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Traditional farming methods, effective for generations, struggle to meet rising

global food demands due to limitations in productivity, efficiency, and

sustainability amid climate change and resource scarcity. Precision agriculture

presents a viable solution by optimizing resource use, enhancing efficiency, and

fostering sustainable practices through data-driven decision-making supported

by advanced sensors and Internet of Things (IoT) technologies. This review

examines various smart sensors used in precision agriculture, including soil

sensors for moisture, pH, and plant stress sensors etc. These sensors deliver

real-time data that enables informed decision-making, facilitating targeted

interventions like optimized irrigation, fertilization, and pest management.

Additionally, the review highlights the transformative role of IoT in precision

agriculture. The integration of sensor networks with IoT platforms allows for

remote monitoring, data analysis via artificial intelligence (AI) and machine

learning (ML), and automated control systems, enabling predictive analytics to

address challenges such as disease outbreaks and yield forecasting. However,

while precision agriculture offers significant benefits, it faces challenges including

high initial investment costs, complexities in data management, needs for

technical expertise, data security and privacy concerns, and issues with

connectivity in remote agricultural areas. Addressing these technological and

economic challenges is essential for maximizing the potential of precision

agriculture in enhancing global food security and sustainability. Therefore, in

this review we explore the latest trends, challenges, and opportunities associated

with IoT enabled smart sensors in precision agriculture.
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1 Introduction

Traditional agricultural practices have been utilized for

generations, leveraging local knowledge and techniques passed

down through families. This small-scale farming often includes

strategies such as crop rotation (Lundborg, 1990; Vasilescu et al.,

2023). However, a significant drawback of traditional agriculture is its

reliance on outdated methods, which can limit productivity and

efficiency. Farmers may experience challenges such as lower crop

yields stemming from rigid crop rotations and inadequate pest

management techniques (Jain, 2012). Moreover, traditional practices

are typically more vulnerable to climate variability, making crops

susceptible to extreme weather events and pest outbreaks. As a result,

these methods struggle to meet the growing demands of a global

population, prompting a need for more sustainable and productive

farming approaches (Janc et al., 2019). The shift to precision

agriculture represents a viable solution, enhancing farming efficiency

through technology and data analytics. This modern approach

optimizes resource use, increases yields, and promotes sustainability

(Charania and Li, 2020; Karunathilake et al., 2023) Precision

agriculture enables real-time monitoring and targeted interventions,

allowing farmers to better adapt to climate change and improve

economic viability while minimizing environmental impacts

compared to traditional practices (Lipper et al., 2014; Bogoviz et al.,

2023; Gemtou et al., 2024).

Precision agriculture represents a significant advancement in

the modern agricultural sector, highlighting the increasing need to

enhance food production efficiency while simultaneously reducing

environmental impacts (Is ̧ık et al., 2017; Evett et al., 2020; Wu et al.,

2022). As global populations rise and the demand for food escalates,

the agricultural landscape must adapt—this is where precision

agriculture comes into play, utilizing advanced technologies to

empower farmers and optimize operations (Afzaal et al., 2020;

Wanyama et al., 2024). At its core, precision agriculture focuses on

using data-driven approaches to inform agricultural practices. By

harnessing technologies like the Internet of Things (IoT), artificial

intelligence (AI), big data analytics, and cloud computing

(Rodrıǵuez et al., 2017; Abioye et al., 2020; Mansoor and Chung,

2024; Mansoor et al., 2024b; Sheikh et al., 2024), farmers can make

informed decisions that lead to better resource utilization and

improved crop yields. The benefits of precision agriculture extend

beyond simple yield enhancements; they also encompass significant

reductions in resource wastage, particularly water and fertilizers.

This not only conserves water but also ensures that crops receive the

precise amounts of water they need for optimal growth (Uztürk and

Büyüközkan, 2024).

