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Introduction: The world's population has been increasing continuously, and this
requires prompt action to ensure food security. One of the top five cereals
produced worldwide, sorghum, is a staple of the diets of many developing
nations. For this reason,getting accurate information is crucial to raising cereal
productivity. The quantity of crop heads arranged in various branching
configurations can be used as an indicator to estimate the yields of sorghum.
For various crops, computerized methods have been demonstrated to be
beneficial in automatically collecting this information. However, the application
of sorghum crops faces challenges due to variations in the color and shape
of sorghum.

Methods: Therefore,a method is proposed based on the three models for the
classification, localization, and segmentation of sorghum. The shifted window
transformer (SWT)network is proposed to have seven layers of path embedding,
two Swin Transformers, global average pooling, patch merging, and dense
connections. The proposed SWT is trained on the following selected
hyperparameters: patch size(2,2), two window size,le-3 learning rate, 128 batch
size,40 epochs, 0.0001 weight decay, 0.03dropout, eight heads, 64 embedding
dimension, and 256 MLP. To localize the sorghum region, the YOLOv9—-c model
is trained from scratch on the selected hyperparameters for 100 epochs. Due to
light, illumination, and noise, the sorghum images are more complex. A
transformer-based SegNetmodel is designed, in which features are extracted
using a pre-trained SegFormer-BO model fine-tuned for ADE-512-512. The
proposed model is trained from scratch for 10 epochs using the Adam
optimizer with a learning rate of 5e-5 and CrossEntropylLoss hyperparameters,
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which are finalized after extensive experimentation to achieve more accurate
segmentation of the sorghum; this is a significant contribution of this work.
Results and Discussion: The achieved outcomes are superior to those in other

published works.
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transformer neural network, sorghum, YOLO-v9, hyperparameters, crops, classification,
localization, and segmentations

1 Introduction

Global crop production is facing various climate challenges.
These challenges include high temperatures and extreme weather
conditions. These extreme situations lead to damage to crops
(Liagat et al., 2024). The crops are subject to different biotic and
abiotic impacts, which can affect production and pose a threat to the
agricultural economy. Various kinds of crops are used in abundance
for different uses, which include food, feed, and fuel. Sorghum is a
model crop for tropical grasses. It is best known for addressing these
conditions, and it is essential to meet all nutritional needs (Baloch
et al., 2023). Despite that, most Western countries use sorghum
primarily as animal feed. The powerful ability of sorghum crops to
resist harsh climate challenges can make them a key ingredient in a
healthy diet (Khoddami et al, 2023). Sorghum is rich in fiber,
protein, and essential minerals, making it an excellent ingredient in
a variety of foods. The lipid content of sorghum is low, but it
contains a high level of acid. Along with these, it also contains
vitamins B and E and essential minerals such as phosphorus,
magnesium, iron, and zinc. It can also lower the risk of chronic
disease due to its unique phytochemical composition (Tanwar et al.,
2023). Despite the many benefits of sorghum crops, the slow
breeding methods and complexity of the environment reduce the
urgency of production. The research focus is to enhance the
production of sorghum as a climate-smart crop in global crop
production. Phenotyping is essential for improving crops; however,
a research gap that hinders progress exists (Hivare et al., 2024).

As crop diseases can be a global threat to food production
worldwide, early detection of crop diseases helps decrease poor
production and increase the quality and quantity (Ngugi et al,
2024). Advancements in the fields of image processing and machine
learning, along with their applications in agriculture, are making
exceptional progress. The deep-learning-based solution can
facilitate the early detection of crop diseases and enhance
accuracy through timely predictions (Bouacida et al., 2024).
Although there is work done for the classification of sorghum
crops, there is very little work present for the identification of
sorghum disease detection. The core contribution steps of this
research are as follows:
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m Three models are proposed for classification, localization,
and segmentation.

m The SWIN model is proposed based on the selected layers
and optimal hyperparameters to classify the different types
of sorghum plant images.

m To localize the actual sorghum region, ResNet50 was applied
as the backbone for feature extraction and then passed to
YOLOV9-c, PANet, and the detection head. The proposed
YOLOV9-PANet model is trained from scratch to optimize
hyperparameters for accurate bounding box prediction
and classification.

m The transformer-based SegNet model is designed and trained
from scratch on selected hyperparameters to segment the
sorghum region more accurately. The proposed SegNet
model comprises the SegFormer encoder and SegFormer
decoder head. The encoder contains patch embedding,
convolutional, and normalization layers, among others,
while the decoder head comprises a segformer-MLP,
linear projection, dropout, and classifier.

The article is organized as follows: Section II discusses the
related work, Section III explains the proposed method’s steps, and
Section IV presents the results and discussion. The conclusion is
provided in Section V.

