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maize plant height based on a
GWAS, Meta-QTL, and WGCNA
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and Weihua Li1*

1The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University,
Shihezi, China, 2Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
Introduction: In maize, plant height (PH) is one of the most important agronomic

traits that directly influences planting density and yield. Therefore, identifying

candidate genes related to PH will help manipulate maize yield indirectly.

Methods: The present research carried out a genome-wide association study

(GWAS) of PH using a natural population of 580 maize inbred lines. Further, after

collecting the published transcriptome data of maize B73, tissue-specific gene

co-expression modules related to PH were generated using weighted gene co-

expression network analysis (WGCNA). Furthermore, a meta-analysis of the

already reported PH-related quantitative trait loci (QTLs).

Results: The integrated analysis of the results based on the different approaches

screened three candidate genes: Zm00001d031796, encoding AP2-EREBP

transcription factor 172; Zm00001d009918, encoding Phytochrome A-

associated F-box protein; and Zm00001d042454, encoding plastid specific

ribosomal protein 4.
KEYWORDS
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1 Introduction

Maize (Zea mays L.) is a globally important food crop with a wide range of uses. It plays

a crucial role in ensuring food security and promoting sustainable agricultural

development. Plant height (PH) is one of the most crucial agronomic traits of maize,

directly affecting growth development, photosynthetic capacity, planting density, lodging
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resistance, and final yield. Maintaining optimal PH is essential for

achieving high and stable yield in maize. It is also crucial for having

an ideal plant architecture, which is conducive to improving plant

density and maize yield (Jafari et al., 2024).

Numerous studies have shown that PH in maize is a complex

quantitative trait, regulated by multiple genes, and mainly

manifested by the co-regulation of main effect genes and micro

effect genes (Fei et al., 2022). A study by Yang et al. in maize

identified 29 quantitative trait loci (QTLs) related to PH through

QTL mapping using bi-parental immortalized heterozygous

populations (Yang et al., 2024). Similarly, Zhang et al., based on a

genome-wide association study (GWAS) using an F1 population

consisting of 300 maize hybrids with 17,652 SNPs, identified nine

significant SNPs and two candidate genes (Zm00001d018617 and

Zm00001d023659) associated with PH (Zhang et al., 2019). Thus,

considering the complexity of PH and its sensitivity to various

environmental factors, we speculate that identifying candidate

genes related to PH and analyzing the genetic basis of PH will

provide the basis for breeding improved maize varieties (Zhang

et al., 2019).

With the advancement of sequencing technology, GWASs and

weighted gene co-expression network analysis (WGCNA) have

been used to elucidate the genetic basis of variations in the

phenotypic traits of various plant species. Studies have

demonstrated the ability of GWASs to uncover marker-trait

associations and identify the underlying loci and genes (Han

et al., 2024). Meanwhile, WGCNA has been effectively used to

investigate gene roles via network diagrams and identify the key

genes regulating a trait from transcriptome datasets (Li et al., 2025).

Recently, GWASs, linkage mapping, and transcriptome analysis

have been integrated to reveal the genetic basis of plant

architecture-related traits in maize, predicting that two candidate

genes, Zm00001d044730 and Zm00001d021574, were related to

maize plant architecture (Lu et al., 2024). Similarly, global

transcriptome and WGCNA revealed hybrid-specific modules and

candidate genes related to PH in maize (Wang et al., 2018b).

