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based on (YOLO)v9-path
aggregation network
Javaria Amin1†, Rida Zahra2, Alena Maryum3, Amber Sarwar1,
Amad Zafar4† and Seong-Han Kim4*

1Department of Computer Science, Rawalpindi Women University, Rawalpindi, Pakistan, 2Department
of Computer Science, University of Wah, Wah Cantt, Pakistan, 3Department of Computer Science,
National University of Technology (NUTECH), Islamabad, Pakistan, 4Department of Artificial
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Introduction: The world’s population has been increasing continuously, and this

requires prompt action to ensure food security. One of the top five cereals

produced worldwide, sorghum, is a staple of the diets of many developing

nations. For this reason,getting accurate information is crucial to raising cereal

productivity. The quantity of crop heads arranged in various branching

configurations can be used as an indicator to estimate the yields of sorghum.

For various crops, computerized methods have been demonstrated to be

beneficial in automatically collecting this information. However, the application

of sorghum crops faces challenges due to variations in the color and shape

of sorghum.

Methods: Therefore,a method is proposed based on the three models for the

classification, localization, and segmentation of sorghum. The shifted window

transformer (SWT)network is proposed to have seven layers of path embedding,

two Swin Transformers, global average pooling, patch merging, and dense

connections. The proposed SWT is trained on the following selected

hyperparameters: patch size(2,2), two window size,1e-3 learning rate,128 batch

size,40 epochs, 0.0001 weight decay, 0.03dropout, eight heads, 64 embedding

dimension, and 256 MLP. To localize the sorghum region, the YOLOv9−c model

is trained from scratch on the selected hyperparameters for 100 epochs. Due to

light, illumination, and noise, the sorghum images are more complex. A

transformer-based SegNetmodel is designed, in which features are extracted

using a pre-trained SegFormer-B0 model fine-tuned for ADE-512-512. The

proposed model is trained from scratch for 10 epochs using the Adam

optimizer with a learning rate of 5e-5 and CrossEntropyLoss hyperparameters,
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which are finalized after extensive experimentation to achieve more accurate

segmentation of the sorghum; this is a significant contribution of this work.

Results and Discussion: The achieved outcomes are superior to those in other

published works.
KEYWORDS

transformer neural network, sorghum, YOLO-v9, hyperparameters, crops, classification,
localization, and segmentations
1 Introduction

Global crop production is facing various climate challenges.

These challenges include high temperatures and extreme weather

conditions. These extreme situations lead to damage to crops

(Liaqat et al., 2024). The crops are subject to different biotic and

abiotic impacts, which can affect production and pose a threat to the

agricultural economy. Various kinds of crops are used in abundance

for different uses, which include food, feed, and fuel. Sorghum is a

model crop for tropical grasses. It is best known for addressing these

conditions, and it is essential to meet all nutritional needs (Baloch

et al., 2023). Despite that, most Western countries use sorghum

primarily as animal feed. The powerful ability of sorghum crops to

resist harsh climate challenges can make them a key ingredient in a

healthy diet (Khoddami et al., 2023). Sorghum is rich in fiber,

protein, and essential minerals, making it an excellent ingredient in

a variety of foods. The lipid content of sorghum is low, but it

contains a high level of acid. Along with these, it also contains

vitamins B and E and essential minerals such as phosphorus,

magnesium, iron, and zinc. It can also lower the risk of chronic

disease due to its unique phytochemical composition (Tanwar et al.,

2023). Despite the many benefits of sorghum crops, the slow

breeding methods and complexity of the environment reduce the

urgency of production. The research focus is to enhance the

production of sorghum as a climate-smart crop in global crop

production. Phenotyping is essential for improving crops; however,

a research gap that hinders progress exists (Hivare et al., 2024).

As crop diseases can be a global threat to food production

worldwide, early detection of crop diseases helps decrease poor

production and increase the quality and quantity (Ngugi et al.,

2024). Advancements in the fields of image processing and machine

learning, along with their applications in agriculture, are making

exceptional progress. The deep-learning-based solution can

facilitate the early detection of crop diseases and enhance

accuracy through timely predictions (Bouacida et al., 2024).

Although there is work done for the classification of sorghum

crops, there is very little work present for the identification of

sorghum disease detection. The core contribution steps of this

research are as follows:
02
▪ Three models are proposed for classification, localization,

and segmentation.

▪ The SWIN model is proposed based on the selected layers

and optimal hyperparameters to classify the different types

of sorghum plant images.

▪ To localize the actual sorghum region, ResNet50 was applied

as the backbone for feature extraction and then passed to

YOLOv9-c, PANet, and the detection head. The proposed

YOLOv9-PANet model is trained from scratch to optimize

hyperparameters for accurate bounding box prediction

and classification.