2 Related work

In the research, a small unmanned system UAS is used to gather
high-resolution images, which prove to be efficient in the large crop
field (Latif et al., 2021). A model is presented for the identification of
diseases such as tar spot, anthracnose, and rust on leaves using a
deep-learning-based ResNet architecture. A benchmark dataset is
curated for the experiment. The methodology used image masking
to focus on disease-related features. The proposed model
demonstrated the accuracy reported in (Varur et al, 2024).
Another significant disease that affects sorghum crops is charcoal
rot sorghum (CRS). EfficientNet B3 and a fully convolutional
network achieved a high accuracy rate of 86.97% in detecting
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CRS. For the segmentation, the FCN showed an accuracy level of
97.6%. The experiment showed increased validation scores with the
increase in the size of image patches (Gonzalez et al, 2024). A
convolutional neural network based on AlexNet is used for
sorghum detection. The model achieves an accuracy rate of 97%
(Senthil Kumar et al., 2023). A rapid and nondestructive model,
which is based on hyperspectral imaging HIS technology, is used to
detect pesticide residues in sorghum. The experimental data
consisted of one group of sorghum treated with pesticide and
three groups without pesticide treatment. The model obtained an
accuracy level of 97.8% (Hu et al., 2024). In the research, a cloud-
based deep learning algorithm is used. The phenotype traits are
extracted with the segmentation. Manually measured phenotype
traits are used to validate the extracted phenotypic traits. The model
named PointNet++ demonstrated the best performance, achieving
an accuracy rate of 91.5% (Patel et al., 2023). The smartphone-
captured images are used to detect the sorghum panicle and grain
number estimation. The images captured through the smartphone
were all manually labeled and augmented. The models based on
Detectron2 and YOLOvS were trained. Both showed an accuracy
level of 75% and 89%, respectively (Santiago et al., 2024). A novel
approach, Split-Attention Networks, is employed for disease
detection using aerial images. A pixel-based approach is used to
classify each pixel as health or disease-prone. The proposed model
achieved an Fl-score of 89.04% (Divya et al., 2024).

The YOLOVS detector is utilized for detecting the fall
armyworm pest at early stages to prevent damage and enhance
crop safety (Mhala et al, 2024). The DINO transformer (Swin
backbone with ResNet-101), detection transformer (DETR),
YOLOVS, EfficientNet B4, and WeedSwin Transformer models
are designed for weed detection (Islam et al, 2025). Detection
models such as Faster R-CNN with FPN, YOLOv5, and YOLOv7
are used to classify and detect the different types of coccinellids
found in sorghum (Wang et al., 2023). The model is designed with
the combination of YOLOvVSs, the Gold module, and LSKA
attention to enhance the detection of sorghum spikes (Qiu et al,
2024). UNet model with ResNet-34 as a feature extractor is used for
segmentation and obtained a testing F1-score of 89% (Genze et al.,
2022). The VGG-16 model is integrated with the attention module
and channel-wise spatial convolution module into U-Net, providing
an Fl-score of 0.78 for crop classification. This model performs
better than traditional U-net and Deeplabv3+ models (Yan
et al., 2025).

3 Proposed methodology

The proposed method comprises three deep-learning models:
Swin Transformer (Liu et al., 2021) for classification, YOLOv9-c
(Wang et al, 2024) for localization, and SegNet transformer
(Badrinarayanan et al., 2017) for the segmentation of sorghum.
The detailed proposed method steps are visualized in Figure 1.

In Figure 1, the proposed SWIN transformer model classifies
images of sorghum, grass, and broadleaf weeds. To localize the
sorghum leaf, the YOLOV9-c model is trained on hyperparameters.
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The proposed SegNet transformer model consists of an encoder/
decoder to segment the sorghum region.

3.1 Classification of sorghum diseases

The Swin Transformer (ST) is a hierarchical transformer that
measures representations based on shifted windows. While allowing
cross-window connections, it improves performance by restricting
self-attention measurement to non-overlapping local regions. The
proposed Swin Transformer consists of nine layers: input, patch
embedding (PE), two Swin Transformers (ST), patch merging
(PM), global average pooling (GAP), and a dense layer (DE) to
classify sorghum, grass, and broadleaf weed, as shown in Figure 2.

The Swin Transformer model works based on a vision
transformer, which focuses on localized self-attention in the
region of the window and extracts features hierarchically, in
which the patch embedding layer protects the data in a low-
dimensional space as Equation (1).

PE :XWE +bE (l)

Here X € RPXHXWxGy _, input tensor, E € RBPxCou _,
embedded output patch, and W represents the weight. The ST
model computes the attention in a non-overlapped window defined
as Equation (2).

T

K
Attention(Q, k, V) = softmax( Qx

Vd,

Here Q represents the query matrix, K represents the key

+b) xV (2)

matrix, V represents the value matrix, dy is the dimension of the
key vectors, b is the bias term (used for attention masking or relative
positional encoding), and attention weights are computed through
softmax. Attention is measured individually across each window. In
the multi-shifted window, the cross-window interactions were
maximized, in which input patches are shifted cyclically through
pixels before using window multi-scale attention. The patch output
is shifted back to its original position after the attention
computation. After attention, a multi-layer perceptron (MLP) is
applied to fix the features across the dimensions. MLP(X) =
GELUXW, +b;)W, +b, where W;, W, denote the weights
while by, b,represents bias. Normalization is added in each layer
to stabilize the model training using Equation (3).

X-p
o+

LN(X) = 3)

where 6,1 denote standard deviation and mean, while €
represents a small constant. In patch merging, a hierarchical
structure is created by merging neighboring patches to reduce
spatial resolution and increase feature depth given as Equation (4).

