, Jiuquan City, Gansu (95.353°E, 40.622° 
N). Under future scenarios, centroids shifted only 2.83–32.58 km from 
this position, remaining within Guazhou County. Overall, the centroid 
migration of suitable habitat remains minor across all four scenarios. 
3.3 Ecological quality indicator 
development 

3.3.1 Significant differences in the bioactive 
component contents among populations 

Using UPLC-PDA technology, the contents of four major 
bioactive components (3,4-dihydroxybenzaldehyde, catechin, 
epicatechin, and ursolic acid) in 84 samples from 28 C. songaricum 
populations were analyzed. The study also measured the contents of 
two total components, including total phenolics and crude 
polysaccharides, revealing variations among them (Supplementary 
Table S6). One-way ANOVA detected significant population-level 
differences in all measured bioactive components (Supplementary 
Table S7). Concentrations across populations spanned the following 
ranges: catechin 63.2–6314.4 mg g-¹, epicatechin 5.3–524.1 mg g-¹, 3,4
dihydroxybenzaldehyde 4.3–16.5 mg g-¹, ursolic acid 51.4–509.1 mg g-¹, 
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total phenolics 28.3–149.9 mg g-¹, and crude polysaccharides 21.8– 
113.8 mg g-¹ (Supplementary Figures S6A–F).Significant variation was 
observed, with maximum 3,4-dihydroxybenzaldehyde in DLT (Inner 
Mongolia),  highest catechin and  epicatechin in YQ (Xinjiang),  and
peak ursolic acid and total phenolics in BDJL (Inner Mongolia), and 
crude polysaccharides were greatest in NYG (Inner Mongolia). 

Heatmap clustering (Figure 3A) classified samples into five 
distinct chemical profiles: Cluster I with elevated catechin, 
epicatechin, ursolic acid, and phenolics; Cluster IIa uniformly low 
across components; Cluster IIb predominantly elevated ursolic acid 
and phenolics; Cluster IIIa rich in polysaccharides; and Cluster IIIb 
with combined elevated ursolic acid and polysaccharides. PCA 
clearly separated populations along the first two principal 
components (R² = 0.63, p = 0.001; Figure 3B). 

3.3.2 Ecological factors affecting bioactive 
components 

The relationships between the contents of six bioactive 
components and 18 ecological factors were established using 
PLSR (Equations S1–S6). The PLSR-derived relationships between 
components and ecological factors were visualized as spatial trends 
via ArcGIS (Figure 4). High-content zones (HCZs, ≥50% 
concentration threshold) were identified for all six components: 
3,4-Dihydroxybenzaldehyde HCZs clustered at the boundary 
between the Gangdise Mountains and the northern Qiangtang 
Plateau, the northern foothills of the Kunlun Mountains, the 
southern slopes of the Tianshan Mountains, and the periphery of 
the Qilian Mountains (Figure 4A). Catechin HCZs were prominent 
around the Tianshan and Kunlun Mountains, the junction of the 
Gangdise Mountains and the western Qiangtang Plateau, and the 
FIGURE 2 

Geographic and spatial pattern changes of overall suitable areas under four emission scenarios in the 2050s (A1–A4), 2070s (B1–B4), and 2090s 
(C1–C4) compared to the current period (blue: expansion areas, yellow: stable areas, red: contraction areas). 
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northern Qilian Mountains (Figure 4B). Epicatechin HCZs 
dominated areas surrounding the Tianshan Mountains, northern 
Kunlun Mountains, northern Qilian Mountains, northern Ordos 
Plateau, and Yinshan Mountains (Figure 4C). Ursolic acid HCZs 
concentrated near the Tianshan, Kunlun, and Qilian Mountains, as 
well as the northern Ordos Plateau (Figure 4D). Total phenolics 
HCZs covered western and northern Xinjiang, western Tibet, 
central Qinghai, central and northern Gansu, most of Inner 
Mongolia and Ningxia, and northern Shaanxi (Figure 4E). Crude 
polysaccharide HCZs centered on the Taklimakan Desert periphery 
and areas north of the Kunlun and Qilian Mountains (Figure 4F). 

3.3.3 Machine learning for ranking bioactive 
component drivers 

To identify the key environmental variables, we applied 
machine learning models—Random Forest, Gradient Boosting 
Decision Tree, and Categorical Boosting —to rank variable 
importance for each bioactive component. For each component, 
the top 10 influential factors from each model’s ranking were 
extracted (Figure 5), and the intersection of these tri-model top
10 lists was defined as the key environmental factors. 

