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SE-enhanced 1-D CNN with
full-band hyperspectral imaging
for rapid and accurate maize
seed variety classification
Linzhe Zhang, Chengzhong Liu*, Junying Han, Kai Sun
and Yongqiang Feng

College of Information Science and Technology, Gansu Agricultural University, Lanzhou, China
Introduction: Accurate identification of maize seed varieties is essential for

enhancing crop yield and ensuring genetic purity in breeding programs.

Methods: This study establishes a non-destructive classification approach based

on hyperspectral imaging for discriminating 30 widely cultivated maize varieties

from Northwest China. Hyperspectral images were acquired within the 380–1018

nm range, and the embryo region of each seed was selected as the region of

interest for spectral extraction. The collected spectra were preprocessed using

Savitzky–Golay (SG) smoothing. Several machine learningmodels—KNN, ELM, and

a two-layer convolutional neural network integrated with squeeze-and-excitation

(SE) attention modules (CNN2c-SE)—were constructed and compared.

Results: Results demonstrated that the CNN2c-SE model utilizing full-spectrum

data achieved a superior classification accuracy of 93.89%, significantly

outperforming both conventional machine learning models and feature-

waveband-based approaches.

Discussion: The proposed method offers an effective and efficient tool for high-

throughput, non-destructive maize seed variety identification, with promising

applications in seed quality control and precision breeding.
KEYWORDS

hyperspectral imaging technology, maize seeds, classification, convolutional neural
network, full band
1 Introduction

Corn is one of the world’s three major food crops and is extensively cultivated in

Northwest China. It serves as a crucial food source and economic asset for the local

population. Scientific cultivation practices aimed at increasing maize yield can provide a

stable income for local communities and ensure a reliable and secure food supply (Wang

et al., 2021). The scientific cultivation of corn can bring stable income to local residents and

ensure a safe and stable supply of food. At present, there are many varieties of maize planted
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in Northwest China, the accurate identification of maize varieties is

the basis for cultivating suitable maize varieties, which is also the

key to realize high yield of maize, and at the same time, it can

facilitate the cultivation and management of maize for the farmers

and facilitate the improvement of excellent varieties. Therefore, it is

of great significance to quickly and accurately categorize different

varieties of maize.

Traditional methods of maize variety classification mainly

include manual and biological detection methods, such as DNA

sequencing, SNP analysis, etc (Zhou et al., 2022). There are

difficulties in accurately identifying and subjectivity in manual

testing, while biological testing methods require professional

knowledge, high costs, and are prone to damage to seeds.

Hyperspectral technology can identify seeds quickly and non-

destructively to meet the production needs of modern agriculture.

Due to the varying external structures and internal substances

within seeds, light undergoes both penetration and interaction.

Consequently, spectral reflectance curves represent not merely

surface properties but composite signals carrying the molecular

composition fingerprint of the seed’s interior. Differences in the

concentration and composition of internal biochemical

components—such as starch, protein, lipids, and moisture

content—between seed varieties directly alter their unique

absorption patterns, thereby modifying the reflected signals we

measure. Hyperspectral imaging technology reflects the internal

characteristics of seeds in the spectral curves, which can be used for

rapid and non-destructive classification and identification, and is

widely used in the detection of varieties (Sun et al., 2025), quality

and vigor of various types of seeds (Zhang et al., 2022). Yang et al.

used hyperspectral imaging to collect germ-side and endosperm-

side images of four types of waxy maize, and used SG smoothing

and continuous projection algorithms for preprocessing and feature

wavelength selection, respectively, and used SVM and PLS-DA as

the classification models, and the classification accuracies of SVM

on the germ-side and the endosperm-side were 98.2% and 96.3%,

which were higher than that of the PLS-DA model (Yang et al.,

2015). Zhang et al. used hyperspectral imaging technology to collect

images of three kinds of maize seeds with different degrees of frost

damage, and used four kinds of processing methods, four kinds of

feature wavelength selection methods and three different

classification methods to build the model, and found that SG

smoothing preprocessing, full-waveband PLS-DA had the highest

accuracy and the best effect of the classification model (Zhang et al.,

2019). Collins et al. used hyperspectral technology to collect images

of viable and non-viable two maize seeds in the range of 1000–2500

nm, and used three models, LDA, PLS-DA, and SVM, as

classification models, with the SVM model having the highest

classification accuracy (Wakholi et al., 2018). Ji et al. proposed a

combination of hyperspectral imaging technology and multi-

classification support vector machine to classify six different

potatoes, which was modeled by LDA dimensionality reduction

and SVM, and the potatoes not involved in the modeling were

segmented using K-means clustering, and after segmentation, the

spectra of the regions were extracted and input into the model for

recognition, with an accuracy of up to 90% (Ji et al., 2019).
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Therefore, the use of hyperspectral imaging technology to collect

images, extract the feature wavelength using traditional machine

learning modeling methods can be effective in the classification of

various seeds in agricultural production.