Xmerged = concat(Xp;, Xpy, Xp3, Xps) Wiy (4)

Xp=merged patches, W, denote weights. After extracting
features, global pooling collapses the spatial dimensions using
Equation (5).
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FIGURE 1

Proposed method architecture to classify, localize, and segment the sorghum leaves.

L on
Xpooled = ﬁzizlxi

®)

N denotes the spatial locations. The output is computed by
applying a dense layer with a softmax activation using Equation (6).

Y(output) = softmax(XWy + by)

(6)

Here Wy, by represents the weights and bias, while Y denotes

the probabilities.

The detailed architecture of the ST model with activations is

mentioned in Table 1.

The proposed model training hyperparameters are mentioned

in Table 2.

Table 2 provides the hyperparameters, which are finalized after

extensive experiments. After classification, the classified images are

passed to the YOLOV9-c for localization of the class label.
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3.2 Localization of sorghum diseases

The hypothetical YOLOv9-c passes input through a neural
network designed to recognize and categorize objects in real time.
Convolutional layers are used in the model to extract features, and
these are followed by layers that forecast box boundaries and
probabilities for various objects in an image. For the YOLOvV9-c
model, the annotated data were prepared, training was performed,
and the hyperparameters were fine-tuned to achieve optimal
performance. In the training process, the images are passed to the
network, and the network computes loss based on the prediction
and annotated masks. Finally, the model is updated with weights
based on the backpropagation algorithm. The test images are passed
to the trained model to predict the correct class label with high
speed and accuracy. The YOLOV9-c version is trained on sorghum
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FIGURE 2
Proposed swin transformer model for classification.

images with ground-annotated masks at an eight-batch size and 100
epochs. The YOLOV9-c architecture is shown in Figure 3.

The ResNet50 model comprises 50 layers based on residual
learning, featuring skip connections that help mitigate the problem
of vanishing gradients. The initial layers of ResNet50 comprise
convolutional layers (7 x 7, stride = 2 and padding = 3). The input
shape is 224 x 224 x 3. After applying the convolution layer, the
outputis 112 x 112 x 4. This layer is used for extracting low-level
features, such as textures and edges. The ReLU activation is used for
non-linearity. The maxpool is applied with a window size of 3 x 3, a
stride of 2, and one padding. The final output shape is 56 x 56 x 64.
The second block involves residual learning, which includes four
stages. Each stage consists of multiple blocks of residual that contain a
convolution with a 1 x 1 filter to reduce the dimension. A
convolution with a 3 x 3 filter size is applied for feature extraction.
A 1 x 1 convolution was used again to expand the convolution.
Finally, skip connection is used to add input to improve/enhance the
flow of the gradient. In stage 1, 21 to 23 layers are included, with an
input size of 56 x 56 x64. Three residual blocks, each with filter sizes
of 1 x 1,3 x 3,and 1 x 1, respectively, had 64 and 256 channels . The
output is 56 x 56 x 256. In stage 2, 31 to 34 layers are included; at
this stage, the input size is 56 x 56 x 256. The four residual

TABLE 1 Proposed ST model architecture.

Input Shape of output Parameters
Input (None, 256,12) 0
PE (None, 256,64) 17,216
ST (None, 256,64) 50,072
ST (None, 256,64) 51,096
PM (None, 64,128) 32,768
GAP (None,128) 0
DE (None, 3) 387

Total parameters = 151,539; trainable parameters = 150,483; non-trainable = 1,056.
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blocks have filter sizes of 1 x 1, 128, 3 x 3, 128, 1 x 1, 512. The
final output shape is 28 x 28 x 512.. In stage 3, the input shape of 28
x 28 x 512 is passed to the six residual blocks. Each block has a filter
of 1x1,3x3,and 1 x 1, witha 1024 output shape,
resultingina 14 x 14 x 1024 output. In stage 4, the input size is

size

14 x 14 x 1,024, comprising three residual blocks, each containing
filters of 1 x 1, 3 x 3, and 1 x 1, with dimensions of 512, 512, and
2,048, respectively. The final output shape is 7 x 7 x 2048. The
global average pool layer is 7 x 7 x 2048. The final layer
dimension of 7 x 7 x 2048 is converted into a 1D vector of size
2,048, mapping 2,048 features to the number of classes.

3.2.1 Extracted features using YOLOV9

The extracted features output to the last block of the
convolutional (stage 4) of Resnet50 is applied. The 7 x 7 x 2,048
feature shape is fed to YOLOvV9-c, which processes these features
using a path aggregation network (PANet) for multi-scale feature
fusion. The detection head generates the coordinates of the
bounding box and class probabilities. ResNet50 used sequential
convolutional layers. F oo = fg)() =w® x X +b? where X is the
input, w® weight, b® bias of Ith convolutional layer. F e =
f onva(Fconys), where Conv3 and Conv4 denote the features from
layers 3 and 4, respectively. The size of the features from layer 4

is (2048 x 7, 7) as an input size of 224 x 224.