▪ The transformer-based SegNet model is designed and trained

from scratch on selected hyperparameters to segment the

sorghum region more accurately. The proposed SegNet

model comprises the SegFormer encoder and SegFormer

decoder head. The encoder contains patch embedding,

convolutional, and normalization layers, among others,

while the decoder head comprises a segformer-MLP,

linear projection, dropout, and classifier.
The article is organized as follows: Section II discusses the

related work, Section III explains the proposed method’s steps, and

Section IV presents the results and discussion. The conclusion is

provided in Section V.
2 Related work

In the research, a small unmanned system UAS is used to gather

high-resolution images, which prove to be efficient in the large crop

field (Latif et al., 2021). A model is presented for the identification of

diseases such as tar spot, anthracnose, and rust on leaves using a

deep-learning-based ResNet architecture. A benchmark dataset is

curated for the experiment. The methodology used image masking

to focus on disease-related features. The proposed model

demonstrated the accuracy reported in (Varur et al., 2024).

Another significant disease that affects sorghum crops is charcoal

rot sorghum (CRS). EfficientNet B3 and a fully convolutional

network achieved a high accuracy rate of 86.97% in detecting
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CRS. For the segmentation, the FCN showed an accuracy level of

97.6%. The experiment showed increased validation scores with the

increase in the size of image patches (Gonzalez et al., 2024). A

convolutional neural network based on AlexNet is used for

sorghum detection. The model achieves an accuracy rate of 97%

(Senthil Kumar et al., 2023). A rapid and nondestructive model,

which is based on hyperspectral imaging HIS technology, is used to

detect pesticide residues in sorghum. The experimental data

consisted of one group of sorghum treated with pesticide and

three groups without pesticide treatment. The model obtained an

accuracy level of 97.8% (Hu et al., 2024). In the research, a cloud-

based deep learning algorithm is used. The phenotype traits are

extracted with the segmentation. Manually measured phenotype

traits are used to validate the extracted phenotypic traits. The model

named PointNet++ demonstrated the best performance, achieving

an accuracy rate of 91.5% (Patel et al., 2023). The smartphone-

captured images are used to detect the sorghum panicle and grain

number estimation. The images captured through the smartphone

were all manually labeled and augmented. The models based on

Detectron2 and YOLOv8 were trained. Both showed an accuracy

level of 75% and 89%, respectively (Santiago et al., 2024). A novel

approach, Split-Attention Networks, is employed for disease

detection using aerial images. A pixel-based approach is used to

classify each pixel as health or disease-prone. The proposed model

achieved an F1-score of 89.04% (Divya et al., 2024).

The YOLOv8 detector is utilized for detecting the fall

armyworm pest at early stages to prevent damage and enhance

crop safety (Mhala et al., 2024). The DINO transformer (Swin

backbone with ResNet-101), detection transformer (DETR),

YOLOv8, EfficientNet B4, and WeedSwin Transformer models

are designed for weed detection (Islam et al., 2025). Detection

models such as Faster R-CNN with FPN, YOLOv5, and YOLOv7

are used to classify and detect the different types of coccinellids

found in sorghum (Wang et al., 2023). The model is designed with

the combination of YOLOv8s, the Gold module, and LSKA

attention to enhance the detection of sorghum spikes (Qiu et al.,

2024). UNet model with ResNet-34 as a feature extractor is used for

segmentation and obtained a testing F1-score of 89% (Genze et al.,

2022). The VGG-16 model is integrated with the attention module

and channel-wise spatial convolution module into U-Net, providing

an F1-score of 0.78 for crop classification. This model performs

better than traditional U-net and Deeplabv3+ models (Yan

et al., 2025).
3 Proposed methodology

The proposed method comprises three deep-learning models:

Swin Transformer (Liu et al., 2021) for classification, YOLOv9-c

(Wang et al., 2024) for localization, and SegNet transformer

(Badrinarayanan et al., 2017) for the segmentation of sorghum.

The detailed proposed method steps are visualized in Figure 1.

In Figure 1, the proposed SWIN transformer model classifies

images of sorghum, grass, and broadleaf weeds. To localize the

sorghum leaf, the YOLOv9-c model is trained on hyperparameters.
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The proposed SegNet transformer model consists of an encoder/

decoder to segment the sorghum region.
3.1 Classification of sorghum diseases

The Swin Transformer (ST) is a hierarchical transformer that

measures representations based on shifted windows. While allowing

cross-window connections, it improves performance by restricting

self-attention measurement to non-overlapping local regions. The

proposed Swin Transformer consists of nine layers: input, patch

embedding (PE), two Swin Transformers (ST), patch merging

(PM), global average pooling (GAP), and a dense layer (DE) to

classify sorghum, grass, and broadleaf weed, as shown in Figure 2.

The Swin Transformer model works based on a vision

transformer, which focuses on localized self-attention in the

region of the window and extracts features hierarchically, in

which the patch embedding layer protects the data in a low-

dimensional space as Equation (1).

PE = XWE + bE (1)

Here X ∈  Rb�H�W�Cin → input tensor, E ∈  Rb�P�Cout →

embedded output patch, and W represents the weight. The ST

model computes the attention in a non-overlapped window defined

as Equation (2).