In recent years, deep learning methods have been widely used in

computer vision, natural language processing, smart agriculture, etc

(Yan et al., 2021). Zhang et al. used hyperspectral imaging and

DCNN model to classify four different corn varieties, and the

accuracy of both test and validation sets was higher than that of

KNN and SVM classification models, reaching 94.4% and 93.3%,

respectively (Zhang et al., 2021). Xu et al. used hyperspectral

imaging to build a CNN-FES model for feature wavelength

selection, and a CNN-ATM model to classify healthy maize seeds

and maize seeds suffering from worms, and the accuracy, sensitivity

and specificity could reach 97.50%, 98.28% and 96.77%, respectively

(Xu et al., 2023). Zhang et al. used hyperspectral imaging to acquire

735 corn seed images of seven semi-hybrid corn varieties in the

range of 900–1700 nm, and established a (SG+MN)-(CARS+SPA)-

CNN classification model with an accuracy of 96.65% by using

different preprocessing methods and feature selection methods

(Zhang et al., 2023). Wang et al. used combined hyperspectral

imaging to obtain images of wheat flour with high content of

deoxynivalenol and normal wheat flour, and combined the

preprocessing methods and machine learning classification

models to obtain the SG-CARS-RF model, which had the highest

recall of 98.95%, and the accuracy of classification using the CNN

model was higher at 97.78% (Wang et al., 2024). Seo et al. used

distilled water to dilute potato juice and spinach juice to six different

concentration levels and captured images through visible and near-

infrared hyperspectral imaging, and used six classification models to

classify them separately, and the CNN was the most effective, which

was able to achieve 99% and 98%, respectively (Seo et al., 2021).

Therefore, it is feasible to use deep learning models for classification

(Zhao et al., 2026).

At present, there are a large number of domestic and

international studies on the classification and identification of

maize varieties, and most of the studies first carry out the

selection of feature wavelengths, and then classification is

performed using either traditional machine learning methods or

deep learning methods as classification models (Cui et al., 2020).

Traditional Machine Learning is usually based on statistical

principles and has strong interpretability, such as KNN, ELM and

other methods as classification models (Somvanshi et al., 2016). In

contrast, deep learning models such as convolutional neural

networks (CNNs) can automatically learn hierarchical features

directly from raw or preprocessed data, integrating feature

extraction and classification within a single learning framework,

and perform well on complex tasks (LeCun et al., 2015). Most

studies rely on traditional methods such as PLA and SPA for

extracting feature wavelengths, which can result in the loss of

detailed information and involve manual intervention.

Additionally, many existing maize variety classification tasks use a

limited number of varieties, making it challenging to achieve

effective results in classifying a wide range of maize species. Given

the extensive diversity of maize varieties, these limitations can
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impact the accuracy and reliability of classification outcomes (Kang