3.2.2 YOLOV9-PANet aggregation

The features map F ., are processed by YOLOv9-c path
aggregation network (PANet) FpayConcat[f, (Fresnet)s faown (Fresnet)]s
where f,, and fyo, denote the features from up and down,
respectively. YOLOvV9-c utilizes anchors for predicting bounding
boxes. Byregiction= O(x).w+b. The SoftMax activation is applied to
predict the class labels. Py, (c) = 57217] where Zc denotes (c) class
logits. The default hyp.scratch-high.yghll is used from the YOLOv9-c
repository, and critical training hyperparameters are given in Table 3.
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TABLE 2 Proposed ST model hyperparameters.

Parameter IS

Patch size (2,2)
Window size 2
Learning rate le-3
Batch size 128
Epochs 40
Weight decay 0.0001
Dropout rate 0.03
Heads 8
Embed dim 64
Mlp 256

These hyperparameters are chosen for high-accuracy
optimization on agricultural datasets and are editable for
different tasks.

YOLOV9-c configuration file (yolov9-c.yaml) is utilized, which
is designed for compact and efficient object detection with high
accuracy. This variant includes the following components:

Input Image

10.3389/fpls.2025.1586865

Backbone: CSPRep3-based feature extractor with SPPF; neck:
PAN-FPN structure for multi-scale feature fusion; head: decoupled
head for classification and localization; attention: includes hybrid
task cascade module with EMA and DFL. This architecture strikes a
balance between model complexity and speed, optimizing it for
real-time plant and weed detection tasks in smart agriculture.

The dataset is defined in the data.yaml file. The data is split into
three files: training set (70% of the total labeled data), validation set
(15%), and testing set (15%). All sets are stratified to ensure
balanced class representation. We ensured no data leakage
between sets by random shuffling with a fixed seed before splitting.

The summary of the training parameters is given in Table 4.

These details confirm that the model training procedure and
experimental settings are rigorously defined and reproducible.
These specifications are explicitly included in the revised
manuscript for clarity and transparency.

3.3 Segmentation of sorghum diseases

The vision transformer models performed better on tasks
compared to classical CNN, such as semantic segmentation. The
transformers model, based on self-attention, considers the entire
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FIGURE 3

YOLOV9-c and PANet for localization/detection of the sorghum plant.
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TABLE 3 Hyperparameters of the localization model.

Parameter Value

Ir0 0.01

Lrf 0.1
Momentum 0.937

Weight decay 0.0005
Warmup epochs 3.0

Box 0.05

Cls 0.5

Obj 1.0

Label smoothing 0.0

hsv-h, hsv-s, hsv-v 0.015, 0.7, 0.4
Degrees, translate, scale, shear 0.0, 0.1, 0.5, 0.0

context of the image, which provides more information to capture
global dependencies. In contrast, CNN relies only on local
information based on convolution. The Segformer model
is applied in conjunction with the U-Net model for segmentation,
where features are extracted using Segformer. The process
includes spatial encoding and channel information of the input
data. I = RE*WXC where Iy is height, Iy is weight, and C is the
channel of the input images. The segformer model processes the
input images into patch embedding and sends them to the multi-
head attention layers. The input encoding process is O =
transformer (I yches), Where O eRP*P, O is the output embedding,
P represents patches, and D denotes the embedding dimension. The
input image size is 128 x 128, and the patch size is 16. Number of
patchesO:(IT“) X (I%) = (%) X (% =8 x 8 = 64. The images
are divided into a total of 64 patches, and the dimensions of the
patchesare D =P x P = 64 x 64 = 256 pixels (element). The multi-
head attention is applied to capture different patterns or
dependencies through multiple heads of attention, which focus on
distinct parts of the input in parallel. Each head has input
independently, which permits the model to attend to different
contents and features in the data.

0'= softmax(Q—Izr)VU).

where Q is quer}ll(, K is key, V is value, and dy is a vector
dimension. Q = Omg, K=Omg, V=0my, The mq, mg, my

TABLE 4 Training parameters of the localization model.

Device 0

Batch 8

Epochs 100

img 640 Input image resolution

cfg yolov9-c.yaml compact model configuration

Weights Training from scratch
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denotes the linear matrices to project O into the query, key, and
values spaces. The number of columns in these matrices is the
same as the O. The shape of these matrices is mq, Mg, my =
(256,dg) . The O is multiplied by the mg, Mg, My then Q, K, V:
(64, dg) = (is computed attention), QKT compute the scalar dot
product among the query and key matrices. The QK" shape is as:
Q: (64,256), K" : (256, 64) and the final result QK" = (64,64) .. The
matrix size is (64, 64), which denotes the attention scores between
every pair of patches. Then, softmax is applied to the (64, 64)
matrix to normalize the attention scores and convert them into
probabilities. The output is computed by multiplying the attention
scores by the V matrix value. The output shape is attention scores
(64, 64) V = (64,256), 0 = (64, 256) having the same shape as the
original input O. The extracted features from the segformer model
are passed to the decoder module, and the output of the features is
concatenated, which is achieved from different transformer stages
Feoncatenated = concat (F, F, ... .Fy). The cross-entropy loss is
computed between the predicted mask y,..q and the actual
mask Yicrual EL(Ypreds Yactual) = 2%1125:1%% 0108 Vpred (0
where N represents the number of pixels, C is the number of
classes, Ypred (i) denote the predicted probability of class ¢ for pixel
I. Then, the model is trained using the Adam optimizer with a
learning rate of Ir = 5e-5 and a batch size of 8. The architecture of
the SegNet model is shown in Figure 4.