Additionally, the generation of gene co-expression modules for

PH and ear height by WGCNA revealed the biological functions of

the specific modules and identified hub genes within those modules

in maize (Li et al., 2019a). Meta-QTL (MQTL) analysis also has

emerged as a powerful approach to refine and consolidate data from

multiple QTL studies, thereby improving the precision and utility of

genetic markers in breeding. In maize, MQTL analysis has been

conducted for different traits. For instance, QTLs were identified at

five positions for internode length above the uppermost ear using

four sets of recombinant inbred line populations in three

environments. Genetic maps and initial QTLs were integrated

through meta-analyses across the four populations. Of the 70

initial QTLs, 46 were integrated in 14 MQTLs by meta-analysis

(Ku et al., 2015). A meta-analysis of 2,974 QTLs associated with 169

component traits revealed 68 MQTLs across diverse genetic

backgrounds and environments, unraveling the genetic

framework associated with grain quality and yield-related traits in

maize (Sethi et al., 2023). A meta-analysis of 917 QTLs associated

with root traits in maize predicted 68 MQTLs, the result of which
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could aid in QTL cloning and pyramiding in developing new maize

varieties with specific root architecture for proper plant growth and

development under optimum and abiotic stress conditions

(Karnatam et al., 2023).

Research has shown that PH is regulated by phytohormone

biosynthesis, transport- and signaling-related gene regulation, and

other non-hormonal pathways. A few phytohormones, such as

gibberellin, brassinolide, auxin, ethylene, and strigolactone,

influence PH by regulating cell wall remodeling in maize. Non-

hormonal pathways regulate maize PH by altering cortical

microtubule arrangement or affecting floral transition, modulating

cell elongation and controlling cortical microtubule orientation (Li

et al., 2019b). Additionally, the CLAVATA(CLV)-WUSCHEL

(WUS) feedback loop is a key pathway regulating the

maintenance and development of apical meristems in plants

(Somssich et al., 2016). The CLV-WUS feedback loop also

regulates PH in maize; this feedback loop plays a decisive role in

the morphogenesis of maize PH (Bommert et al., 2013). Although

several PH-related genes have been cloned, most mutants of these

genes carry deleterious effects. For example, mutations in genes

related to meristem fate often change PH, adversely affecting flower

development, which is not conducive to high yields (Zhang et al.,

2018). Similarly, the mutations in genes related to the hormone

pathway in maize shorten the internodes and reduce PH, affecting

the development of maize floral organs (Wang et al., 2016). These

mutations have also been proven to reduce the biomass of maize,

decreasing the supply capacity of the source and the capacity of the

sink, which is extremely unfavorable for a high yield of maize and

difficult to apply in maize breeding (Jafari et al., 2024; Liu

et al., 2020).

Therefore, the present study comprehensively analyzed the

maize genetic data at different levels using a GWAS, Meta-QTL

analysis, and WGCNA to identify candidate genes associated with

PH. This multidimensional approach will provide accurate

information on candidate genes, supporting molecular breeding

of maize. Additionally, by identifying key genes related to PH, we

expect to provide novel insights for breeding maize with high and

stable yields.
2 Materials and methods

2.1 Material and experimental design

A total of 580 maize inbred lines derived from the Canadian

early maturing improved group, Iowa Stiff Stalk Synthetic (BSSS),

Non-Stiff Stalk (NSS), P group, Huanghuaihai group, European

KWS (KWS SAAT SE & Co. KGaA) series, and Pioneer series were

used in this study; these lines were provided by the Crop Institute of

Xinjiang Academy of Agricultural and Reclamation Sciences. The

natural population was planted in Shihezi (44.31° N, 85.99° E) over

3 years (2019, 2020, and 2021), with a planting density of 105,000

plants/ha. The planting was carried out adopting an a Latin square

design with two repetitions. Each field was divided into five blocks,

and each block consisted of 116 rows, with one maize inbred line
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grown in a single row (row length of 4.5 m and row spacing of 0.55

m). The fields were managed in accordance with the standard local

measures. PH was measured from the soil level to the tip of

the main inflorescence. The phenotypic data analysis of PH

has been published in previous articles, and detailed information

can be obtained from http://www.ymkx.com.cn/jms/article/

abstract/20240109.
2.2 Genome-wide association study

Genomic DNA was extracted from the fresh leaves of the maize

inbred lines using the modified CTAB procedure, and the quality of

DNA extraction was tested. SNP genotyping data were obtained

using Maize SNPs 40K genotyping by target sequencing (GBTS)