Agriculture 1.0 was defined using basic tools, manual and animal

labor, and a heavy dependence on natural factors such as sunlight and

rainfall. Farmers depended on their understanding of the land,

weather patterns, and traditional farming techniques passed down

through generations, typically from fathers to sons. This period was

characterized by subsistence farming, where families grew just

enough food to meet their own needs. The Industrial Revolution

marked a significant transformation in agriculture, leading to what is

known as the “Green Revolution” due to substantial increases in crop
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yield and productivity (Gagliardi et al., 2022; Liu et al., 2021; Zhai

et al., 2020; Aggarwal and Verma, 2022). Agriculture 2.0 introduced

machinery like tractors and harvesters, replacing manual labor and

enhancing efficiency. This period also saw the rise of chemical

fertilizers and pesticides, which boosted crop yields but negatively

impacted the environment. Many innovations stemmed from the re-

adaptation of mechanical and chemical industries that had previously

catered to military needs during World War II. Additionally,

breeding programs expanded through public universities, research

institutes, and private companies (Aggarwal and Verma, 2022;

Gagliardi et al., 2022).

Agriculture 3.0, often referred to as precision agriculture,

utilized technology to enhance farming methods. It integrated

GPS technology, remote sensing, and Geographic Information

Systems (GIS) to gather data on soil conditions, crop health, and

weather patterns. This information was used to create detailed

maps, allowing for the targeted application of inputs like

fertilizers, pesticides, and irrigation, which reduced waste and

lessened environmental harm. During this period, public

awareness grew regarding the environmental consequences of

excessive fertilizer and chemical usage (Aggarwal and Verma,

2022; Gagliardi et al., 2022; Casavola and Gagliardi, 2012;

Nargotra and Khurjekar, 2020).

The evolution of precision agriculture is often framed within the

contexts of Agriculture 4.0 and Agriculture 5.0. Agriculture 4.0,

described as the “Digital Revolution in Agriculture,” focuses heavily

on the incorporation of sophisticated technologies to facilitate

efficient agricultural practices (Maffezzoli et al., 2024). Agriculture

4.0 significantly enhances precision agriculture through a variety of

technological advancements that improve efficiency, accuracy, and

sustainability in farming practices. By utilizing IoT sensors, farmers

can collect real-time data on conditions such as soil moisture,

temperature, and crop health, allowing for informed decision-

making (Zhai et al., 2020; Javaid et al., 2022). Additionally, big data

analytics helps identify trends and make predictive assessments that

optimize resource allocation. Drones equipped with multispectral

cameras provide high-resolution aerial imagery, enabling remote

monitoring of large fields and identifying areas that require

attention. AI and machine learning (ML) further aid precision

agriculture by analyzing data to predict outcomes and automate

decision-making processes related to irrigation, fertilization, and pest

control (Latino et al., 2022). Variable rate technology (VRT) allows

for tailored applications of inputs like fertilizers and pesticides based

on specific field characteristics, reducing waste and environmental

impact. GPS technology enhances precision mapping and guides

autonomous machinery, ensuring accurate operation in planting,

harvesting, and resource application (Latino et al., 2022; Tenreiro et

al., 2023). Moreover, Agriculture 4.0 fosters collaboration and

connectivity among farmers through shared data, promoting

integrated farming systems that improve overall management. By

optimizing resource use and reducing carbon footprints, these

advancements contribute to sustainable agricultural practices,

demonstrating how Agriculture 4.0 is revolutionizing the efficiency

and effectiveness of farming (Zambon et al., 2019; Zhai et al., 2020;

Javaid et al., 2022).
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Transitioning into Agriculture 5.0, we observe a paradigm shift

towards a more human-centric approach in agricultural innovation.