Attention(Q, k,  V) = softmax(
Q� KT

√ dk
+ b)� V (2)

Here Q represents the query matrix, K represents the key

matrix, V represents the value matrix, dk is the dimension of the

key vectors, b is the bias term (used for attention masking or relative

positional encoding), and attention weights are computed through

softmax. Attention is measured individually across each window. In

the multi-shifted window, the cross-window interactions were

maximized, in which input patches are shifted cyclically through

pixels before using window multi-scale attention. The patch output

is shifted back to its original position after the attention

computation. After attention, a multi-layer perceptron (MLP) is

applied to fix the features across the dimensions. MLP(X) =

GELU(XW1 + b1)W2 + b2 where W1, W2 denote the weights

while b1, b2represents bias. Normalization is added in each layer

to stabilize the model training using Equation (3).

LN(X) =
X − m
s + e

(3)

where s, m denote standard deviation and mean, while e
represents a small constant. In patch merging, a hierarchical

structure is created by merging neighboring patches to reduce

spatial resolution and increase feature depth given as Equation (4).

Xmerged = concat(XP1,  XP2,  XP3, XP4)Wm (4)

XP=merged patches, Wm denote weights. After extracting

features, global pooling collapses the spatial dimensions using

Equation (5).
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Xpooled =
1
No

N
i=1Xi (5)

N denotes the spatial locations. The output is computed by

applying a dense layer with a softmax activation using Equation (6).

Y(output) = softmax(XWd + bd) (6)

Here Wd, bd represents the weights and bias, while Y denotes

the probabilities.

The detailed architecture of the ST model with activations is

mentioned in Table 1.

The proposed model training hyperparameters are mentioned

in Table 2.

Table 2 provides the hyperparameters, which are finalized after

extensive experiments. After classification, the classified images are

passed to the YOLOv9-c for localization of the class label.
Frontiers in Plant Science 04
3.2 Localization of sorghum diseases

The hypothetical YOLOv9-c passes input through a neural

network designed to recognize and categorize objects in real time.

Convolutional layers are used in the model to extract features, and

these are followed by layers that forecast box boundaries and

probabilities for various objects in an image. For the YOLOv9-c

model, the annotated data were prepared, training was performed,

and the hyperparameters were fine-tuned to achieve optimal

performance. In the training process, the images are passed to the

network, and the network computes loss based on the prediction

and annotated masks. Finally, the model is updated with weights

based on the backpropagation algorithm. The test images are passed

to the trained model to predict the correct class label with high

speed and accuracy. The YOLOv9-c version is trained on sorghum
FIGURE 1

Proposed method architecture to classify, localize, and segment the sorghum leaves.
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images with ground-annotated masks at an eight-batch size and 100

epochs. The YOLOv9-c architecture is shown in Figure 3.

The ResNet50 model comprises 50 layers based on residual

learning, featuring skip connections that help mitigate the problem

of vanishing gradients. The initial layers of ResNet50 comprise

convolutional layers (7 × 7, stride = 2 and padding = 3). The input

shape is 224 × 224 × 3. After applying the convolution layer, the

output is 112�   112  �   4. This layer is used for extracting low-level

features, such as textures and edges. The ReLU activation is used for

non-linearity. The maxpool is applied with a window size of 3� 3, a

stride of 2, and one padding. The final output shape is 56� 56� 64.

The second block involves residual learning, which includes four

stages. Each stage consists of multiple blocks of residual that contain a

convolution with a 1� 1 filter to reduce the dimension. A

convolution with a 3 × 3 filter size is applied for feature extraction.

A 1 × 1 convolution was used again to expand the convolution.

Finally, skip connection is used to add input to improve/enhance the

flow of the gradient. In stage 1, 21 to 23 layers are included, with an

input size of 56� 56�64. Three residual blocks, each with filter sizes

of 1 × 1, 3 × 3, and 1 × 1, respectively, had 64 and 256 channels : The

output is 56� 56� 256. In stage 2, 31 to 34 layers are included; at

this stage, the input size is 56  �   56  �   256. The four residual
Frontiers in Plant Science 05
blocks have filter sizes of 1� 1,   128,   3� 3,   128,   1� 1,   512. The

final output shape is 28� 28� 512:. In stage 3, the input shape of 28

× 28 × 512 is passed to the six residual blocks. Each block has a filter

s i z e o f 1� 1,   3� 3,  and   1� 1,   with a 1024 output shape,

 resulting in a   14� 14� 1024   output : In stage 4, the input size is

14 × 14 × 1,024, comprising three residual blocks, each containing

filters of 1 × 1, 3 × 3, and 1 × 1, with dimensions of 512, 512, and

2,048, respectively. The final output shape is 7� 7� 2048: The

global average pool layer is 7  �   7  �   2048: The final layer

dimension of 7� 7� 2048 is converted into a 1D vector of size

2,048, mapping 2,048 features to the number of classes.