technology (Guo et al., 2021; Xu et al., 2020). The SNPs with a

minor allele frequency (MAF) > 0.05 and a missing rate < 0.05 were

retained using PLINK1.9 software. To eliminate the influence of

environmental (year) variation in phenotypic values, a mixed linear

model was constructed using the R package lme4 to estimate the

best linear unbiased estimate (BLUE) of PH for a subsequent

GWAS. The Bayesian information and linkage disequilibrium

iteratively nested keyway (BLINK) model in the R package

GAPIT was used for the GWAS (Huang et al., 2018). Principal

component analysis (PCA) and kinship were used as covariates in

the association analysis to reduce false positives. The research

results on population structure, PCA, and kinship have been

published in previous studies: https://doi.org/10.3390/

plants12223806. The Bonferroni correction was used to control

the probability of false positives (p = 0.05/N, N is the total number

of SNPs). The information on the candidate genes was obtained

from the MaizeGDB (http://www.maizegdb.org/) genome browser

(B73_RefGen_v4) based on the physical positions of the SNPs

significantly associated with the target trait and chromosome

average linkage disequilibrium (LD) decay distance (r2 = 0.1).
2.3 Weighted gene co-expression network
analysis

The transcriptome data generated for the maize B73 inbred line

samples at various developmental stages and from different tissues

(leaves, apical meristem, stem, silk, anther, ear, root, seed) were

obtained from MaizeGDB (Stelpflug et al., 2016). The WGCNA

(v1.72) package in the R software was used to create the WGCNA,

with a gene expression matrix derived from the gene expression

levels of all the samples. Considering that genes with low expression

in all tissues may not be biologically significant, genes with the

highest expression fragments per kilobase per million reads

(FPKM) value less than five were filtered out (Luo et al., 2022).

To ensure that the data conform to the scale-free network

distribution, the weighting coefficient b value was screened and

the network topology was analyzed using the pickSoftThreshold

function in the WGCNA package, and the gene co-expression
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network was constructed based on the value of the threshold

parameter b when the fitted curve first approached 0.85 (Wang

et al., 2023a). The dynamic tree cut algorithm was used to identify

the co-expression modules of the transcriptome expression data,

and the minimum number of variables to be included in the module

(minModuleSize) was set to 30. Modules with a minimum module

size of 30 and a merge cut height of 0.25 were merged if their

similarity exceeded 0.75. The different tissues were used as traits to

create a phenotype matrix, and the correlation coefficients between

the module eigengene (ME) and the different organizations were

calculated. Among the modules, those with correlation coefficients

above 0.65 were defined as tissue-specific modules to identify the

biologically significant ones (Downs et al., 2013; Yang et al., 2019).

The weight values between different genes within each tissue-

specific module were calculated based on the topological overlap

matrix. The higher the weight value, the higher the degree of

association between the genes. Finally, the top 10% of genes that

interact with reported PH genes in the network were selected based

on their weight values (Li et al., 2019a), and the regulatory network

was visualized using the Cytoscape software.
2.4 Collection of QTL information related
to the PH of maize

More than 40 articles published from 2006 to 2023 were retrieved

from the Web of Science (http://www.webofknowledge.com/) and

China National Knowledge Infrastructure (CNKI) (https://

www.cnki.net/) using the keywords maize, PH, and QTL

(Supplementary Table S1). For the experiments with a complete

genetic map and QTL information, the information was arranged

according to the format required by the software; the information

on all essential parameters, such as QTL name, position, linkage

group, LOD (logarithm of odds), CI (confidence interval), and

phenotypic variance explained (R2), was used for the preparation of

QTL files.
2.5 QTL projection and meta-analysis

The QTL map projection and the following meta-analysis were

implemented using the BioMercator4.2.3 software (Sosnowski et al.,

2012). The collected maize PH QTLs were iteratively projected onto

the target map IBM2_2008 Neighbors, and MQTL analysis was

carried out on the QTL clusters present on each chromosome.