While Agriculture 4.0 emphasizes data and automation, Agriculture

5.0 combines technology with human ingenuity and sustainable

practices (Islam et al., 2024). It accommodates the use of advanced

IoTs, robotics, AI, and collaborative efforts between humans and

machines, promoting resilience within agricultural systems (Hurst

and Spiegal, 2023; Kazakis and Tsirliganis, 2023). Agriculture 5.0

seeks to foster a deeper collaboration among human expertise,

machine efficiency, and sustainable methodologies, creating a

synergistic effect where both humans and machines can

contribute to overcoming agricultural challenges (da Silveira and

Amaral, 2022; Ross and Maynard, 2021). For example, autonomous

agricultural equipment equipped with AI can work alongside

farmers, enhancing their capabilities in tasks such as planting,

harvesting, and pest control, while ensuring that these processes

are executed with minimal environmental impact. Moreover, this

evolution also accentuates the importance of sustainable practices

in agriculture (Pham et al., 2013; de la Parte et al., 2024; Popescu

et al., 2024). As awareness of environmental concerns grows, there

is an increasing emphasis on practices that not only increase yield

but also maintain ecological balance. By incorporating sustainable

techniques within the precision agriculture framework, farmers can

reduce their carbon footprint, enhance biodiversity, and maintain

healthier soils (Fraser and Campbell, 2019; Juwono et al., 2023; Ku

et al., 2023; Mansoor et al., 2024a). Precision agriculture is

transforming agriculture by integrating advanced technologies to

meet food production demands. This shift from a data-driven

model to a collaborative approach, incorporating multi-omics

data analysis, emphasizes the synergy between technology and

human expertise, fostering resilient agricultural systems (Abioye

et al., 2023). As stakeholders adopt these innovations, including the

integration of multi-omics insights, the agricultural sector is

increasingly poised to ensure food security and sustainability for

the growing global population.

As environmental concerns grow, there is an increasing

emphasis on agricultural practices that enhance yield while

maintaining ecological balance. By integrating sustainable

techniques within the precision agriculture framework, farmers

can effectively reduce their carbon footprint, bolster biodiversity,

and promote healthier soils (Konfo et al., 2024). Precision

agriculture optimizes resource use and minimizes waste, leading

to significant environmental benefits. For instance, reductions in

carbon emissions result from decreased fertilizer and pesticide

application, which not only lowers greenhouse gas emissions but

also enhances soil health, measurable through a soil health index

that reflects improved organic matter and nutrient availability

(Ahmad and Dar, 2020; Farooqui et al., 2024). Moreover,

precision irrigation enhances water use efficiency, conserving vital

resources and protecting local ecosystems. Collectively, these

metrics illustrate how precision agriculture fosters sustainable

farming methods and enhances overall environmental stewardship.

IoT is a global network that enables devices to operate, identify,

and monitor objects across the globe via the internet, connecting

virtual and physical entities through integrated information and
Frontiers in Plant Science 03
communication technologies (Pham et al., 2013; Abioye et al., 2023)

The main objective of smart farming is to enhance real-time

information sharing across autonomous networks using smart

sensors and internet connectivity. Various communication

solutions, such as wireless sensors and Radio-Frequency

Identification (RFID) technologies, support interconnectivity

among networks and devices (Juwono et al., 2023; Ku et al.,

2023). In smart farming, critical parameters are monitored to

improve yield, optimize environmental conditions, manage

irrigation, control pests and fertilizers, oversee soil health, and

enhance greenhouse production, all while reducing operational

costs (Evans, 2011; Gómez Romero et al., 2016; Nukala et al.,

2016; Fraser and Campbell, 2019; Mansoor et al., 2024a). These

technologies play a vital role within IoT platforms and are classified

into data acquisition, investigation, and evaluation categories

(Zecha et al., 2013; Freeman and Freeland, 2015; Balafoutis et al.,

2017). Countries such as those in Europe, Australia, and the USA

have embraced smart farming, alongside individual nations like

Italy (Borgogno Mondino and Gajetti, 2017), Brazil (Pivoto et al.,

2018), Ireland (Das et al., 2019), and India (Mogili and

Deepak, 2018).

We analyzed the existing literature on the application of IoT

platforms and wireless communication technologies across various

agricultural activities. At the outset of this review, relevant articles

were sourced from the Web of Science using keywords such as

“smart agriculture,” Agriculture 4.0, IoT, smart farming, digital

agriculture. This collection included 6000 recent articles

comprehensive bibliometric information, which was subsequently

used as input for VOS viewer (Software) analysis. This analysis

assesses the frequency of keyword usage and citation metrics in the

selected articles. Additionally, it visualizes the co-occurrence of

keywords and the co-citation of references (Figure 1).