3.2.1 Extracted features using YOLOv9
The extracted features output to the last block of the

convolutional (stage 4) of Resnet50 is applied. The 7 × 7 × 2,048

feature shape is fed to YOLOv9-c, which processes these features

using a path aggregation network (PANet) for multi-scale feature

fusion. The detection head generates the coordinates of the

bounding box and class probabilities. ResNet50 used sequential

convolutional layers. Fresnet = f (l)(X) = w(l) � X + b(l) where X is the

input, w(l) weight, b(l) bias of lth convolutional layer. Fresnet =

f conv4(FConv3), where Conv3 and Conv4 denote the features from

layers 3 and 4, respectively. The size of the features from layer 4

is  (2048�  7,  7) as an input size of 224  �  224:
3.2.2 YOLOv9-PANet aggregation

The features map Fresnet are processed by YOLOv9-c path

aggregation network (PANet) FPANConcat½f up(Fresnet),  f down(Fresnet)�,
where fup and fdown denote the features from up and down,

respectively. YOLOv9-c utilizes anchors for predicting bounding

boxes. Bprediction= s(x).w+b. The SoftMax activation is applied to

predict the class labels. Pclass(c) =
eZc

oc
j=1

eZj
where Zc denotes (c) class

logits. The default hyp.scratch-high.yaml is used from the YOLOv9-c

repository, and critical training hyperparameters are given in Table 3.
TABLE 1 Proposed ST model architecture.

Input Shape of output Parameters

Input (None, 256,12) 0

PE (None, 256,64) 17,216

ST (None, 256,64) 50,072

ST (None, 256,64) 51,096

PM (None, 64,128) 32,768

GAP (None,128) 0

DE (None, 3) 387
Total parameters = 151,539; trainable parameters = 150,483; non-trainable = 1,056.
FIGURE 2

Proposed swin transformer model for classification.
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These hyperparameters are chosen for high-accuracy

optimization on agricultural datasets and are editable for

different tasks.

YOLOv9-c configuration file (yolov9-c.yaml) is utilized, which

is designed for compact and efficient object detection with high

accuracy. This variant includes the following components:
Frontiers in Plant Science 06
Backbone: CSPRep3-based feature extractor with SPPF; neck:

PAN-FPN structure for multi-scale feature fusion; head: decoupled

head for classification and localization; attention: includes hybrid

task cascade module with EMA and DFL. This architecture strikes a

balance between model complexity and speed, optimizing it for

real-time plant and weed detection tasks in smart agriculture.

The dataset is defined in the data.yaml file. The data is split into

three files: training set (70% of the total labeled data), validation set

(15%), and testing set (15%). All sets are stratified to ensure

balanced class representation. We ensured no data leakage

between sets by random shuffling with a fixed seed before splitting.

The summary of the training parameters is given in Table 4.

These details confirm that the model training procedure and

experimental settings are rigorously defined and reproducible.

These specifications are explicitly included in the revised

manuscript for clarity and transparency.
3.3 Segmentation of sorghum diseases

The vision transformer models performed better on tasks

compared to classical CNN, such as semantic segmentation. The

transformers model, based on self-attention, considers the entire
FIGURE 3

YOLOv9-c and PANet for localization/detection of the sorghum plant.
TABLE 2 Proposed ST model hyperparameters.

Parameter Details

Patch size (2, 2)

Window size 2

Learning rate 1e-3

Batch size 128

Epochs 40

Weight decay 0.0001

Dropout rate 0.03

Heads 8

Embed dim 64

Mlp 256
frontiersin.org
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context of the image, which provides more information to capture

global dependencies. In contrast, CNN relies only on local

information based on convolution. The Segformer model

is applied in conjunction with the U-Net model for segmentation,

where features are extracted using Segformer. The process

includes spatial encoding and channel information of the input

data. I = RH�W�C where IH is height, IW is weight, and C is the

channel of the input images. The segformer model processes the

input images into patch embedding and sends them to the multi-

head attention layers. The input encoding process is O =

transformer (Ipatches), where O eRP�D, O is the output embedding,

P represents patches, and D denotes the embedding dimension. The

input image size is 128� 128, and the patch size is 16. Number of

patches O = ( IHP )� ( IWP ) = ( 12816 )� ( 12816 ) = 8� 8 = 64. The images

are divided into a total of 64 patches, and the dimensions of the

patches are D = P� P = 64� 64 = 256 pixels (element). The multi-

head attention is applied to capture different patterns or

dependencies through multiple heads of attention, which focus on

distinct parts of the input in parallel. Each head has input

independently, which permits the model to attend to different

contents and features in the data.

O 0 = softmax( QKT
ffiffiffiffi

dK
p )V(7).

where Q is query, K is key, V is value, and dk is a vector

dimension. Q = OmQ,  K = OmK,  V = OmV, The mQ,   mK,mV  
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denotes the linear matrices to project O into the query, key, and

values spaces. The number of columns in these matrices is the

same as the O. The shape of these matrices is mQ,  mK,mV =

(256, dK) : The O is multiplied by the mQ,  mK,mV then Q, K, V:

(64, dK) = (is computed attention), QKT
ffiffiffi

dt
p compute the scalar dot

product among the query and key matrices. The QKT shape is as:

Q: (64,256), KT : (256, 64) and the final result QKT = (64, 64) :. The

matrix size is (64, 64), which denotes the attention scores between

every pair of patches. Then, softmax is applied to the (64, 64)

matrix to normalize the attention scores and convert them into

probabilities. The output is computed by multiplying the attention

scores by the V matrix value. The output shape is attention scores

(64, 64) V = (64,256), O
0
= (64,   256) having the same shape as the

original input O. The extracted features from the segformer model

are passed to the decoder module, and the output of the features is

concatenated, which is achieved from different transformer stages

Fconcatenated = concat (F1,  F2 … : FN). The cross-entropy loss is

computed between the predicted mask ypred and the actual

m a s k yactual EL(ypred,  yactual) =oN
i=1oC

c=1ytrue (i,c)l o g ypred (i,c),

where N represents the number of pixels, C is the number of

classes, ypred (i,c) denote the predicted probability of class c for pixel

I. Then, the model is trained using the Adam optimizer with a

learning rate of lr = 5e-5 and a batch size of 8. The architecture of

the SegNet model is shown in Figure 4.

Therefore, the SegNet transformer model is proposed for

sorghum segmentation. The sorghum region is segmented using

the pre-trained segformer-b0-finetuned-ade-512-512 (Xie et al.,

2021) model that is trained on sorghum images with ground

masks and selected hyperparameters such as 10 epochs, 8 batch

size, Adam, lr = 5e-5, and CrossEntropyLoss.
4 Results and discussion

The classification dataset of sorghum weeds contains 4,312

images to address the problem of crop weeds. The segmentation

dataset of sorghum weeds comprises 5,555 manually annotated

segments from 252 samples, addressing the problem of

segmentation (Justina and Thenmozhi, 2024b). Five sorghum

localization datasets are used. The sorghum detection dataset

contains only one class of sorghum and a total of 126 images,

comprising 88 training, 24 validation, and 14 testing images (Song,

2022). The SGH localization dataset comprises 748 images prepared

by Kansas State University, with 420 images for training, 40 for

validation, and 20 for testing (K. S. University, 2023). The sorghum

leaf localization dataset comprises 1,192 images, of which 982 are

used for training, 70 for testing, and 140 for validation (K. C. Lab,

2023). The dataset contains 147 panicles of sorghum and counts of

grain (James et al., 2024). The sorghum grain head dataset contains

three folders: training, testing, and validation, in which 1,500

images are for training, 102 for validation, and 21 for test images

(K. S. University, 2022).

To support the robustness of the proposed method, the dataset

descriptions include detailed statistics, such as class distributions,

image resolutions, and environmental variability. These datasets
TABLE 3 Hyperparameters of the localization model.

Parameter Value

lr0 0.01

Lrf 0.1

Momentum 0.937

Weight decay 0.0005

Warmup epochs 3.0

Box 0.05

Cls 0.5

Obj 1.0

Label smoothing 0.0

hsv-h, hsv-s, hsv-v 0.015, 0.7, 0.4

Degrees, translate, scale, shear 0.0, 0.1, 0.5, 0.0
TABLE 4 Training parameters of the localization model.

Workers 4

Device 0

Batch 8

Epochs 100

img 640 Input image resolution

cfg yolov9-c.yaml compact model configuration

Weights Training from scratch
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reflect diverse real-world conditions such as varying lighting,

occlusions, and backgrounds, making them suitable for training

resilient deep learning models. A detailed summary of the datasets

used is provided in Table 5.

The proposed models for classification, localization, and

segmentation are executed on an NVIDIA GeForce RTX 4060 Ti

GPU (16 GB VRAM), utilizing approximately 2.6 GB of memory

with an average GPU utilization of 62%. These observations

confirm the computational efficiency of the models. The current

implementation demonstrates fast processing speeds,

approximately 2.1 ms/image for classification, 7.8 ms/image for

YOLOv9-c localization, and 13.5 ms/image for transformer-based

segmentation. The real-time deployment and optimization on edge

or embedded systems are planned for future work to further

validate performance under operational field conditions.
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4.1 Experiment #1: classification of
sorghum

The proposed ST model classified the data into sorghum, grass,

and broadleafweed. The model is trained for 40 epochs, and the loss

rates for training and validation are plotted in Figure 5.

In the graph, on 40 epochs, the train loss is 0.30, and the

validation loss is less than 0.40.

The sorghum weed classification dataset contains three

subfolders: train, valid, and test, in which each folder has three

classes, such as sorghum, grass, and broadleaf weed. The training data

contains 1,404, 1,467, and 1,441 images of the sorghum, grass, and

broadleaf weed classes, respectively. The validation data consists of

281, 293, and 288 images for the three classes, respectively. The

testing data contains 140, 147, and 144 images of three classes.
TABLE 5 Description of datasets.