et al., 2022). In this study, 30 maize varieties were selected and their

full-band spectral information was used for the classification task,

which ensured that the full-band information would not be lost,

improved the utilization of features (Jia et al., 2023). This ensures

that the whole operation is done by the machine, which reduces the

impact caused by human factors and simplifies the operation to save

time.Spectral preprocessing is a critical step in hyperspectral data

analysis to enhance the useful chemical information and minimize

the influence of various physical and instrumental artifacts. Raw

spectral data often contain unwanted noise from the sensor

electronics, light scattering effects due to sample morphology, and

baseline shifts. Therefore, this study employs polynomial

smoothing (SG), Gaussian filtering (GF), median filtering (MF),

and moving average filtering (MA) as preprocessing methods to

process the raw spectral data. In this study, CNN2c-SE, a CNN

network model based on the attention mechanism, was established

for classifying different maize varieties, and its classification

accuracy was compared with that obtained from the machine

learning models KNN and ELM, as well as different feature band

selection methods.
2 Materials and methods

2.1 Experimental materials

The maize seeds used in this experiment were all provided by the

Gansu Provincial Academy of Agricultural Sciences (GSAAS), and 30

varieties of maize seeds widely planted in Northwest China were

selected, such as Early A Shengyuan 688 (ZASY688), Zhongshui A

Shijiang (ZSASQ66), Zhongshui A Longxin District 518

(ZSALXQ518), and Early B Songyu 438 (ZQBSY438), etc, which

were labeled from 1 to 30, respectively. In order to avoid the effect of

moisture in the air, the corn seeds were stored in sealed paper bags, and

30 intact and unbruised corn seeds were selected for hyperspectral

image collection at each sampling. The maize varieties are shown in

Table 1. Representative seed images are shown in Figure 1.
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2.2 Experimental equipment

The Gaia Field portable hyperspectral system (Sichuan Dualix

Spectral Imaging Technology Co., Ltd.) is shown in Figure 2, which

includes a GaiaField-V10E hyperspectral camera, a 2048×2048 pixel

imaging lens, a HSI-CT-150×150 standard whiteboard (PTFE), a

HSIA-DB indoor imaging dark box, four sets of shadowless lamp

light sources, a HSIA- TP-L-A tripod rocker set, and hyperspectral

data acquisition software Spec View. The spectral range is 380–1018

nm, the spectral band is 320, the spectral resolution is 2.8 nm, the

numerical aperture is F/2.4, the slit size is 30 mm × 14.2 mm, the

detector is SCMOS, the imaging modes are built-in push-scan,

autofocus, and the dynamic range is 14 bits. The core components

of the hyperspectral equipment include a standardized light source,

a spectral camera, an electronically controlled mobile platform, a

computer and a control software. The system works by using a

push-scan imaging mode that combines a surface array detector

with an imaging spectrometer. Driven by the scanning-controlled

motorized platform, the slit of the imaging spectrometer and the

focal plane of the imaging lens move relative to each other, and the

detector collects real-time information relative to the line target,

which is finally stitched together into a complete data cube.
2.3 Acquisition and correction of
hyperspectral images.

Before image acquisition, the hyperspectral instrument switch

and dark box light source were set. A warm-up time of 30 min was

allowed, and then the instrument parameters were configured to set

the camera exposure time to 49 ms, the gain to 2, the frame rate to

18.0018 Hz, and the forward speed to 0.00643 cm/s. Corn seed

embryos are rich in nutrients, such as starch and proteins, and

therefore, in this experiment, we collected image information of the

embryonic surfaces of the samples. We chose a total of 30 maize seed

varieties; for each hyperspectral image was collected a total of three

times, each time 30 seeds were randomly selected from the

corresponding varieties and embryo-surface-facing were placed in a
TABLE 1 Corn varieties.

Name No. Number Name No. Number Name No. Number

ZASY688 1 30 GMBSB1259 11 30 ZHAXY99 21 30

ZSASQ66 2 30 ZBQF218 12 30 ZHBP220 22 30

ZSALXQ518 3 30 QAGNY599 13 30 ZSBJYY1207 23 30

ZQBSY438 4 30 JBL3712 14 30 ZSAZT2208 24 30

ZSPY128 5 30 JAM1910 15 30 QBFLQC2 25 30

ZAQF216 6 30 ZSDTY71110 16 30 JAC1219 26 30

ZBHT526 7 30 ZAQKY918 17 30 QBFY166 27 30

ZBJL6 8 30 GADF1908 18 30 ZAZD1568 28 30

GBJH25 9 30 JAGNY168 19 30 ZSBZT2209 29 30

ZJNY516 10 30 ZBNF7019 20 30 QBFLQC5 30 30
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dark box on the mobile platform for collection. After each variety was

collected once, the sample under test was re-poured into the sample

bag and manually shaken evenly. Then, 30 seeds were randomly

selected and arranged in a 5×6 grid, as shown in Figure 3, for

subsequent image acquisition of this variety. Each variety was

repeated three times, resulting in a total of 90 seeds scanned. A

total of 2,700 seeds were scanned, yielding 2,700 spectral curves. In

order to improve the stability and reliability of the images, after the

acquisition was completed, the original hyperspectral images were

corrected in black and white to eliminate the effects caused by dark

current noise (Polevoi et al., 2023). The formula for black and white

correction is shown in Equation 1:
Frontiers in Plant Science 04
Iraw =
Iraw − Idark
Iwhite − Idark

(1)

Where Iraw is the original image, Iwhite is the white reference

image, Idark is the dark reference image and Ic is the calibration image.