To create the visual map, specific criteria were established, with

a minimum threshold of five co-occurrences for keywords. Out of a

total of 20767 keywords, only 1440 met this threshold criterion. The

keyword with greatest total link strength is selected. The size of each

node represents the frequency of co-occurrences of terms, while the

thickness of the connecting lines indicates how often these

keywords appear together (Figure 1). The connections illustrate

the relationships between items, and each node reflects the strength

of a particular item. Similarly, co-citation analysis evaluates how

frequently an article has been cited across the selected documents.

The visualization of the co-occurrence network of citations is

depicted in Figure 2.
2 Smart sensor trends

The modern agricultural industry has significant challenges that

need the use of innovative technologies. Agriculture, a vital

economic sector (Gollin, 2010) is being impacted by inflation,

rising labor costs (Ray et al., 2023), and climate change

(Outhwaite et al., 2022; Verma et al., 2022), resulting in

diminished agricultural yields. In this scenario, Precision

Agriculture emerges as a crucial solution. This sophisticated
frontiersin.org
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agricultural technique employs state-of-the-art technology to

enhance the amount and timing of inputs necessary for

cultivation, aiming to increase output and efficiency.

Sensors play a crucial role in agriculture, detecting environmental

changes and transmitting information to processors (Ullo and Sinha,

2021; Liu et al., 2022). In precision agriculture, smart sensors integrate

onboard computing capabilities, allowing them to process and analyze

data independently (Rahman et al., 2023; Rajak et al., 2023; Saqib et al.,

2024). These sensors are equipped with microprocessors that enable

local data processing, autonomous decision-making, and direct

communication with other devices via Wi-Fi, Bluetooth, or cellular

networks (Yin et al., 2021). This autonomy is particularly useful in

large-scale farming, where real-time data on soil conditions, plant

health, and climate can significantly influence management decisions.

Precision agriculture utilizes various sensor technologies to improve the

efficiency and productivity of agricultural practices. Soil sensors deliver

critical data on moisture levels, pH, temperature, nutrient content, and

electrical conductivity, guiding decisions related to irrigation,

fertilization, and planting (Roper et al., 2021). Plant health

monitoring employs sensors like leaf sensors, chlorophyll

fluorescence sensors, Normalized difference vegetation index (NDVI)

sensors, and hyperspectral sensors (Li et al., 2021), while environmental

sensors monitor atmospheric conditions that impact agricultural

decisions (Rahman et al., 2024; Yin et al., 2021; Han, 2024).

Specialized sensors, like yield monitors and water potential sensors,

offer precise data on crop yield and soil water availability, enhancing

farming operations (Table 1).

The cost of sensors is a crucial factor because it directly affects

farmers’ ability to invest in these technologies within their budget
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constraints. The cost-effectiveness of agriculture sensors depends on

their complexity and function (Saqib et al., 2020). Soil moisture

sensors range from $50 to $300, while weather stations can cost

$100 to several thousand dollars. Nutrient sensors typically range

from $500 to $2000. Pest and disease sensors, part of advanced

systems, also cost a few hundred to several thousand dollars.