Dataset Total images
Split (training/
validation/testing)

Classes
Resolution/
quality

Environmental variability

Sorghum weed
classification

4,312 4,312/862/431 3 (sorghum, grass,
broadleaf weed)

Various
(approximately 640 ×
640)

Field lighting, natural variations

Sorghum weed
segmentation

5,555 segments from
252 images

202/25/25 Pixel-wise annotated High resolution Manual segmentation under field
conditions

Sorghum detection
(single class)

126 88/24/14 1 (sorghum) Mixed resolution Natural background, illumination
changes

SGH Localization
(Kansas State)

748 420/40/20 1 (sorghum head) Standard resolution The field was captured under
different sunlight conditions

Sorghum leaf
localization

1,192 982/140/70 1 (leaf) High resolution Various lighting and occlusion
scenarios
FIGURE 4

Segmentation of sorghum using the SegNet transformer model.
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For classification, in this research, the folders of train and

validation data are combined to create a single folder. The train

folder contains 1,404 + 1,467 + 1,441 = 4,312 images, and the

validation folder contains 281 + 293 + 288 = 862 images. After

combining the train and validation folders, the total number of

images is 5,174. The test folder contains 140 + 147 + 144 = 431

images. The augmentation methods are applied in terms of vertical/

horizontal flipping, rotation, scaling, etc., to increase the number of

images. After augmentation, the total number of training images is

36,635, and the test images are 3,003. The two separate folders, train

and test, are passed to the proposed classification model for

training, and model performance is evaluated on the 3,003

testing data.

Similarly, the classification results are computed, where the

entire training and test data are combined into a single folder and
Frontiers in Plant Science 09
split into training and testing sets using a 0.2 holdout validation.

The confusion matrix based on model performance is visualized

in Figure 6.

The performance metrics are computed using the confusion

matrix, which is provided in Table 6.

In Table 6, for the class of sorghum, 0.90 precision, 1.00 recall,

and 0.94 F1-score are achieved. In the grass class, a precision of 1.00,

a recall of 0.94, and an F1-score of 0.97 are obtained. Similarly, on

the broadleaf weed class, a precision of 1.00, a recall of 0.94, and an

F1-score of 0.97 are achieved. The overall accuracy in the three

classes is 0.96. After augmentation, the data is balanced in each

class, which increases the classification results. The complex

statistical analysis of the classification model is given in Table 7.

The statistical results based on the confusion matrix show an

overall accuracy of 96.3%. The 95% confidence interval for accuracy

is [95.59%, 96.95%], and the chi-square test p-value is <0.0001.

Cohen’s kappa was 0.944, indicating an excellent agreement beyond

chance. Matthews correlation coefficient (MCC) was 0.946,

indicating high model reliability across all classes. These results

demonstrate the model’s strong predictive performance while also

confirming (via McNemar’s test) that it performs statistically

differently than a perfect classifier.

ROC is also computed on each class separately and plotted

in Figure 7.

In Figure 7, the AUC classes of 1.00 on sorghum, 0.99 on grass,

and 1.00 on broadleafweed are shown. Table 8 provides a

comparison of the achieved results.

In Table 8, the U-net model is applied on RGB sorghum images

for detection with an accuracy of 91.0 (Park et al., 2023).

HierbaNetV1 model is used, which consists of 72 layers for the

classification of the sorghum weeds with 98.6% accuracy (Justina

and Thenmozhi, 2024a). The fully convolutional (FCN) and

EfficientNet-B3 networks are employed for the detection of
FIGURE 6

Confusion matrix of classification model. (A) With augmentation. (B) Without Augmentation.
FIGURE 5

Training performance of the classification model.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1586865
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Amin et al. 10.3389/fpls.2025.1586865
sorghum weeds. FCN gives better results compared to EfficientNet-

B3, with accuracy of 86.97% and 97.76%, respectively (Gonzalez

et al., 2024). The DenseNet-169 model’s features are fine-tuned for

classification, and the optimal features are visualized using the

LIME and GradCam methods (Sandosh et al., 2025). However,

compared to the existing model, the ST model is proposed and

trained from scratch on optimal layers and hyperparameters, which

provide better outcomes.
4.2 Experiment #2: localization of sorghum

In this experiment, the localized sorghum region using the

YOLOv9-c model is trained on 100 epochs and 8 batch size. The

localization outcomes are computed in terms of recall, precision,
Frontiers in Plant Science 10
and mAP50 on four benchmark sorghum datasets, as listed

in Table 9.

Table 9 provides the localization outcomes on the SGH and

sorghum leaf detection datasets. The achieved results on the SGH

dataset were 1.00 precision, 0.995 recall, and 0.996 mAP50. On the

sorghum leaf detection dataset, the results are 0.980 precision, 0.976

recall, and 0.982 mAP50. Then, 0.931 precision, 0.980 recall, and

0.961 mAP50 are achieved on the sorghum panicles dataset.

Similarly, 1.00 precision, 0.960 recall, and 0.898 mAP50 are

obtained on the sorghum grain head dataset. The proposed

method more accurately localized the sorghum and the sorghum

leaf. The proposed model localized the sorghum grain head with the

highest mean average precision (mAP), as shown in Figure 8.

The visualization results in Figure 8 depict that the required

region is localized with the highest prediction scores on the SGH
TABLE 7 Statistical analysis of the classification model.

Metric Value

Matthews correlation coefficient (MCC) 0.946

Log-loss/cross-entropy loss 0.070

McNemar’s test (vs. perfect baseline) p-value ≈ 9.76 × 10-²6

McNemar contingency table [[2,891, 0], [112, 0]]
FIGURE 7

ROC of the proposed classification model.
TABLE 6 Classification results with and without augmentation.