To extract spectral information from the corrected

hyperspectral images, spectral features were extracted using

ENVI5.3 software, by intercepting the germ portion of each corn

seed in a single image with a rectangle of the same size as the region

of interest. Establish the obtained spectral curve as a Spectral

Library, extracting the corresponding ASCII values for each

wavelength band as experimental data.
FIGURE 1

Representative Corn Seed Diagram. The (A) is JAM1910, No. 15. The (B) is QBFY166, No. 27. The (C) is QAGNY599, No. 13. The (D) is GMBSB1259,
No. 11. The (E) is ZHAXY99, No. 21. The (F) is ZBQF218, No. 12.
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2.4 Spectral pre-processing

In the process of image acquisition with hyperspectral

instruments, it is inevitable to be interfered by instrumental noise,

environmental noise, etc. In order to reduce the interference of

irrelevant information, improve the quality of the obtained data, so

as to ensure that the established model obtains more accurate

prediction, it is necessary to carry out the preprocessing of the

spectral data. In this study, polynomial smoothing (SG), Gaussian

filter (GF), median filter (MF), and moving average filter (MA) are

used as preprocessing methods to preprocess the original spectral

data. SG smoothing is a commonly used data smoothing method,

which is mainly used for smoothing the signal. The method achieves

smoothing and preserves the features of the data by fitting

polynomials to localized regions of the data points. The

polynomial smoothing method (SmoothingSGolay) is

characterized by its ability to smooth the trend of the data and
Frontiers in Plant Science 05
remove the noise efficiently while keeping the overall shape and

characteristics of the data intact (Hearst et al., 1998). Gaussian Filter

Gaussian Filter Method (Gaussian Smoothing) is a commonly used

smoothing method in image processing and signal processing. The

method uses a Gaussian function as a weighting function, which is

weighted and averaged over a localized area to achieve smoothing of

a signal or image. The Gaussian filter method is effective in

smoothing the signal while maintaining the image details and has

good suppression of noise (Ala-Luhtala et al., 2014). Median

Filtering. MedianFilter is a nonlinear smoothing technique mainly

used for image denoising. Its basic principle is to set the grayscale

value of each pixel point to the median of the grayscale values of all

pixel points within a certain neighborhood window of that point.

Specifically, median filtering is done by some sort of structured 2D

sliding template, where the pixels within the template are sorted

according to the magnitude of the pixel value, and then the median

value is taken as the value of the current pixel point. This method

helps to eliminate isolated noise points and bring the surrounding

pixel values closer to the true values (Lee, 2019). MovingAverage

filtering is commonly used in the processing of time series data or

one-dimensional signals to eliminate short-term fluctuations and

noise and to highlight long-term trends or cyclical changes. The

basic idea is to take the average of the data points in a certain range

before and after each data point in the time series data as the

filtering result of that point (Dicle and Levendis, 2017).
2.5 Division of training and test sets

This study forms hyperspectral data cubes corresponding to the

reflectance of each seed in each band, which serve as the final data

input. In this experiment, 2700 samples were divided into training

and test sets in the ratio of 4:1, and the training and test sets for each

maize seed were 72 and 18, respectively.The training and test sets

for the 30 species were 2160 and 540, respectively, in order to

analyze and compute the discriminative accuracy of the training
FIGURE 2

Hyperspectral imaging system.
FIGURE 3

Corn seed placement chart.
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and test sets of the model. The experiment employed 10-fold cross-

validation to reduce overfitting.
2.6 Experimental environment

The machine learning model code was implemented using

Matlab R2023a, and the deep learning model code was developed

and researched using Python programming language, Pytorch

environment. The running environment of the model is Windows

11 system, and the hardware information is as follows: CPU:13th Gen

Intel(R) Core(TM) i7-13700 2.10 GHz; GPU: NVIDIA GeForce RTX

4090.The whole experimental process is shown in Figure 4.
3 Modeling

3.1 Machine learning models

K-Nearest Neighbors (KNN) is a commonly used classification

algorithm that is based on the principle of proximity and makes

classification or regression predictions by finding the K nearest
Frontiers in Plant Science 06
training set samples to the sample to be classified (Yu et al., 2010).