Machine learning identified slope, BIO6, BIO19, hsdgs, and 
BIO3 as key factors affecting multiple bioactive components 
(Figure 5). For 3,4-dihydroxybenzaldehyde, the core factors were 
precipitation of wettest month (BIO13), mean diurnal range(BIO2), 
and slope gradient (slope). Catechin accumulation was primarily 
influenced by slope, total phosphorus density in soil (tpd), min 
temperature of coldest month (BIO6), total nitrogen in soil (tn), and 
precipitation of coldest quarter (BIO19), while the key factors for 
epicatechin were BIO19 and cation exchange capacity of soil (cec). 
Ursolic acid accumulation was associated with sunshine duration in 
growing season (hsdgs), isothermality (BIO3), BIO6, max 
temperature of warmest month (BIO5), bulk density of soil (bd), 
and soil silt content (btslt). Total phenolics were strongly influenced 
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by BIO3 and BIO6, whereas crude polysaccharides were influenced 
by precipitation seasonality (BIO15), slope, and hsdgs. 

3.3.4 Identifying high-quality cultivation areas 
Based on the study objectives, ArcGIS software was used to 

identify high-quality regions by superimposing two spatial criteria: 
high-content zones (HCZs, ≥50% concentration threshold) for 
individual bioactive components; high-suitability areas (HSAs, 
0.47-0.95) predicted by the MaxEnt model. The overlapping 
zones between HCZs and HSAs were visualized in Supplementary 
Figure S7. The results showed that: the 3,4-dihydroxybenzaldehyde 
HCZ-HSA overlap covered 14.25×104 km² (Supplementary Figure 
S7A); catechin HCZ-HSA overlap covered 8.76×104 km² 
(Supplementary Figure S7B); epicatechin HCZ-HSA overlap 
covered 15.05×104 km² (Supplementary Figure S7C); ursolic acid 
HCZ-HSA overlap encompassed 17.60×104 km² (Supplementary 
Figure S7D); total phenolics HCZ-HSA overlap covered 14.03×104 

km² (Supplementary Figure S7E); crude polysaccharide HCZ-HSA 
overlap spread across 18.28×104 km² (Supplementary Figure S7F). 

High-quality cultivation areas included Hotan and Aksu (Xinjiang); 
Haixi (Qinghai); Jiuquan, Jiayuguan, Zhangye, Jinchang, Wuwei, Baiyin 
(Gansu); Zhongwei, Wuzhong, Yinchuan, Shizuishan (Ningxia); and 
Alxa, Bayannur,  Ordos (Inner Mongolia)  (Supplementary Figure S7). 
4 Discussion 

4.1 Key environmental factors impacting 
distribution 

MaxEnt modeling accurately predicts species habitats and 
effectively assesses relationships between species distribution and 
environmental variables (Li et al., 2020; Liu et al., 2021; Chen et al., 
2024; Hosseini et al., 2024). In this study, the MaxEnt model was used 
FIGURE 3 

Clustering heatmap and PCA of C songaricum (A)clustering heatmap of the 9 main components (B) PCA plot. 
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to predict the habitat area of C. songaricum, achieving an AUC value 
of 0.956, which indicates high reliability in the prediction results and 
exceeds the AUC value (0.937) reported in previous studies (Lu et al., 
2022). The higher AUC value (0.956 vs. 0.937) suggests that 
incorporating soil factors, terrain data, and phenology-related 
environmental variables enhanced the model’s predictive capacity, 
likely due to a more comprehensive characterization of C. 
songaricum’s ecological requirements compared to previous 
environmental variable selections. The incorporation of additional 
critical environmental factors can enhance the accuracy of MaxEnt 
modeling (Phillips et al., 2006; Bradie and Leung, 2017). Therefore, we 
incorporated a broader range of critical environmental factors into the 
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model. Previous studies indicate that C. songaricum primarily inhabits 
salt-alkaline soils or desert terrains (Zhang et al., 2022). Significant 
physicochemical differences (e.g., salinity, pH) across soil types (e.g., 
sandy soils, saline soils) directly shape its niche differentiation (Zhang 
et al., 2024c). Therefore, soil factors are integrated as parameters in our 
ecological niche model. Additionally, terrain data (e.g., slope, 
elevation) in arid regions modulate microhabitat conditions by 
redistributing moisture and altering local temperatures, justifying 
their inclusion as model parameters (McNichol et al., 2024). 
Notably, phenology-related environmental variables (e.g., seasonal 
temperature fluctuations), critical for plant growth (He et al., 
2023).Above factors overlooked in prior research of C. songaricum 
FIGURE 4
 

Spatial trends of six bioactive components contents in C songaricum (A). 3,4-dihydroxybenzaldehyde, (B) catechin, (C) epicatechin, (D) ursolic acid,
 
(E) total phenolics, (F) crude polysaccharides). 
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(Lu et al., 2022), are incorporated here. By integrating these factors, 
our predictions diverge significantly from earlier models (Lu et al., 
2022). In this study, we used the jackknife test in the MaxEnt model to 
evaluate the bioclimatic variables influencing the geographic 
distribution of C. songaricum. 