Augmentation
Status

Sorghum Grass Broadleaf weed Precision Recall F1-score Overall accuracy

Without augmentation

☑ 0.90 1.00 0.94

0.96☑ 1.00 0.94 0.97

☑ 1.00 0.94 0.97

With augmentation

☑ 1.00 1.00 1.00

1.00☑ 1.00 1.00 1.00

☑ 1.00 1.00 1.00
TABLE 9 Localization results on the benchmark datasets.

Datasets P R mAP50

SGH 1.00 0.995 0.996

Sorghum leaf detection 0.980 0.976 0.982

Sorghum panicles 0.931 0.980 0.961

Sorghum grain head 1.00 0.960 0.898
TABLE 8 Comparison of classification model results with the existing
techniques.

Reference Year Dataset Accuracy, %

(Park et al., 2023) 2023

Classification dataset of
sorghum weeds

91.0

(Justina and
Thenmozhi, 2024a)

2024 98.6

(Gonzalez et al.,
2024)

2024 86.9

(Sandosh et al.,
2025)

2025 99.0

Proposed model 1.00
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and sorghum leaf detection datasets. The achieved results are

graphically plotted in Figure 9.

The comparison of results is depicted in Table 10.

The CNN model is applied to localize the sorghum grain head,

achieving 0.426 mAP (K. S. University, 2022). YOLOv5 is applied to

localize the panicle of the sorghum that provided mAP of 0.955

(James et al., 2024). The model is designed for localization and

obtained 0.995 mAP (K. S. University, 2023). In comparison to

existing works, the YOLOv9-c model is applied for localization

using the selected hyperparameters, which yields the highest mAP

scores among others.
4.3 Experiment #3: segmentation of
sorghum

The segNet transformer model is trained on 10 epochs, and the

training loss rate on each step across epochs is shown in Figure 10.

The loss rate is computed across 10 epochs, each of which is

completed in 50 steps, and the 10 epochs are completed in a total of

500 steps. After each epoch, the loss rate decreased, as given in

Figure 10. Sorghum is segmented using the proposed segmentation

model. The segmentation results are computed in terms of

intersection over union (IoU), and dice scores (DS) are given

in Table 11.

Table 11 presents a comparison of segmentation results with an

existing method. ResNet-50 is used as an encoder and U-net

decoder for segmentation of the sorghum weeds with a DS of

0.8373. Compared to the proposed SegNet model, which achieves
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an IoU of 0.8973 and a DS of 0.9459, these results are

significantly better.

A lightweight MSEA-Net model is designed for segmenting

sorghum weeds, achieving an IoU of 0.8742 (Syed et al., 2025). The

proposed segmentation model yields prediction and ground truth

masks, which are illustrated in Figure 11.

In Figure 11, the proposed segmentation model more accurately

segments the sorghum. In the visualization outcomes, the predicted

mask is approximately close to the true mask.
4.4 Ablation study

The ablation study was conducted to select optimal

hyperparameters of the classification model, as listed in Table 12.

In Table 12, the experimental results highlight the critical influence

of hyperparameter selection onmodel performance. Among the various

configurations tested, the combination of embedding dimension = 64,

attention heads = 8, and dropout rate = 0.03 yielded the highest testing

accuracy of 1.00, indicating its effectiveness for this specific classification

task. However, the model’s sensitivity to changes in these

hyperparameters poses a notable limitation. Small variations in

embedding dimension, number of heads, or dropout rate resulted in

considerable performance drops (e.g., accuracy decreasing to 0.949),

underscoring the model’s reliance on precise tuning.

Similarly, the ablation study is carried out to finalize the

localization and segmentation models as given in Table 13. In the

localization model, experiments are performed on a combination of

hyperparameters, including learning rate, weight decay, image
FIGURE 8

Localization results on the benchmark datasets. (A) SGH and (B) sorghum panicle.
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resolution, and object loss weight. The model performance is

evaluated using the mAP@0.5 metric.

In Table 13, the selected hyperparameters, highlighted in bold

and italic, yield the highest mAP score of 0.915 compared to the

others. The transformer-based SegNet model (SegFormer-B0) is

evaluated using different learning rates, optimizers, and loss

functions, and its performance is assessed using the Dice score

and IoU, as shown in Table 14.
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In Table 14, a Dice score of 0.932 and an IoU of 0.894 were

obtained using a learning rate of 5e-5, the Adam optimizer, and

CrossEntropy loss.
4.5 Limitations and future directions

The working of the proposed method is given in Figure 12.
FIGURE 9

Localization results of sorghum in terms of F1-score, precision, recall, and mAp. (A–D) Sorghum leaf, (E–G) SGH, and (H–K) sorghum grain head.
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One limitation of the proposed method is the risk of overfitting,

particularly given the training on a relatively small dataset of 4K-

resolution sorghum images. High-resolution data can cause the

model to memorize fine details rather than generalize well,

particularly when the dataset size is not sufficiently large or

diverse. Additionally, environmental variations such as lighting,

shadow, and noise in the images can further challenge

model robustness.