(1) The KNN algorithm uses feature vectors to represent the

characteristics of each sample. These features can be any number

and type of numerical, categorical, or textual data. (2) The similarity

between the samples is measured by calculating the distance

between them. (3) For a sample to be classified, the KNN

algorithm calculates the distance between it and each sample in

the training set and selects the K neighboring samples closest to it.

Based on the categories of the K neighboring samples, the category

of the sample to be classified is determined by majority voting. In

this study, the data is first preprocessed using mean processing,

maximum and minimum value processing and logarithmic

processing. Next the standard Euclidean distance, correlation

distance, Mahalanobis distance and other metrics were used and

the value of K was set from 1 to 20, comparing the results for

different values of k and determining K = 17.

Extreme Learning Machine (ELM) is a fast learning algorithm

based on a single hidden layer feed forward neural network (Ding

et al., 2014). Compared with traditional neural network algorithms,

ELM randomly initializes the connection weights and biases

between the input layer and the hidden layer without the iterative

training process of back-propagation, the parameters of the hidden
FIGURE 4

Flowchart of the experiment.
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layer can be directly generated randomly, and only the weights of

the output layer need to be trained. ELM can obtain the global

optimal solution by performing the least-squares method on the

randomly initialized hidden layer, avoiding the problem of going to

the local optimal solution in traditional neural networks. ELM can

use hidden layers with nonlinear activation functions to enhance

the expressive power of the model and its training speed is fast

enough to handle large-scale datasets. In this study, the Sigmoid

function is used as the activation function, and the number of nodes

in the hidden layer is set to 100, 150, and 200, respectively, and the

number of nodes in the hidden layer is set to 150 after comparing

the different results.
3.2 Deep learning models

Convolutional Neural Network (CNN) is a deep learning model

that is mainly used to process data with a grid structure, such as images,

text, video and sound (Ma et al., 2012). CNN had great success in

computer vision tasks such as image classification, object detection, and

image generation (Yeh et al., 2018). Its network structure is shown in

Figure 5.In this experiment, one, two and three layers of convolutional
Frontiers in Plant Science 07
and fully connected layers were experimented respectively, and it was

found that two layers of convolutional and fully connected layers had

the best classification effect, so the convolutional neural network in this

experiment uses two layers of convolutional layers and two layers of

fully connected layers.

In this study, a new one-dimensional CNN network model is

proposed, which consists of one input layer, two convolutional

layers, two fully-connected layers, one SEBLOCK module and one

output layer. In this study, all 320 wavelength data are used as input

data, and kernel_size, stride, and padding are set to 3,1,1,

respectively, the initial learning rate is set to 0.01, and the

batch_size is set to 64, and a total of 10,000 iterations are

performed. the SE Block (SQUEEZE-AND- EXCITATION

BLOCKS) module: the SE Block mainly contains two parts,

Squeeze and Excitation (Mou et al., 2023). Its core idea is to learn

the feature weights through the network according to the LOSS,

which makes the Effective feature maps have bigger weights and the

ineffective or less effective feature maps have smaller weights to

train the model to achieve better results (Wang et al., 2022). The

structure is shown in Figure 6.

Considering Ftr as a simple convolution operation, denoted by

the equation V = [v1,v2,…,vc], where vc denotes the cth convolution
FIGURE 5

Convolutional neural network diagram.
6FIGURE

SE block structure.
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kernel, and the output is denoted by the equation Uc = [u1,u2,…,uc],

related formulas is shown in Equation 2:

uc = vc ∗X =o
C
0

s=1
vsc ∗ x

s (2)

where * denotes convolution, vc = ½v1c, v2c,…, vc}c�, X=[x1,x2,
…,xc].

Squeeze part: the Squeeze operation is to compress each feature

map after obtaining multiple feature maps using a global average

pooling operation, so that its C feature maps end up as a 1 × 1 × C

array of real numbers (S. et al., 2022).

Excitation section: a simple gating mechanism with sigmoid

activation is used to fully capture channel dependencies.

RELU function: this study uses the RELU function as the

activation function, which is a nonlinear function that enhances

the nonlinear relationship between the layers of the neural network

compared to traditional neural network activation functions, such

as the sigmoid function and the tanh function, which enhances the

network’s ability to learn and express itself, and more efficiently

Gradient descent and backpropagation, accelerate the training

speed of neural network, can effectively solve the problem of

gradient vanishing, will also make the output of neural network

has sparsity, reduce overfitting phenomenon (He et al., 2022).