Therefore, the SegNet transformer model is proposed for
sorghum segmentation. The sorghum region is segmented using
the pre-trained segformer-b0-finetuned-ade-512-512 (Xie et al,
2021) model that is trained on sorghum images with ground
masks and selected hyperparameters such as 10 epochs, 8 batch
size, Adam, Ir = 5e-5, and CrossEntropyLoss.

4 Results and discussion

The classification dataset of sorghum weeds contains 4,312
images to address the problem of crop weeds. The segmentation
dataset of sorghum weeds comprises 5,555 manually annotated
segments from 252 samples, addressing the problem of
segmentation (Justina and Thenmozhi, 2024b). Five sorghum
localization datasets are used. The sorghum detection dataset
contains only one class of sorghum and a total of 126 images,
comprising 88 training, 24 validation, and 14 testing images (Song,
2022). The SGH localization dataset comprises 748 images prepared
by Kansas State University, with 420 images for training, 40 for
validation, and 20 for testing (K. S. University, 2023). The sorghum
leaf localization dataset comprises 1,192 images, of which 982 are
used for training, 70 for testing, and 140 for validation (K. C. Lab,
2023). The dataset contains 147 panicles of sorghum and counts of
grain (James et al., 2024). The sorghum grain head dataset contains
three folders: training, testing, and validation, in which 1,500
images are for training, 102 for validation, and 21 for test images
(K. S. University, 2022).

To support the robustness of the proposed method, the dataset
descriptions include detailed statistics, such as class distributions,
image resolutions, and environmental variability. These datasets
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Proposed SegNet Model for Segmentation

Original

SegformerDecodeHead

SegformerMLP

Linear(input, output) features (32,256)

SegformerMLP

Linear(input, output) features (64,256)

SegformerMLP

Linear(infeatures=160, outfeatures=256, bias=True)
SegformerMLP Linear(input, output) features (256,256)
(linearfuse): Conv(1024, 256, kernel size and stride (1,1) )

SegformerEncoder
Patch-embeddings
SegformerPatchEmbeddings
Conv2d(3, 32, kernel-size=(7, 7),
stride=(4, 4), padding=(3, 3))
Norm((32,), eps=le-05,

elementwise-affine=True) )

BatchNorm (256) (activation): ReLU()
Dropout=0.1
(classifier): Conv2d(256, 150), kernel size and stride (1,1)

FIGURE 4
Segmentation of sorghum using the SegNet transformer model.

reflect diverse real-world conditions such as varying lighting,
occlusions, and backgrounds, making them suitable for training
resilient deep learning models. A detailed summary of the datasets
used is provided in Table 5.

The proposed models for classification, localization, and
segmentation are executed on an NVIDIA GeForce RTX 4060 Ti
GPU (16 GB VRAM), utilizing approximately 2.6 GB of memory
with an average GPU utilization of 62%. These observations
confirm the computational efficiency of the models. The current
implementation demonstrates fast processing speeds,
approximately 2.1 ms/image for classification, 7.8 ms/image for
YOLOV9-c localization, and 13.5 ms/image for transformer-based
segmentation. The real-time deployment and optimization on edge
or embedded systems are planned for future work to further
validate performance under operational field conditions.

TABLE 5 Description of datasets.

Split (training/

¥

Segmentation
True Mask Predicted Mask

ﬂi_"

loU=0.855

4.1 Experiment #1: classification of
sorghum

The proposed ST model classified the data into sorghum, grass,
and broadleafweed. The model is trained for 40 epochs, and the loss
rates for training and validation are plotted in Figure 5.

In the graph, on 40 epochs, the train loss is 0.30, and the
validation loss is less than 0.40.

The sorghum weed classification dataset contains three
subfolders: train, valid, and test, in which each folder has three
classes, such as sorghum, grass, and broadleaf weed. The training data
contains 1,404, 1,467, and 1,441 images of the sorghum, grass, and
broadleaf weed classes, respectively. The validation data consists of
281, 293, and 288 images for the three classes, respectively. The
testing data contains 140, 147, and 144 images of three classes.

Resolution/

Dataset Total images g . . f Environmental variabilit
9 validation/testing) [o[VE1114% y
Sorghum weed 4,312 4,312/862/431 3 (sorghum, grass, Various Field lighting, natural variations
classification broadleaf weed) (approximately 640 x
640)
Sorghum weed 5,555 segments from | 202/25/25 Pixel-wise annotated High resolution Manual segmentation under field
segmentation 252 images conditions
Sorghum detection 126 88/24/14 1 (sorghum) Mixed resolution Natural background, illumination
(single class) changes
SGH Localization 748 420/40/20 1 (sorghum head) Standard resolution The field was captured under
(Kansas State) different sunlight conditions
Sorghum leaf 1,192 982/140/70 1 (leaf) High resolution Various lighting and occlusion
localization scenarios
Frontiers in Plant Science 08 frontiersin.org
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FIGURE 5
Training performance of the classification model.