Then, the best-fitting model was determined based on the

minimum Akaike information content (AIC) value. Typically, the

model with the lowest AIC represents the most accurate one, and

this was used to determine the number of MQTLs. In this

analysis, the initial number of QTLs used for the Meta-QTL

analysis was never less than two (Kumar et al., 2021). The

physical length of the identified meta-QTL was determined and

analyzed to retrieve the candidate genes linked with PH from the

maizeGDB database.
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3 Results and analysis

3.1 Genome-wide association study

A total of 31,826 high-quality SNPs were retained to conduct a

GWAS for PH in maize. The BLINK model in the GAPIT package

was used for the GWAS, and PCA and a kinship matrix were used

as covariates to control for false positives. Manhattan and QQ plots

showed that the false positives for PH were well controlled

(Figure 1). Then, using p = 1.57 × 10−6 as the threshold level line

for significant correlation to select significant SNPs, 31 SNPs

significantly associated with PH were identified in maize in four

environments (3 years and BLUE value) (Supplementary Table S2).

Further, to enhance and ensure the reliability of these significant

SNPs, SNPs that were repeatedly detected in at least two

environments were selected for subsequent analysis. There were

five SNPs co-localized in different environments, one SNP each was

found on chromosomes 1, 2, 3, and 7, while two were localized on

chromosome 2, with the phenotypic variance explained ranging

from 0.62% to 2.48% (Table 1).
3.2 Effect of the allelic variations on PH

To test the effect of different alleles of co-located SNPs on PH, a

t-test was performed. The test revealed that the variations in the

alleles of the five co-localized SNPs resulted in highly significant

phenotypic differences in PH in all four environments. In the four

environments, the SNP 1_201909524 contributed to 14.02–17.53

cm higher PH in the CC genotype than in the GG genotype; the

SNP 3_200267362 increased PH of the CC genotype by 21.67–24.41

cm compared with the TT genotype; SNP 2_79335071 increased the

PH of the AA genotype by 20.64–25.50 cm compared with the GG

genotype; SNP 7_157639029 increased the PH of the TT genotype

by 14.10–20.15 cm compared with the CC genotype; SNP

2_221912962 increased the PH of the CC genotype by 8.54–11.78

cm compared with the GG genotype (Figure 2; Supplementary

Table S3). These observations suggest the specific effects of the SNPs
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on the phenotypic variations in PH, providing valuable information

for marker-assisted selection aiming for dwarfness in maize.
3.3 Construction of the co-expression
network by WGCNA

Based on the FPKM values (FPKM>5), 20,548 highly expressed

genes were obtained from the maize gene expression matrix.

Subsequent sample clustering based on the expression levels of these

genes showed that the gene clustering tree for each tissue

corresponded well with its respective tissue type (Figure 3A). Based

on the soft threshold calculation results, b=10 was chosen for network

construction, and the dynamic pruning tree method was used to

merge modules with similar expression levels (Figures 3B, C). This

approach generated 17 co-expression modules, represented by

different colors; the Cyan module had the most genes and Gray

represents genes that cannot be classified into anymodule (Figure 3C).

A detailed analysis revealed that 13 out of the 17 modules were

highly specific to tissues, and most tissues had modules that were

highly correlated with them. The Darkgrey module was significantly

correlated with V3_Stem_and_SAM (r=0.74, P=0.006), the Grey60

module was significantly correlated with V5_First_elonagetd_

internode (r=0.90, P=5e-05), the Blue and Salmon modules were

significantly correlated with V9_Immature_Leaves (r=0.98, P=1e-

08) (r=0.73, P=0.007), and the Turquoise module was significantly

correlated with VT_Thirteenth_Leaf (r=0.99, P=1e-09) (Figure 3D).