ADAM Optimizer: In this study, network optimization is

performed using the ADAM optimizer, which is an adaptive

optimization algorithm that adjusts the learning rate based on

historical gradient information, and achieves faster convergence

and better generalization ability by calculating a different adaptive

learning rate for each parameter. It allows the neural network to use

a larger learning rate in the early stage of training to converge

quickly, and a smaller learning rate in the later stage of training to

find the minimum of the loss function more accurately, avoiding

overlearning the training data and thus reducing the risk of

overfitting. Compared to other optimization algorithms, such as

Adagrad and RMSProp, the Adam optimizer performs better when

dealing with non-smooth objective functions (Zhang et al., 2023).
3.3 Model evaluation indicators

The classification of maize varieties in this study is a multi-

category classification task with the same number of samples in

each category, the accuracy rate is applicable to a dataset with a

balanced distribution of categories, and is able to indicate the

number of correctly classified samples as a proportion of the total

number of samples. Therefore, this study employs Accuracy,

Precision, Recall, and F1 score as model evaluation metrics (Zhao,

2012). Their calculation formulas are shown in the Equations 3–6).

Where TP is the true example, FN is the false negative example, FP

is the false positive example and TN is the true negative example.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)
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Pr ecision =
TP

TP + FP
(4)

Re call =
TP

TP + FN
(5)

F1 = 2� Precision� Recall
Precision + Recall

(6)

In this study, cross entropy is used as the loss function of the

model, which focuses on the degree of discrepancy between the

predicted and true values of the model, and is fast to learn when the

model is less effective, it is suitable for multiclassification models

(Jamin and Humeau-Heurtier, 2020). The loss function formula is

shown in Equation 7.

Loss = −
1
NoioM

c=1yic log (pic) (7)
4 Results and analysis

4.1 Spectral preprocessing results

The band diagram of the original data and the four

preprocessing methods is shown in Figure 7. Spectral curves of

different colors in the figure represent different maize seeds.
4.2 Traditional machine learning model
classification

In order to compare the effectiveness of machine learning and

deep learning methods in the classification task of this study, the

spectral data were classified using machine learning models and

deep learning models respectively.The experimental results were

obtained by averaging using the cross-ten-fold method.

In both machine learning models, after using preprocessing it

was found that the preprocessing effect could not be better than the

original data. Firstly, the KNN model was used for classification,

and the results of k from 1 to 20 were tested under the treatments of

mean processing, maximum-minimum processing and logarithmic

processing, respectively, and ten experiments were conducted for

each k value, and the average value was taken for the comparison of

the results, and it was found that the classification effect was the best

at k=17. Among the three treatments, the logarithmic treatment is

the most effective and can reach 64.69% when using Mahalanobis

distance as a metric, which is higher than 62.28% for the mean

treatment and 58.94% for the max-min treatment. Secondly, using

ELM model for classification, the number of hidden layer nodes

were set to 100,150,200 and its accuracy was 80.46%, 87.06% and

83.17% respectively, so 150 was chosen as the number of hidden

layer nodes for the ELM model in this study. The summary results

are shown in the Table 2.
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4.3 Deep learning model classification

Next this study used a CNN model for classification. Firstly, the

effect of different preprocessing methods on the experiment is
TABLE 2 Different machine learning results.

Model Parameters Accuracy rate

KNN
K value = 17

Mahalanobis distance
62.28%

ELM
Hidden layer nodes =

150
87.06%
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investigated, using the original data and the data preprocessed by

three different methods in one layer of convolutional CNN for

comparison, respectively, it is found that the test set preprocessed

by SG smoothing method has the highest accuracy, which can reach

92.03%, higher than the 90.74% of the original data, which is an

enhancement of 1.29%, and all of them are far better than the

classification effect of KNN, which proves that SG smoothing

method for preprocessing can improve the accuracy of

classification, so this study chooses SG smoothing to preprocess

the original data. The preprocessing results are shown in Table 3.