For classification, in this research, the folders of train and
validation data are combined to create a single folder. The train
folder contains 1,404 + 1,467 + 1,441 = 4,312 images, and the
validation folder contains 281 + 293 + 288 = 862 images. After
combining the train and validation folders, the total number of
images is 5,174. The test folder contains 140 + 147 + 144 = 431
images. The augmentation methods are applied in terms of vertical/
horizontal flipping, rotation, scaling, etc., to increase the number of
images. After augmentation, the total number of training images is
36,635, and the test images are 3,003. The two separate folders, train
and test, are passed to the proposed classification model for
training, and model performance is evaluated on the 3,003
testing data.

Similarly, the classification results are computed, where the
entire training and test data are combined into a single folder and

Grass Sorghum

Actual

BroadLeaf

BroadLeaf

Grass
Predicted

Sorg.hum

FIGURE 6

10.3389/fpls.2025.1586865

split into training and testing sets using a 0.2 holdout validation.
The confusion matrix based on model performance is visualized
in Figure 6.

The performance metrics are computed using the confusion
matrix, which is provided in Table 6.

In Table 6, for the class of sorghum, 0.90 precision, 1.00 recall,
and 0.94 F1-score are achieved. In the grass class, a precision of 1.00,
a recall of 0.94, and an F1-score of 0.97 are obtained. Similarly, on
the broadleaf weed class, a precision of 1.00, a recall of 0.94, and an
Fl-score of 0.97 are achieved. The overall accuracy in the three
classes is 0.96. After augmentation, the data is balanced in each
class, which increases the classification results. The complex
statistical analysis of the classification model is given in Table 7.

The statistical results based on the confusion matrix show an
overall accuracy of 96.3%. The 95% confidence interval for accuracy
is [95.59%, 96.95%], and the chi-square test p-value is <0.0001.
Cohen’s kappa was 0.944, indicating an excellent agreement beyond
chance. Matthews correlation coefficient (MCC) was 0.946,
indicating high model reliability across all classes. These results
demonstrate the model’s strong predictive performance while also
confirming (via McNemar’s test) that it performs statistically
differently than a perfect classifier.

ROC is also computed on each class separately and plotted
in Figure 7.

In Figure 7, the AUC classes of 1.00 on sorghum, 0.99 on grass,
and 1.00 on broadleafweed are shown. Table 8 provides a
comparison of the achieved results.

In Table 8, the U-net model is applied on RGB sorghum images
for detection with an accuracy of 91.0 (Park et al, 2023).
HierbaNetV1 model is used, which consists of 72 layers for the
classification of the sorghum weeds with 98.6% accuracy (Justina
and Thenmozhi, 2024a). The fully convolutional (FCN) and
EfficientNet-B3 networks are employed for the detection of

Sorghum

True

BroadLeafWeed Grass

BroadlLeafWeed

Grass
Predicted

Sorghum

Confusion matrix of classification model. (A) With augmentation. (B) Without Augmentation.
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TABLE 6 Classification results with and without augmentation.

Augmentation

10.3389/fpls.2025.1586865

Status Sorghum Grass Broadleaf weed Precision Recall Fl-score Overall accuracy
Without augmentation 1.00 0.94 0.97 0.96
1.00 0.94 0.97
1.00 1.00 1.00
With augmentation 1.00 1.00 1.00 1.00
1.00 1.00 1.00

sorghum weeds. FCN gives better results compared to EfficientNet-
B3, with accuracy of 86.97% and 97.76%, respectively (Gonzalez
et al., 2024). The DenseNet-169 model’s features are fine-tuned for
classification, and the optimal features are visualized using the
LIME and GradCam methods (Sandosh et al., 2025). However,
compared to the existing model, the ST model is proposed and
trained from scratch on optimal layers and hyperparameters, which
provide better outcomes.

4.2 Experiment #2: localization of sorghum

In this experiment, the localized sorghum region using the
YOLOV9-c model is trained on 100 epochs and 8 batch size. The
localization outcomes are computed in terms of recall, precision,

TABLE 7 Statistical analysis of the classification model.

Metric Value

Matthews correlation coefficient (MCC)

0.946

Log-loss/cross-entropy loss

0.070

McNemar’s test (vs. perfect baseline)

McNemar contingency table

p-value = 9.76 x 10°

[[2,891, 0], [112, 0]]

and mAP50 on four benchmark sorghum datasets, as listed
in Table 9.

Table 9 provides the localization outcomes on the SGH and
sorghum leaf detection datasets. The achieved results on the SGH
dataset were 1.00 precision, 0.995 recall, and 0.996 mAP50. On the
sorghum leaf detection dataset, the results are 0.980 precision, 0.976
recall, and 0.982 mAP50. Then, 0.931 precision, 0.980 recall, and
0.961 mAP50 are achieved on the sorghum panicles dataset.
Similarly, 1.00 precision, 0.960 recall, and 0.898 mAP50 are
obtained on the sorghum grain head dataset. The proposed
method more accurately localized the sorghum and the sorghum
leaf. The proposed model localized the sorghum grain head with the
highest mean average precision (mAP), as shown in Figure 8.