Agricultural drones vary from $1,000 to $25,000 or more,

depending on features. Basic moisture sensors are inexpensive

and provide essential data for irrigation management, while

advanced sensors like electrical conductivity and nutrient sensors

require higher initial investments but enable precise fertilization

and soil health monitoring (Panagopoulos et al., 2014; Kiropoulos

et al., 2021; Guerrero et al., 2021). Specialized sensors, like yield

monitors and water potential sensors, help farmers assess crop

performance and optimize water use, leading to improved crop

quality and higher revenues. The return on investment of precision

agriculture sensors depends on the scale of the farming operation,

the type of sensor, and the specific needs of the farm. Low-cost

sensors offer immediate benefits, while high-end technologies

provide long-term savings through resource efficiency and yield

optimization. Farmers should make informed decisions about

which sensors align with their financial capabilities and

operational goals.
2.1 Soil sensors

A soil sensor is a device used to measure various physical and

chemical properties of soil, such as moisture content, temperature,
FIGURE 1

VOS viewer keyword co-occurrence network visualizes associations and clusters related to the “Internet of Things” (IoT). It features various color-
coded clusters representing interconnected concepts. The central term, “Internet of Things,” connects to multiple branches, highlighting its
relevance. Key clusters include the green cluster with “optimization” and “analytics,” focusing on data processing; the blue cluster with “security” and
“blockchain,” emphasizing secure data transactions; the yellow cluster with “machine learning,” showcasing AI advancements; and the red cluster
with “energy” and “sustainability,” addressing environmental concerns. Lines between keywords illustrate co-occurrence, helping identify trending
topics and common research areas in IoT. This image was created with VOSviewer.
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pH level, electrical conductivity, and nutrient concentration (Yin

et al., 2021). Traditional assessment methods, such as soil sampling

and laboratory analyses, often lack the necessary spatial and

temporal resolution. Therefore, there is an increasing demand for

innovative technologies capable of providing precise soil data to

enhance smart or precision agriculture systems (Zhang et al., 2024).

Recent developments in soil sensors for precision agriculture focus

on essential factors for monitoring plant growth cycles. Key

elements affecting crop productivity include soil moisture,

temperature, pH, nutrient levels, pests, and pollutants. Site-

specific management practices, like irrigation and fertilizer usage,

rely on data collected from various soil sensors (Kalita et al., 2017;

de Jong et al., 2020). A review of six types of soil sensors highlights

their technologies, designs, performance, advantages, and

disadvantages as well as also discusses research trends and

challenges in soil sensors and smart agriculture to guide

future studies.
Frontiers in Plant Science 05
2.2.1 Soil moisture sensors
Soil moisture is vital for assessing soil health and is key to plant

growth. It affects the soil’s physical and chemical properties, which in

turn impacts salt dissolution, the uptake of water and nutrients by

plants, and the activity of microorganisms in the soil (Zhang et al.,

2022). Keeping track of soil moisture levels is essential to ensure the

right conditions for agricultural production. Soil moisture sensors

help farmers measure the water content in the soil, allowing them to

determine the optimal timing and amount of irrigation needed for

healthy plant growth. Soil moisture measurement is crucial for

various applications, including agriculture and hydrological studies.

Techniques have been developed to measure soil moisture based on

accuracy, cost, and complexity (Zhang et al., 2017, 2024).

Soil moisture sensors are categorized based on the technology

they use to detect the moisture levels in the soil, and each type serves

specific purposes. Volumetric sensors, particularly capacitive soil

dielectric permittivity sensors, are common and appropriate for
FIGURE 2

Network visualization of keyword usage and co-citation metrics in the journals. (a) Network visualization of co-citation of references across different
journals, highlighting the interconnectedness of cited works. (b) Network visualization map illustrating international research in precision agriculture,
showcasing the global distribution and collaboration in this field.
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low-cost, wireless applications. Capacitive sensors measure the

capacitance between two plates, which changes with the soil’s

dielectric constant, influenced by its moisture content. These

sensors are preferred for their low power requirements and

minimal interference from soil salinity. Anindita Kalita’s study on

polymethyl methacrylate (PMMA) coated capacitive sensors for soil

moisture sensing suggests they could be a cost-effective and easy-to-

fabricate solution for real-time soil moisture monitoring in

agriculture. Despite initial sensitivity limitations, they could

optimize irrigation practices and crop productivity, highlighting

the need for further research (de la Parte et al., 2024).

Resistive sensors measure the electrical resistance between

electrodes inserted into the soil, but their accuracy can be

compromised by soil composition variations. Steven M. de Jong’s

study on Electrical Resistivity Tomography (ERT) showed it can

effectively monitor soil moisture dynamics under controlled field

conditions, but challenges remain due to environmental variables

and ERT’s limitations (de Jong et al., 2020).