Studies have proven that the shoot apical meristem, internodes,

leaves and other tissues are closely related to maize stalk growth and

development and PH (Wang et al., 2018a). A few researchers have

found functional genes for PH, among which one (D3) was found in

the Grey60 module, four (Br2, NA1, RS2, ZmACS7) in the Blue

module, two (D8 and D9) in the Salmon module, and seven

(ZmCT2, ZmTD1, SXD1, ELM1, ZmBELL10, ZmCOP1, and

ZmCYP90D1) in the Turquoise module. Therefore, this study

focused on these four modules and utilized the reported PH

genes of these modules as the hub genes to construct a gene

interaction network and screen the candidate genes related to PH.
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FIGURE 1

Manhattan plot and QQ plot of PH.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1587217
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qian et al. 10.3389/fpls.2025.1587217
3.4 Meta-QTL analysis

Analysis of almost 40 published articles helped us collect 362

PH-related QTLs that met the predefined criteria (Supplementary

Table S1). These QTLs were unevenly distributed on each

chromosome, ranging from 22 to 66 per chromosome.

Then, to extract information relevant to the current research,

the collected QTLs were projected onto a published reference map,

IBM2_2008 Neighbors. This approach identified 18 MQTLs related

to PH based on models with the lowest AIC values, and each MQTL

contained two to six initial QTLs. No MQTL was detected on
Frontiers in Plant Science 05
chromosomes 2, 4, and 9 (Supplementary Figure S1). The CI (95%)

of the detected MQTLs varied from 0.43 to 13.36 cM, with an

average of 5.14 cM (Figure 4, Supplementary Table S4).

Further, the 31 PH-related SNPs detected by the GWAS in this

study were compared with the physical coordinates of the 18 MQTLs.

The results showed that two of the GWAS-detected SNPs were located

within the intervals of the MQTLs, such as SNP 3_127714295 in the

MQTL2 interval and SNP 7_25178512 in theMQTL11 interval. Though

SNP 7_141487867 was not found within anyMQTL interval, it was very

close to MQTL12 (229 kb) (Figure 5). These results confirmed the

accuracy of the SNPs related to PH identified based on the GWAS.
FIGURE 2

Analysis of the allelic effects of colocalized SNPs for PH. *** indicates a significant difference at the 0.001 probability level.
TABLE 1 Significant colocalization of SNPs for PH.

SNPs Chr Position (bp) Alleles
PVE (P-value)

2019 2020 2021 BLUE

1_201909524 1 201909524 G/C 2.48% (3.60E-10) 1.67% (5.74E-08)

3_200267362 3 200267362 C/T 1.31% (3.32E-08) 0.88% (1.24E-10)

2_79335071 2 79335071 A/G 1.4% (8.81E-10) 1.74% (4.63E-07)

7_157639029 7 157639029 C/T 1.16% (8.53E-08) 0.83% (1.02E-06)

2_221912962 2 221912962 C/G 0.62% (5.47E-07) 1.18% (2.22E-09)
PH, plant height; Chr, chromosome; PVE, phenotypic variance explained; BLUE, best linear unbiased estimate.
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3.5 Identification of candidate genes

Finally, the candidate genes were searched in the B73_RefGen_v4

reference genome based on the information on co-localized SNPs and
Frontiers in Plant Science 06
the LD decay distance of 440 kb (r2 = 0.1) in this population. The

approach detected a total of 54 genes in the candidate region, and

subsequent gene function annotation screened four candidate genes

related to PH (Supplementary Tables S5, S6).
FIGURE 3

Construction of the co-expression network by weighted gene co-expression network analysis. (A) The clustering dendrogram of samples and tissue
correspondence; (B) the determination of soft threshold; (C) gene clustering and module construction; (D) correlation between traits and modules.
The red color represents a positive correlation between the module and the trait. The green color represents a negative relationship between the
module and the trait.
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In the WGCNA, the Turquoise module used seven reported

genes to screen 12 candidate genes for PH, the Blue module used

four reported genes to screen five candidate genes, the Grey60

module used one reported gene to screen three candidate genes, and

the Salmon module used two reported genes to screen 10 candidate

genes (Figure 6).