The visualization results in Figure 8 depict that the required
region is localized with the highest prediction scores on the SGH

TABLE 8 Comparison of classification model results with the existing
techniques.

1.00

o
~
(9.}

True Positive Rate
o
wn
o

0.25
7’
, . ROC curve (area = 1.00) for class Sorghum
I ROC curve (area = 0.99) for class Grass
0.00 . ROC curve (area = 1.00) for class BroadLeafWeed
0.00 0.25 0.50 0.75 1.00
False Positive Rate
FIGURE 7

ROC of the proposed classification model.
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Reference Year Dataset Accuracy, %
(Park et al., 2023) 2023 91.0
(Justina and
) 2024 98.6
Thenmozhi, 2024a)
(Gonzalez et al., 2024 Classification dataset of 86.9
2024) sorghum weeds
(Sandosh et al.,
2025 99.0
2025)
Proposed model 1.00

TABLE 9 Localization results on the benchmark datasets.

Datasets
SGH 1.00 0.995 0.996
Sorghum leaf detection 0.980 0.976 0.982
Sorghum panicles 0.931 0.980 ‘ 0.961
Sorghum grain head 1.00 0.960 ‘ 0.898
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and sorghum leaf detection datasets. The achieved results are
graphically plotted in Figure 9.

The comparison of results is depicted in Table 10.

The CNN model is applied to localize the sorghum grain head,
achieving 0.426 mAP (K. S. University, 2022). YOLOVS5 is applied to
localize the panicle of the sorghum that provided mAP of 0.955
(James et al, 2024). The model is designed for localization and
obtained 0.995 mAP (K. S. University, 2023). In comparison to
existing works, the YOLOv9-c model is applied for localization
using the selected hyperparameters, which yields the highest mAP
scores among others.

4.3 Experiment #3: segmentation of
sorghum

The segNet transformer model is trained on 10 epochs, and the
training loss rate on each step across epochs is shown in Figure 10.

The loss rate is computed across 10 epochs, each of which is
completed in 50 steps, and the 10 epochs are completed in a total of
500 steps. After each epoch, the loss rate decreased, as given in
Figure 10. Sorghum is segmented using the proposed segmentation
model. The segmentation results are computed in terms of
intersection over union (IoU), and dice scores (DS) are given
in Table 11.

Table 11 presents a comparison of segmentation results with an
existing method. ResNet-50 is used as an encoder and U-net
decoder for segmentation of the sorghum weeds with a DS of
0.8373. Compared to the proposed SegNet model, which achieves

10.3389/fpls.2025.1586865

an IoU of 0.8973 and a DS of 0.9459, these results are
significantly better.

A lightweight MSEA-Net model is designed for segmenting
sorghum weeds, achieving an IoU of 0.8742 (Syed et al., 2025). The
proposed segmentation model yields prediction and ground truth
masks, which are illustrated in Figure 11.

In Figure 11, the proposed segmentation model more accurately
segments the sorghum. In the visualization outcomes, the predicted
mask is approximately close to the true mask.

4.4 Ablation study

The ablation study was conducted to select optimal
hyperparameters of the classification model, as listed in Table 12.

In Table 12, the experimental results highlight the critical influence
of hyperparameter selection on model performance. Among the various
configurations tested, the combination of embedding dimension = 64,
attention heads = 8, and dropout rate = 0.03 yielded the highest testing
accuracy of 1.00, indicating its effectiveness for this specific classification
task. However, the model’s sensitivity to changes in these
hyperparameters poses a notable limitation. Small variations in
embedding dimension, number of heads, or dropout rate resulted in
considerable performance drops (e.g, accuracy decreasing to 0.949),
underscoring the model’s reliance on precise tuning.

Similarly, the ablation study is carried out to finalize the
localization and segmentation models as given in Table 13. In the
localization model, experiments are performed on a combination of
hyperparameters, including learning rate, weight decay, image

FIGURE 8
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Localization results on the benchmark datasets. (A) SGH and (B) sorghum panicle.
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Localization results of sorghum in terms of Fl-score, precision, recall, and mAp. (A—D) Sorghum leaf, (E-G) SGH, and (H-K) sorghum grain head.

resolution, and object loss weight. The model performance is

evaluated using the mAP@0.5 metric.

In Table 13, the selected hyperparameters, highlighted in bold

In Table 14, a Dice score of 0.932 and an IoU of 0.894 were

obtained using a learning rate of 5e-5, the Adam optimizer, and

and italic, yield the highest mAP score of 0.915 compared to the

others. The transformer-based SegNet model (SegFormer-B0) is

evaluated using different learning rates, optimizers, and loss

functions, and its performance is assessed using the Dice score

and IoU, as shown in Table 14.
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4.5 Limitations and future directions

The working of the proposed method is given in Figure 12.
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TABLE 10 Results of localization compared to existing methods.

Reference Year Datasets Models mAP

(K. S. University, 2022) 2022 YOLOv8 0.426
Sorghum grain head YOLOVO-

Proposed model c 0.898

(James et al., 2024) 2024 YOLOvV5 0.955

Sorghum panicle

YOLOV9-

Proposed model c 0.961

(K. S. University, 2023) 2023 YOLOv8 0.995

SGH

YOLOV9-

Proposed model 0.996

C

The bold text represents the results of the proposed method.