The results indicate that soil pH is one of the primary 
environmental drivers influencing the distribution of C. songaricum. 
This study found that the most suitable soil pH value for C. 
songaricum was 9.34, suggesting a preference for alkaline 
environments. Interestingly, the preference for alkaline and arid 
conditions may also be related to the ecological traits of its host 
plant, the genus Nitraria, which is commonly found in saline and 
drought-prone environments (Cheng et al., 2015; Wu et al., 2023). 
Although high salinity is typically associated with reduced 
photosynthesis and inhibited growth, previous studies have shown 
that seedlings of Nitraria sibirica can not only tolerate saline–alkali 
soils but may even exhibit enhanced growth under certain salt 
concentrations (Wu et al., 2023). This may help explain the single-
factor response curves indicating an optimal pH of 9.34 and a 
relatively low wettest-month precipitation (38.02 mm) for the 
growth of C. songaricum. Another possible explanation is that soil 
pH not only affects nutrient uptake by plants but also significantly 
reshapes the structure of rhizosphere microbial communities (Wang 
et al., 2021). Rhizosphere microorganisms can enhance plant 
resistance to pathogens and improve plant survival under adverse 
conditions such as drought and saline–alkali stress (Zhang et al., 
2024d). Previous studies have shown that in saline–alkali 
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environments, limited resource availability in the rhizosphere of C. 
songaricum promotes intense bacterial competition, resulting in a 
higher proportion of negative correlations within the microbial 
network (Zhang et al., 2024d). Such negative interactions can 
stabilize microbial communities against external disturbances and 
enhance network stability under fluctuating conditions, thereby 
indirectly improving plant survival in extreme environments. In 
addition, this study found that precipitation during the wettest 
month (BIO13) also had a significant impact on the distribution of 
C. songaricum. A likely explanation is that precipitation affects 
rhizosphere microbial dynamics, which in turn influence the growth 
and survival of the plant. In dryland ecosystems, precipitation typically 
occurs in pulses, which can trigger short-term surges in soil microbial 
metabolic activity (Wang et al., 2022c). Rewetting events rapidly 
reactivate microbial communities and promote the release of 
inorganic nutrients such as nitrogen and phosphorus. However, if 
the timing of plant nutrient uptake is not synchronized with microbial 
nutrient release, nutrients may be lost through leaching or 
volatilization, reducing overall system efficiency. A moderate level of 
BIO13 (e.g., the optimal value of 38.02 mm identified in this study) 
may represent a window of water availability in which microbial 
activity and plant nutrient uptake are temporally aligned, thereby 
maximizing nutrient use efficiency and creating favorable conditions 
for plant growth. In contrast, extreme increases in precipitation may 
disrupt this balance and potentially constrain the expansion potential 
of C. songaricum. These insights enhance our understanding of how C. 
songaricum adapts to varying habitat conditions. 
FIGURE 5 

Comparative ranking of climatic factor importance on C. songaricum bioactive component accumulation. [From left to right, based on three 
machine learning methods (random forest, gradient boosting decision tree, and categorical boosting), the top 10 important climatic factors 
influencing the accumulation of 3,4-dihydroxybenzaldehyde (A1–A3), catechin (B1–B3), epicatechin (C1–C3), ursolic acid (D1–D3), total phenolics 
(E1–E3), and crude polysaccharides (F1–F3)]. 
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4.2 Spatial pattern shifts under future 
climate scenarios 