When experimenting with different feature band selection

methods, it was found that the overall classification accuracy

decreased with the addition of feature band selection, where the
FIGURE 7

Spectral reflectance curve of maize. Representing the original image(RAW spectral curve), first-order derivative(1st Der preprocess spactral curve), second-
order derivative(2nd Der preprocess spectral curve), and spectral images after preprocessing operations such as SG(SmoothingSGolay preprocess spectral
curve), MF(MedianFilter preprocess spectral curve), MA(MovingAverage preprocess spectral curve), GF(GaussianFilter preprocess spectral curve), etc.
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highest classification accuracy was only 85.93% using SG preprocessing

and selecting feature bands using UVE, so this study used the full band

for classification experiments. This operation is directly learned from

the data by the machine, which reduces the influence caused by

possible human operations as a way to improve the reliability of

classification. Although it increases the complexity of data processing

and computation, with the continuous improvement of computer

computing power, the application of this method will be more

widely used, and compared with the traditional method of extracting

the characteristic wavelength, it reduces the manual workload,

simplifies the operation steps, and only needs to be pre-processed

directly to the data for classification experiments.

Next, the effect of different number of convolutional layers on

the experimental results was studied and compared, adding one

convolutional layer and one fully connected layer to classify the

preprocessed data, the accuracy of the test set increased to 93.14%,

proving that there was an increase in the classification accuracy at

two convolutional layers and two fully connected layers, which

improved the accuracy by 1.11%. Adding another convolutional

layer no longer improves the accuracy, so the CNN with two

convolutional layers and two fully connected layers is finally used

as the classification model. Finally, we explore the experimental

effect of improving the model. In this study, the SE Block module is

added to the CNN network, to systematically optimize this

parameter and assess its impact, we have conducted a ablation

study testing different reduction ratios (r = 4, 8, 16, 32), The results

indicate that a ratio of r=16 yielded the best performance for our

specific dataset and model architecture, The results are shown in

Table 4. The accuracy of using the CNN2c-SE test set can be

improved to 93.89%, which is 0.75% higher than the classification

accuracy of the model before improvement, proving that the

CNN2c-SE model can improve the classification accuracy of the
Frontiers in Plant Science 10
30 maize seeds in this study. Its confusion matrix results and loss

function are shown in Figure 8. The ablation results are shown

in Table 5.

In this study, 30 varieties of maize seeds are taken as the research

objects, and the classification effects of different models, different

preprocessing methods, different feature band selection methods and

the network model improvement are discussed. The results show that

the classification effect when using convolutional neural network is

much higher than that of KNN and ELM, and it can reach more than

90%, which proves that the classification model is feasible in this study,

and the classification effect is further improved after the data are

preprocessing and the network model is improved, the classification

effect is further improved, while the selection of feature bands reduces

the classification accuracy. It is proved that the use of full-band data

and the improvement of the network in this study is feasible and can

bring improvement to the research effect, therefore, it is determined

that the use of full-band data and the improved CNN2c-SE model can

effectively classify the 30 varieties of maize seeds in the study.
5 Summary

In this paper, hyperspectral imaging technology and CNN2c-SE

model are used to classify 30 varieties of corn seeds. In order to

explore the classification effect of the CNN model in the whole

wavelength range, avoid the loss of part of the information due to

the selection of special wavelengths, retain as much spectral

information as possible, and simplify the manual operation to

reduce the human influence, this study no longer carries out the

selection of feature wavelengths, and uses all the spectral data in 320

wavelength bands to conduct the classification experiments, and the

results show that the classification accuracy can reach 90.74% with
TABLE 4 SE module ablation experiment results.

Ratio Training set Test set Precision Recall F1 Time

4 95.32% ± 0.47% 92.85% ± 0.40% 91.31% ± 0.26% 90.52% ± 0.20% 90.90% ± 0.22% 100.52ms

8 95.40% ± 0.30% 93.74% ± 0.35% 94.65% ± 0.24% 93.48% ± 0.20% 94.06% ± 0.21% 102.73ms

16 95.55% ± 0.34% 93.89% ± 0.33% 94.37% ± 0.30% 93.72% ± 0.26% 94.04% ± 0.30% 105.34ms

32 95.38% ± 0.31% 92.72% ± 0.36% 92.42% ± 0.31% 93.42% ± 0.25% 92.92% ± 0.29% 110.67ms
Among these, metrics such as precision, recall, F1 score, and time are test set metrics. All metrics represent the average results obtained from 10-fold cross-validation. Positive and negative values
indicate the difference between the average and the maximum/minimum values.
TABLE 3 Results of different pretreatment.