One limitation of the proposed method is the risk of overfitting,
particularly given the training on a relatively small dataset of 4K-
resolution sorghum images. High-resolution data can cause the
model to memorize fine details rather than generalize well,
particularly when the dataset size is not sufficiently large or
diverse. Additionally, environmental variations such as lighting,
shadow, and noise in the images can further challenge
model robustness.

To address this, future validation will involve cross-dataset
testing under varying sorghum field conditions and seasons, along
with the application of regularization techniques to
improve generalizability.

5 Conclusion

The process of detecting sorghum crops is challenging due to
the variability in shape, size, and texture of the sorghum leaves as
well as the limited research that has been conducted so far. During

10.3389/fpls.2025.1586865

image acquisition, noise and illumination are also significant
challenges in sorghum leaves, which degrade the algorithm’s
detection accuracy. To overcome the existing challenges, three
models are proposed to classify, localize, and segment the
sorghum leaves in noisy and illuminated images, which is a big
challenge. A shifted window transformer neural network is
proposed, based on selected layers and hyperparameters, to
classify the different types of sorghum leaves. The results are
computed on a publicly available sorghum weed classification
dataset with an accuracy of 1.00. The localization of sorghum
leaves is still a challenging task; four datasets that were prepared
at Kansas State University are publicly available, such as SGH,
sorghum leaf detection, sorghum panicle, and sorghum grain head.
The YOLOV9-c model is designed on the optimal hyperparameters
and trained from scratch for 100 epochs. The model more
accurately localized the sorghum leaves and provided a mAP of
0.898, 0.961, and 0.996, respectively. Segmenting sorghum leaves is
a challenging task due to the presence of noisy and illuminated
images. To address this challenge, a Segformer transformer neural
network is proposed and trained from scratch using optimal
hyperparameters, which yields an IoU of 0.8973 and a Dice score
of 0.9459. The proposed models have shown better performance
compared to the existing approaches in this domain. This study
constitutes a significant contribution to the field and provides a
solid foundation for future scholars to build upon and further
develop. This technique may be expanded into a real-time
application in the future and made available to the general public
for wider application.

Although the proposed model demonstrates high accuracy in
classifying sorghum-related images, its transferability to other cereal
crops such as wheat, maize, or rice remains unexplored. The current
approach is optimized and fine-tuned specifically for sorghum, and
without empirical evidence, it is uncertain whether a similar
performance can be achieved across different crop types with
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Training of the proposed Segformer transformer model for sorghum segmentation.
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TABLE 11 Segmentation results on the sorghum weeds dataset using the SegNet model.

I R TR R

(Genze et al., 2 MSEA-Net 0.8373
(Syed et al,, 2025) Segmentation dataset of sorghum weeds UNet 0.87
Proposed model SegNet 0.8973 0.9459
A B (&7

FIGURE 11
Sorghum segmentation results. (A) Input images, (B) true masks, and (C) predicted masks.
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TABLE 12 Ablation study for the selection of optimal hyperparameters.

Embed dim Heads Dropout rate Testing accuracy
64 8 0.03 1.00
32 8 0.01 0.965
64 4 0.03 0.973
32 4 0.03 0.960
64 8 0.01 0.960
32 4 0.01 0.949

The bold text indicates the selected hyperparameters that are utilized for model training.

TABLE 13 Ablation study for YOLOvV9-c object detector.

Momentum Weight decay Image size Obj loss weight mAP@O0.5
0.01 0.937 0.0005 640 1.0 0.915
0.005 0.937 0.0005 640 1.0 0.892
0.01 0.85 0.0005 640 1.0 0.873
0.01 0.937 0.001 640 1.0 0.901
0.01 0.937 0.0005 512 1.0 0.881
0.01 0.937 0.0005 640 0.7 0.888

TABLE 14 Ablation study for transformer-based SegNet (SegFormer-B0).

Learning Rate Optimizer Loss Epochs Dice score loU
5e-5 Adam CrossEntropy 10 0.932 0.894
5e-5 AdamW CrossEntropy 10 0.917 0.878
le-4 Adam Dice + BCE 10 0.910 0.871
le-4 SGD CrossEntropy 10 0.895 0.859
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Images —», Transforniler (SWT) Output Label
‘ Patch Embedding ‘
¢ SegF BO
‘ 2 Swin Transformer ‘ (glgltpzrifnl\j[rask

_ Demse | f

Localized Sorghum Images

FIGURE 12
Structure of the proposed method.
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varying morphological features and disease patterns. This limitation
restricts the model’s broader applicability in real-world agricultural
scenarios. To overcome this, future work should focus on evaluating
the model’s generalization capabilities by testing it on datasets from
other cereal crops. Domain adaptation techniques, transfer
learning, or multi-crop training strategies could also be
incorporated to improve the model’s versatility and ensure a
consistent performance across diverse agricultural conditions.

In the future, overfitting and environmental variation will be
addressed through semi-supervised learning to leverage unlabeled
data and improve generalization. Additionally, domain adaptation
techniques will be explored to enhance model robustness across
diverse field conditions and unseen environments, strengthening
real-world applicability.
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