To address this, future validation will involve cross-dataset

testing under varying sorghum field conditions and seasons, along

with the appl icat ion of regular izat ion techniques to

improve generalizability.
5 Conclusion

The process of detecting sorghum crops is challenging due to

the variability in shape, size, and texture of the sorghum leaves as

well as the limited research that has been conducted so far. During
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image acquisition, noise and illumination are also significant

challenges in sorghum leaves, which degrade the algorithm’s

detection accuracy. To overcome the existing challenges, three

models are proposed to classify, localize, and segment the

sorghum leaves in noisy and illuminated images, which is a big

challenge. A shifted window transformer neural network is

proposed, based on selected layers and hyperparameters, to

classify the different types of sorghum leaves. The results are

computed on a publicly available sorghum weed classification

dataset with an accuracy of 1.00. The localization of sorghum

leaves is still a challenging task; four datasets that were prepared

at Kansas State University are publicly available, such as SGH,

sorghum leaf detection, sorghum panicle, and sorghum grain head.

The YOLOv9-c model is designed on the optimal hyperparameters

and trained from scratch for 100 epochs. The model more

accurately localized the sorghum leaves and provided a mAP of

0.898, 0.961, and 0.996, respectively. Segmenting sorghum leaves is

a challenging task due to the presence of noisy and illuminated

images. To address this challenge, a Segformer transformer neural

network is proposed and trained from scratch using optimal

hyperparameters, which yields an IoU of 0.8973 and a Dice score

of 0.9459. The proposed models have shown better performance

compared to the existing approaches in this domain. This study

constitutes a significant contribution to the field and provides a

solid foundation for future scholars to build upon and further

develop. This technique may be expanded into a real-time

application in the future and made available to the general public

for wider application.

Although the proposed model demonstrates high accuracy in

classifying sorghum-related images, its transferability to other cereal

crops such as wheat, maize, or rice remains unexplored. The current

approach is optimized and fine-tuned specifically for sorghum, and

without empirical evidence, it is uncertain whether a similar

performance can be achieved across different crop types with
TABLE 10 Results of localization compared to existing methods.

Reference Year Datasets Models mAP

(K. S. University, 2022) 2022

Sorghum grain head

YOLOv8 0.426

Proposed model
YOLOv9-

c
0.898

(James et al., 2024) 2024

Sorghum panicle

YOLOv5 0.955

Proposed model
YOLOv9-

c
0.961

(K. S. University, 2023) 2023

SGH

YOLOv8 0.995

Proposed model
YOLOv9-

c
0.996
The bold text represents the results of the proposed method.
FIGURE 10

Training of the proposed Segformer transformer model for sorghum segmentation.
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TABLE 11 Segmentation results on the sorghum weeds dataset using the SegNet model.

Reference Datasets Model IoU DS

(Genze et al., 2023)

Segmentation dataset of sorghum weeds

MSEA-Net – 0.8373

(Syed et al., 2025) UNet 0.87

Proposed model SegNet 0.8973 0.9459
F
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FIGURE 11

Sorghum segmentation results. (A) Input images, (B) true masks, and (C) predicted masks.
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TABLE 12 Ablation study for the selection of optimal hyperparameters.

Embed dim Heads Dropout rate Testing accuracy

64 8 0.03 1.00

32 8 0.01 0.965

64 4 0.03 0.973

32 4 0.03 0.960

64 8 0.01 0.960

32 4 0.01 0.949
F
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The bold text indicates the selected hyperparameters that are utilized for model training.
TABLE 13 Ablation study for YOLOv9-c object detector.

lr0 Momentum Weight decay Image size Obj loss weight mAP@0.5

0.01 0.937 0.0005 640 1.0 0.915

0.005 0.937 0.0005 640 1.0 0.892

0.01 0.85 0.0005 640 1.0 0.873

0.01 0.937 0.001 640 1.0 0.901

0.01 0.937 0.0005 512 1.0 0.881

0.01 0.937 0.0005 640 0.7 0.888
FIGURE 12

Structure of the proposed method.
TABLE 14 Ablation study for transformer-based SegNet (SegFormer-B0).

Learning Rate Optimizer Loss Epochs Dice score IoU

5e-5 Adam CrossEntropy 10 0.932 0.894

5e-5 AdamW CrossEntropy 10 0.917 0.878

1e-4 Adam Dice + BCE 10 0.910 0.871

1e-4 SGD CrossEntropy 10 0.895 0.859
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varying morphological features and disease patterns. This limitation

restricts the model’s broader applicability in real-world agricultural

scenarios. To overcome this, future work should focus on evaluating

the model’s generalization capabilities by testing it on datasets from

other cereal crops. Domain adaptation techniques, transfer

learning, or multi-crop training strategies could also be

incorporated to improve the model’s versatility and ensure a

consistent performance across diverse agricultural conditions.

In the future, overfitting and environmental variation will be

addressed through semi-supervised learning to leverage unlabeled

data and improve generalization. Additionally, domain adaptation

techniques will be explored to enhance model robustness across

diverse field conditions and unseen environments, strengthening

real-world applicability.
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