Using the positions of the genetic markers at both ends of each

MQTL on the B73 genome (B73_RefGen_v4), a total of 150 genes

were identified in these MQTL regions (Supplementary Table S4).
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Gene function annotation screened 10 candidate genes associated

with PH from nine MQTLs (Figure 5; Supplementary Table S6).

Thus, in this study, the GWAS and WGCNA jointly arrived at

one candidate gene, Zm00001d031796, while the WGCNA and

meta-analysis jointly mined two candidate genes, Zm00001d009918

and Zm00001d042454. However, the GWAS and meta-analysis did

not jointly mine any candidate genes (Figures 5, 6). Finally, no

candidate gene was identified by combining the results of all

three approaches.
FIGURE 4

Projection and distribution of QTLs and MQTLs (Meta-QTLs) identified for PH on chromosome 7. The bars on the left side of the chromosome
correspond to QTLs related to the plant height trait, the black bars within the chromosomes represent marker density, the colored segments within
the chromosome represent MQTLs, and on the right side of the chromosome are molecular markers and genetic distances (cM).
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4 Discussion

4.1 Genetic basis of PH in maize

PH is a crucial factor that determines the architectural

composition and influences the yield in maize. An optimal plant

architecture ensures a stable and improved yield, as it is a typical

polygenic trait in maize that is affected by environmental changes,

highly sensitive to the environment, and has a complex genetic basis

(Yang et al., 2024). The present study detected many significant

SNPs for PH by GWAS in the maize population during different

years, but identified fewer SNPs co-localized in multiple

environments, mainly because PH is a quantitative trait

controlled by multiple genes. Moreover, the environment greatly

affects PH. Thus, the different environmental conditions across the

3 years probably led to the differential expression of genes

controlling the trait (He et al., 2017). Typically, those detected
Frontiers in Plant Science 08
under multiple environments are stable expression genes, so there

were relatively few co-localized SNPs in multiple environments.

This result is common in the study of complex traits in maize, as Lu

et al. detected 12 SNPs significantly associated with PH in two

environments, but did not find co-localized SNPs (Lu et al., 2020).

Ma et al. detected 35 SNPs significantly associated with PH in four

environments, with only eight co-located SNPs in multiple

environments (Ma et al., 2023). These observations indicate that

the genetic basis of PH in maize is complex and highly influenced by

the environment, and the genetic mechanisms that underlie maize

PH diversity are still largely unknown (Wang et al., 2023b).

Moreover, the study detected low phenotypic variance explained

by the five co-localized SNPs (0.62% to 2.48%), which is expected

for a complex trait. Similarly, Ma et al. detected a phenotype

contribution rate of only 0.02% to 6.23% (Ma et al., 2023). This is

primarily because PH is a quantitative trait controlled by

minor genes.
FIGURE 5

Circos plot showing the Meta-QTLs, significant SNPs, and genes on a physical map. The colored bars show the 10 maize chromosomes, and the red
and blue areas represent the positions of MQTL and SNPs on the chromosome. * indicates candidate genes jointly identified by Meta-QTL analysis
and WGCNA.
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4.2 Joint analysis of the GWAS, Meta-QTL
analysis, and WGCNA

The present study used a GWAS, Meta-QTL analysis, and

WGCNA to analyze the genetic basis of maize PH from genomics

and transcriptomics. The combined use of three methods helped us
Frontiers in Plant Science 09
to rapidly identify the genetic intervals and mine the candidate

genes (Lu et al., 2024). GWASs have been widely used to reveal the

genetic basis of variations in maize phenotypes (Sahito et al., 2024),

but they also have certain limitations. For instance, PH, flowering,

yield, and many other complex agronomic traits are highly

correlated with the population structure, thus, using a GWAS to
FIGURE 6

Local regulation network of gene co-expression of key modules. The red nodes are reported plant height trait genes, the green nodes are plant
height trait candidate genes. * candidate genes jointly identified by WGCNA and Meta QTL or GWAS.
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identify the genes regulating complex agronomic traits affected by

the environment is easily influenced by population structure

(Camus-Kulandaivelu et al., 2006), and GWASs have insufficient

ability to detect quantitative traits controlled by some micro effect

multi genes, making it difficult to accurately identify the micro effect

locus or genes. In the analysis process, false positive or false negative

results may also be introduced, which may lead to inaccurate

experimental results.