Under future climatic conditions, the suitable habitat of C. 
songaricum is projected to expand in the 2050s, 2070s, and 2090s 
across four climate scenarios (SSP126, SSP245, SSP370, and 
SSP585). Similar trends have been observed in other medicinal 
plants, such as Astragalus mongoliae or Astragalus membranaceus 
(Wen et al., 2024), Angelica dahurica (Zhang et al., 2024a), and 
Homonoia riparia (Yi et al., 2016). Studies have shown that 
greenhouse gas induced global warming may lead to increased 
surface aridity and more droughts in the twenty-first century due to 
decreased precipitation and increased evaporative demand 
associated with higher vapor pressure deficit under warmer 
temperatures (Dai et al., 2018). Reduced precipitation may 
exacerbate drought and reduce soil moisture (Tariq et al., 2024), 
while increased evapotranspiration may elevate soil pH (Ouyang 
et al., 2024) ultimately favoring C. songaricum growth. This trend is 
particularly evident in the SSP585 scenario, which exhibits the 
largest increase in suitability habitats. Unlike prior predictions by 
Lu et al (Lu et al., 2022), which suggested minimal changes in C. 
songaricum’s potential distribution under future scenarios, our 
study predicts habitat expansion under all future scenarios and 
periods. This discrepancy likely stems from our inclusion of more 
comprehensive distribution and environmental data than earlier 
models (Phillips et al., 2006; Bradie and Leung, 2017). 

The habitat expansion areas are primarily located near the 
Altyn-Tagh fault zone, southeastern Qiangtang Plateau, eastern 
Tianshan Mountains, and areas surrounding the Yinshan 
Mountains. In contrast, habitat contraction areas are mainly 
found in the western and northern regions of the Taklamakan 
Desert, the connection zone between the Taklamakan and Kumtag 
deserts, the northwestern Qiangtang Plateau, and the northeastern 
Yanshan Mountains. A possible explanation is that while the 
expanding areas are also classified as arid to semi-arid, they 
receive more precipitation and exhibit higher humidity compared 
to the contracting areas. The contracting regions are typically 
characterized by extreme aridity with minimal effective rainfall. 
Expanding areas are often located along plateau edges or mountain 
ranges, featuring complex and diverse topography with varied 
microclimate conditions. In contrast, the contracting areas are 
primarily deserts or high-altitude desert lands, characterized by 
uniform terrain and simpler ecosystems. The expanding regions are 
likely to support a greater diversity of drought-tolerant plants, 
forming relatively rich vegetation communities that provide more 
host options for C. songaricum. On the other hand, contracting 
areas exhibit extremely sparse vegetation and low ecological 
carrying capacity, making it challenging to sustain the survival of 
C. songaricum. 

In all emission scenarios, the area of high-suitability habitats 
consistently exceeds current levels. This indicates climate warming 
positively drives habitat suitability by alleviating low-temperature 
constraints and expanding suitable areas (Cheng et al., 2024b). This 
effect is particularly pronounced in regions with strong low-
temperature limitations, such as high-latitude or high-altitude 
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areas, where habitat suitability significantly improves with climate 
warming. The fluctuations in suitable areas observed in the 2050s 
and 2070s suggest non-linear growth influenced by the complex 
dynamic changes of climatic factors. Uneven spatial and temporal 
precipitation distribution and high-temperature stress may be the 
primary contributors (Ding et al., 2024). In high-emission scenarios 
(SSP585), despite potential increases in extreme climate events such 
as heatwaves and droughts, the area of suitability habitats continues 
to grow, reflecting long-term improvements in low-temperature

constrained regions. 
The ecological theory of medicinal plants emphasizes the 

fundamental role of authentic production areas, asserting that the 
origin determines plants characteristics, medicinal properties, and 
intrinsic quality (Zhang et al., 2024b). The distribution centroid of 
C. songaricum remains relatively stable, primarily located in 
Guazhou County, Gansu Province. Gaining deeper insights into 
the delineation of production areas for C. songaricum and 
examining quality differences across various regions is crucial. 
This should be considered a paramount direction for exploration, 
as it will facilitate the selection of high-value cultivation areas. 
4.3 The relationship between the chemical 
components and environmental factors 