Time Domain Reflectometry (TDR) and Time Domain

Transmissometer (TDT) sensors use electromagnetic waves to

measure moisture, however they are costly and complicated,

suitable for research and precision agricultural activities. Time-

Domain Reflectometry (TDR) is known for its precision and is

widely used in scientific research. Zhongdian and his research group

developed a TDR-based method for measuring soil erosion and soil

moisture content, demonstrating high accuracy and automation

potential. Further refinement and testing are suggested for wider

applicability (Zhang et al., 2022) Time Domain Transmissometer

(TDT) measures the transmission time of electromagnetic waves

through the soil, providing excellent accuracy and usefulness for

depth-specific moisture profiling. Raphaël Pederiva and colleagues

developed an on-chip terahertz (THz) characterization technique

for low-volume or thin-film materials. The method uses time-

domain transmissometer to determine the complex refractive

index of materials over a frequency range of hundreds of

gigahertz (GHz). The device uses ultrafast photoconductive

switches driven by a femtosecond laser, allowing for high

precision and minimal sample volume (Krzeminska et al., 2022).
Frontiers in Plant Science 06
Frequency Domain Reflectometry (FDR) uses the frequency

change of an electromagnetic wave to determine soil moisture,

making it effective for continuous monitoring across various soil

conditions. The study in the Gryteland catchment in Norway used

frequency domain reflectometry (FDR) and electrical resistivity

tomography (ERT) to monitor soil moisture and temperature

patterns. Key findings showed different patterns on north-facing

and south-facing slopes, impacting freezing and thawing cycles. The

study suggests that local terrain features, particularly slope aspects,

are crucial in hydrological processes and should be considered in

environmental and agricultural management strategies (Ma

et al., 2022).

Optical methods, such as visible and near-infrared

spectrophotometry, leverage the soil’s light absorption and

scattering properties, which change with moisture content. These

methods are advantageous for non-contact measurements and are

particularly useful in remote sensing applications (Abdulraheem

et al., 2023). The choice of a suitable technique depends on the

specific requirements of the application, including accuracy, cost

considerations, and environmental conditions. The use of Sentinel-

2 imagery and the optical trapezoid model (OPTRAM) to monitor

soil moisture variability in agricultural production stages. The

method, which uses Sentinel-2 imagery, is used to explore high-

resolution spatial heterogeneity of soil moisture and monitor

various stages of agricultural production (Hassanpour et al., 2020;

Stańczyk et al., 2023). The results show that the OPTRAM model

can produce accurate soil moisture estimates, improving irrigation

management and crop growth understanding, ultimately leading to

better water resource management in agriculture (Crioni

et al., 2025).

Precision irrigation uses soil moisture sensors to monitor real-

time water levels and optimize crop decisions. Sensors are deployed

at multiple depths to capture moisture variations across the root

zone (Bwambale et al., 2022). IoT-based systems analyze this data,

combining weather forecasts and crop models to determine precise

irrigation schedules. Automated systems adjust water application

based on the data, ensuring efficient water distribution and

preventing over- or under-irrigation (Kanimozhi and Vadivel,
TABLE 1 Sensors used in precision agriculture, detailing their types, functions, and applications.

Sensor/Device Type Function Application

DHT11 Temperature/Humidity Sensor Monitoring Temperature & Humidity Crop monitoring and environmental control

Capacitive Soil Moisture Sensor Soil Sensor Measuring Soil Moisture Irrigation management and soil health

BMP180 Pressure Sensor Weather Monitoring Weather prediction and climate analysis

LM35 Temperature Sensor Measuring Temperature Crop health monitoring

SI1145 Light Sensor Measuring UV Light & IR Plant growth monitoring

GPS Module GPS Sensor Location Tracking Precision farming

MQ-135 Air Quality Sensor Air Quality Monitoring Pest detection and environmental monitoring

Raspberry Pi IoT Platform Data Processing & Communication Data aggregation for multiple sensors

Arduino IoT Platform Data Acquisition Custom sensor integration

LoRaWAN Module Communication Device Long-range Data Transmission Remote data transmission for farms
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2024). This dynamic approach refines irrigation strategies,

conserving water, enhancing plant health, and improving

agricultural yields. For example, in Zhang et al. (2017), an IoT-

based soil monitoring system was implemented in a citrus orchard,

where real-time soil moisture data helped optimize fertilization and

irrigation strategies, leading to reduced water waste, improved

efficiency, and enhanced crop productivity (Zhang et al., 2017).