Despite many QTLs related to PH having been identified in

maize, very few have been useful in genetic improvement programs

due to their minor effects and the influence of the environment. In

such situations, an alternative method or an integrated approach is

necessary. A meta-analysis of QTLs integrates information from

numerous QTLs across different experiments and populations,

narrows the confidence interval, and improves the accuracy of

QTL mapping (Goffinet and Gerber, 2000). Although the meta-

analysis of QTLs reduces the CI of the original QTL, the MQTL

interval still contains a large number of genes. Meanwhile, WGCNA

is an effective method to analyze gene co-expression networks and is

capable of specifically screening out co-expression modules with

high biological significance to the target trait. This approach

compensates for the insufficient ability of a GWAS to analyze

complex traits and has been proven effective in data mining in

various plants (Li et al., 2023). Therefore, combining WGCNA with

a GWAS and Meta-QTL analysis will greatly improve the

effectiveness of candidate gene mining for PH.

Currently, the integrated analysis of multi-omics is an efficient

and popular approach used to mine genes associated with crucial

agronomic traits. Multi-omics analysis has been widely used, but

most studies have been done using two methods, such as a joint

GWAS and WGCNA to uncover the genetic control of calcium

accumulation under salt treatment in maize seedlings (Liang et al.,

2021). Meta-analysis and WGCNA have revealed the hub genes for

seed storage composition during seed development in soybean (Qi

et al., 2018). Meta-QTL analysis and a GWAS were used to discover

the genomic regions and candidate genes for yield and yield-related

traits in bread wheat (Yang et al., 2021). A joint analysis using a

GWAS, WGCNA, and Meta-QTL analysis is scarce in the literature.

Therefore, the present study employed a GWAS, Meta-QTL

analysis, and WGCNA and performed an integrated analysis of

the results to mine candidate genes for maize PH. However,

common genes were found only between two methods and not

among all three. The GWAS and WGCNA jointly mined one

candidate gene, while the WGCNA and meta-analysis jointly

mined two candidate genes. No common candidate gene was

mined based on the results of all three methods, probably due to

the relatively small number and low density of SNP markers

(31,826) used in this research after the GWAS quality control. It

is also possible that although the natural population has been

planted for 3 years, it is growing in almost the same environment.

PH is a trait influenced by gene-environment interactions, and a

GWAS in a single environment may miss gene-environment

interactions revealed in other environments, resulting in

incomplete gene mining and fewer candidate genes (Hudson

et al., 2022). On the other hand, it may be due to the influence of
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different genetic maps and molecular marker types in QTL studies,

resulting in a limited number of available QTLs collected, leading to

the inability to detect some related regions and candidate genes

(Kaur et al., 2023). GWASs and Meta-QTL analysis use molecular

markers and gene loci to mine candidate genes, while WGCNA uses

gene expression to mine candidate genes. Different experimental

materials and treatments can result in inconsistent gene expression,

leading to candidate genes that are not identified consistently across

all methods. Although a GWAS, Meta-QTL analysis, and WGCNA

were used in this study, the genetic analysis of maize PH from

genomics and transcriptomics remains limited. Therefore,

genomics, transcriptomics, proteomics, metabolomics, and other

omics should be integrated to efficiently analyze the genetic basis of

maize and construct a more detailed and complete molecular

regulatory network for important maize traits (Han et al., 2022).
4.3 Functional prediction of candidate
genes associated with PH in maize