The relationship between environmental shifts and secondary 
metabolism has long been the focus of research in plant 
biochemistry, physiology and ecology (Xue et al., 2021). 
Specifically, medicinal crops are used as optimal model species in 
this field because their pharmacological and economic value is 
tightly linked to their concentrations of bioactive compounds 
(Aghaei and Komatsu, 2013; Guo et al., 2013; Cao et al., 2020). 
Existing studies have shown that factors such as soil, climate, and 
topography play crucial roles in the accumulation of secondary 
metabolites in plants (Zhang et al., 2021; Da Silva et al., 2022; Su 
et al., 2023). However, how these environmental factors mediate the 
production of bioactive components of C. songaricum remain 
understudied. We employed machine learning models (Random 
Forest, Gradient Boosting Decision Trees, and CatBoost) alongside 
Partial Least Squares Regression (PLSR) to analyze the impact of 
environmental changes on the bioactive components of C. 
songaricum . We found that slope gradient (slope), min 
temperature of coldest month (BIO6), precipitation of coldest 
quarter (BIO19), sunshine duration in growing season (hsdgs), 
and isothermality (BIO3) were critical for the accumulation of 
various bioactive components in C. songaricum. Slope determines 
soil moisture content and, together with elevation, jointly shapes the 
local temperature (Ibrahim et al., 2022). These factors may explain 
the observed decreases in 3,4-dihydroxybenzaldehyde, catechin, 
and crude-polysaccharide contents. The phenylpropanoid 
pathway is modulated by abiotic factors—low temperature among 
them—which can drive the accumulation of various phenolic 
compounds (Sharma et al., 2019; Salam et al., 2023). This 
explains why BIO6 promotes higher levels of catechin and total 
phenolics in C. songaricum. Exposure to both UV-B radiation and 
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drought impairs plant growth and health by boosting the 
production of reactive oxygen species, which damage lipids, 
proteins, carbohydrates, and DNA (Shoaib et al., 2024). At the 
same time, UV-B alone can stimulate the accumulation of terpenoid 
compounds in many plant species (Zhang et al., 2021). This dual 
effect may explain why hsdgs elevates ursolic-acid levels while 
reducing crude-polysaccharide content. 

As climate change becomes an increasingly pressing concern, it 
is vital to identify regions highly suitable for producing high-quality 
C. songaricum. Because the compounds are subject to interactive, 
non-linear regulation by environmental factors, high-content zones 
(HCZs, ≥50% concentration threshold) do not entirely coincide 
with high-suitability areas (HSAs, 0.47-0.95). To date, regions 
simultaneously offering both high suitability and high compound 
content for C. songaricum have rarely been reported. By integrating 
our PLSR findings with habitat-suitability classifications, we 
identified the optimal cultivation zones in northwestern China. 
These results offer valuable references for planning production 
areas for high-quality C. songaricum. In addition, growers can use 
our findings to introduce C. songaricum selectively into regions best 
suited to the desired compound profile, thereby obtaining C. 
songaricum enriched in a specific single component or in selected 
classes of components. 
5 Conclusion 

MaxEnt results indicated that precipitation of wettest month 
(BIO13) and soil pH were key factors influencing the distribution of 
C. songaricum. Under various future emission scenarios, the suitable 
habitat area for C. songaricum is projected to expand, while the 
distribution centroid remains largely stable. By PLSR, this study 
revealed the complex relationships between environmental factors and 
bioactive components, including 3,4-dihydroxybenzaldehyde, catechin, 
epicatechin, ursolic acid, total phenolics, and crude polysaccharide. 
Cross-validation using three machine learning models further 
identified critical environmental factors affecting composition 
accumulation. Among them, slope gradient (slope) acted as a key 
shared negative regulator for 3,4-dihydroxybenzaldehyde, catechin, 
and crude polysaccharides. Min temperature of coldest month (BIO6) 
served as a key shared positive regulator for catechin and total phenolics, 
while functioning as a key negative regulator for ursolic acid. 
Precipitation of coldest quarter (BIO19) was identified as a key shared 
negative regulator for catechin and epicatechin. Sunshine duration in 
growing season (hsdgs) acted as a key positive regulator for ursolic acid 
while negatively regulating crude polysaccharides. Additionally, BIO3 
(isothermality) served as a key shared positive regulator for both ursolic 
acid and total phenolics. Based on machine learning results, strategies 
involve precise water management combined with targeted fertilization,  
and selecting regions characterized by higher minimum temperature of 
coldest month (BIO6) and lower mean diurnal range (BIO2), thereby 
enabling the production of high-quality C. songaricum. In addition,  the  
study employed geographic information system (GIS) tools to combine 
the distribution characteristics of bioactive components with habitat 
suitability analysis. This approach identified highly suitable cultivation 
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areas in northwestern China, including Hotan and Aksu (Xinjiang); 
Haixi (Qinghai); Jiuquan, Jiayuguan, Zhangye, Jinchang, Wuwei, Baiyin 
(Gansu); Zhongwei, Wuzhong, Yinchuan, Shizuishan (Ningxia); and 
Alxa, Bayannur, Ordos (Inner Mongolia). While other high-suitability 
growth areas (compound content < Avg) can be designated as 
conservation zones for C. songaricum. 

In conclusion, this study integrated machine learning models 
and UPLC technology to provide a scientific foundation for the 
regional optimization of C. songaricum cultivation and the efficient 
production of bioactive components. The findings not only 
contribute to the sustainable development of the C. songaricum 
industry but also offer valuable insights into the relationship 
between ecological factors and the quality of traditional 
Chinese medicine. 
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