Digital Training set Test set Precision Recall F1 Time

raw data 95.33% ± 0.52% 90.74% ± 0.36% 90.57% ± 0.84% 90.25% ± 0.77% 90.41% ± 0.79% 97.32ms

SG 94.07% ± 0.34% 92.03% ± 0.25% 90.52% ± 0.21% 90.34% ± 0.22% 90.34% ± 0.22% 100.14ms

MA 94.07% ± 0.43% 91.67% ± 0.38% 90.33% ± 0.46% 90.39% ± 0.47% 90.36% ± 0.46% 104.33ms

GF 95.09% ± 0.48% 91.48% ± 0.32% 90.17% ± 0.41% 90.24% ± 0.35% 90.21% ± 0.39% 102.54ms

MF 95.14% ± 0.40% 91.30% ± 0.36% 89.87% ± 0.54% 90.12% ± 0.48% 90.01% ± 0.52% 102.37ms
Among these, metrics such as precision, recall, F1 score, and time are test set metrics. All metrics represent the average results obtained from 10-fold cross-validation. Positive and negative values
indicate the difference between the average and the maximum/minimum values.
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FIGURE 8

Confusion matrix and loss function.
TABLE 5 Results of ablation experiments.

Mould Training set Test set Precision Recall F1 Time

CNN1c 94.07% ± 0.22% 92.03% ± 0.30% 90.52% ± 0.21% 90.34% ± 0.22% 90.34% ± 0.22% 100.14ms

CNN2c 95.54% ± 0.25% 93.14% ± 0.26% 92.56% ± 0.26% 91.62% ± 0.27% 92.09% ± 0.27% 101.63ms

CNN2c-SE 95.55% ± 0.34% 93.89% ± 0.33% 94.37% ± 0.30% 93.72% ± 0.26% 94.04% ± 0.30% 105.34ms
F
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Among these, metrics such as precision, recall, F1 score, and time are test set metrics. All metrics represent the average results obtained from 10-fold cross-validation. Positive and negative values
indicate the difference between the average and the maximum/minimum values.
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the unimproved CNN model without preprocessing and without

selecting the feature wavelengths. The results show that without

preprocessing and without selecting feature bands, the classification

accuracy of the unimproved CNNmodel can reach 90.74%, which is

able to meet the requirements of the classification task, and is much

higher than the accuracy of the machine learning model KNN

(64.69%) and the accuracy of the machine learning model ELM

(87.06%), and therefore, the CNN model is selected for

classification. Data preprocessing by SG smoothing method and

improving CNN model using CNN2c-SE model for classification

can reach 93.89% accuracy, which significantly improves the

accuracy of classification. Therefore, the use of CNN2c-SE can

realize the rapid nondestructive detection of corn varieties under

the full band.

Although our study included 30 varieties, all seeds were sourced

from a single geographic region and harvest year. This could potentially

limit the model’s generalizability to seeds grown under different

environmental conditions which can influence spectral profiles. We

addressed this in part through our cross-validation and independent

batch test. Future work will explicitly incorporate multi-origin and

multi-year data to build more robust models. Given the high

dimensionality of full-spectrum data relative to the sample size,

overfitting becomes a primary concern. We employ multiple

strategies to mitigate this risk: adopting a simple convolutional

neural network architecture rather than overly complex models;

incorporating Dropout and L1 regularization; implementing early

stopping based on a holdout validation set; and using 10-fold cross-

validation to report performance metrics. These measures ensure that

the reported performance is genuinely reliable and not attributable to

overfitting. This study utilized the spectral range of 380–1018 nm.

Future work will employ cameras with broader spectral ranges to

collect data and compare the effect of different spectral ranges on maize

seed variety classification accuracy, thereby enhancing experimental

scalability. To minimize spectral information loss, the full spectrum

was used. Subsequent studies will investigate a combined approach of

full-spectrum and feature wavelength selection to balance efficiency

with accuracy. And the collected data can also be used for subsequent

seed quality testing to guarantee seed quality.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Plant Science 12
Author contributions

LZ: Conceptualization, Data curation, Software, Validation,

Visualization, Writing – original draft, Writing – review & editing.

CL: Conceptualization, Formal Analysis, Project administration,

Writing – review & editing. JH: Conceptualization, Investigation,

Methodology, Supervision, Writing – review & editing. KS: Data

curation, Investigation, Methodology, Writing – review & editing.

YF: Investigation, Methodology, Resources, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. National Natural Science

Foundation of China (Grant No. 32360437).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
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