The gene Zm00001d031796 encodes AP2-EREBP transcription

factor 172. Apetala2/ethylene response factor is one of the largest

families of transcription factors, regulating growth, development,

and stress response in plants. In addition to directly regulating

genes involved in plant development and stress response, AP2/ERFs

mediate signaling of hormones, including stress-associated (abscisic

acid and ethylene) and growth-related (gibberellic acid, cytokinin,

and brassinosteroid) hormones (Qi et al., 2023). AP2/EREBP-TFs

also control various developmental processes. Deregulated

expression of AP2/EREBPs caused pleiotropic effects such as

decreased cell size, PH, hypocotyl elongation, and fertility in

maize (Dietz et al., 2010). Recently, Wang et al. identified

ZmEREB92 and ZmEREB93 as key candidate genes that regulate

ear height and the ratio of ear to PH (Wang et al., 2022).

Zm00001d009918 encodes a phytochrome A-associated F-box

protein. Phytochrome A (PHYA) is the unique far-red light receptor

in plants, which precisely regulates the transcription network via

multiple pathways. PHYA affects physiological processes such as

shade avoidance response, flowering time, plant architecture, and

apical dominance in plants (Lei et al., 2024). ZmphyA plays an

important role in regulating maize PH (Cao et al., 2024). The

homologous genes in Arabidopsis (AT4G02440) encode the F-box

protein empfindlicher im dunkelroten licht 1(EID1), which negatively

regulates phytochrome A (phyA)-specific light signaling. EID1 also

regulates hypocotyl elongation (Marrocco et al., 2006; Zhou et al.,

2002) and functions during the shade avoidance response in

Arabidopsis thaliana by repressing PHYA action and thereby

allowing seedlings to elongate in the shade (Staudt et al., 2023).

Zm00001d042454 encodes plastid-specific ribosomal protein 4

(PSRP4). The plant plastids possess a small set of proteins unique to

the plastid ribosome, named plastid-specific ribosomal proteins

(PSRPs). It has been proposed that these proteins may represent

accessory proteins involved in translational regulation (Tiller et al.,

2011; Xu et al., 2013). In a study on plant structure using 10 maize

recombinant inbred line populations, a new PH QTL, qPH3, was
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fine-mapped to a 600 kb genomic region with three candidate genes,

including Zm00001d042454 (Pan et al., 2017). This research

suggests that Zm00001d042454 plays a role in regulating plant

structure, including PH.

Although our study identified several promising candidate genes

potentially involved in PH regulation, their functional roles remain to be

experimentally validated. One of the limitations of this study is the

relatively low marker density (31,826 SNPs) derived from SNP chip

genotyping, which restricts the resolution for haplotype analysis and fine

mapping of associated genomic regions. Additionally, the lack of whole-

genome resequencing data limits our ability to perform comprehensive

candidate gene association studies or accurate haplotype reconstruction.

To overcome these limitations within the scope of the available data, we

performed a haplotype analysis offive colocalized SNPs identified by the

GWAS within the LD decay region (Supplementary Figure S2). This

analysis aimed to characterize the patterns of genetic variation and

potential functional combinations among these SNPs. Our long-term

objective is to perform whole-genome resequencing on the studied

materials to enable more detailed genetic dissection of the loci identified

in this study. Future functional analyses should include investigations

into the candidate gene expression patterns, subcellular localization,

genetic complementation, overexpression, CRISPR/Cas9 vector

construction, and genetic transformation. These analyses will help

reveal their biological functions and elucidate the genetic mechanisms

underlying PH regulation. In other words, the functional validation of

key candidate genes will provide novel insights into the genetic and

molecular basis of PH in maize.
5 Conclusions

The present study detected five significantly co-located SNPs in

multiple environments through a GWAS, providing important

genetic loci for molecular marker-assisted selection breeding.

Three candidate genes jointly mined by multiple methods provide

a reference and basis for the precise localization and cloning of

genes related to PH. These research results provide valuable

information for analyzing the genetic basis of maize PH.
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