2.2.2 pH sensors
Soil pH is crucial for plant growth and fertilizer application

efficiency. Real-time soil pH sensors, integrated with precision

agriculture technologies, provide real-time feedback on soil

conditions. These sensors communicate with cloud-based

systems, enabling automated pH adjustments (Table 1) (Lavanaya

and Parameswari, 2018; Yin et al., 2021; Fauziah et al., 2024).

In addition to improving nutrient absorption, real-time pH

monitoring enhances soil microbial activity, which is vital for

organic matter decomposition and natural nitrogen fixation (Xu

et al., 2024). Studies have shown that microbial communities thrive

best within a neutral to slightly acidic pH range (5.5–7.5), where

beneficial bacteria such as nitrogen-fixing Rhizobia and phosphate-

solubilizing Pseudomonas species actively contribute to soil fertility

(Saeed et al., 2021). Savich investigated the application of soil

amendments combined with pH-responsive sensors in saline

soils, demonstrating that integrating real-time monitoring with

phosphogypsum and organic fertilizers significantly enhanced

CO2 assimilation and crop biomass (Savich et al., 2021). The

study emphasized the role of real-time pH adjustments in

improving photosynthetic activity, ultimately leading to higher

productivity in challenging soil conditions.

Furthermore, Zhao analyzed the long-term impact of no-till

(NT) agriculture on soil pH stability, revealing that real-time pH

monitoring could help mitigate soil acidification by optimizing

nitrogen application rates and periodic liming schedules. By

integrating pH sensors into conservation tillage practices, farmers

can maintain soil health while minimizing the negative effects of

prolonged nitrogen fertilization (Zhao et al., 2022).

In addition to chemical amendments, biological strategies for

pH optimization are gaining traction. Yaghoubi Khanghahi

highlighted the potential of plant growth-promoting bacteria

(PGPB) in modifying soil pH and improving nutrient availability.

Their research demonstrated that combining bio-inoculants with

real-time pH sensors allowed farmers to adjust pH levels in

response to microbial activity, reducing dependence on synthetic

fertilizers. The findings suggest that a holistic approach integrating

biological, chemical, and technological solutions can maximize soil

fertility and improve overall crop resilience (Yaghoubi Khanghahi

et al., 2021). A typical conductometric pH sensor consists of

conductivity electrodes and a thin layer of pH-responsive

sensing material.

The study presents a 3D macroporous graphene-functionalized

soil pH microsensor, fabricated on Si/SiO2 substrates with Au-

interdigitated electrodes. The sensor increases conductance with pH

increase, exhibiting a sensitivity of 97 mS/pH and a response of

650%. It detects soil pH variations in different soil samples, with
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sensitivity varying with gravimetric moisture contents (Penn and

Camberato, 2019; Siddiqui and Aslam, 2023). A potentiometric soil

pH sensor measures soil pH by detecting voltage difference between

reference and pH-sensitive electrodes. Accurate pH readings are

crucial for agriculture and research, requiring regular calibration

and calibration with known solutions (Siddiqui and Aslam, 2023).

Matthew McCole, presents a potentiometric measurement system

for on-site soil pH and potassium levels detection (McCole et al.,

2023). The system uses 3D printed ion-selective electrodes, a PSoC4

microcontroller, and a reference electrode for ion activity. The

system is portable, user-friendly, and efficient, enabling real-time

soil analysis and precise management of soil nutrients, potentially

leading to better crop yields and reduced environmental impact

(Childs et al., 2000). Ion-selective pH sensors (ISE) measure

hydrogen ions in solutions or soil, providing accurate real-time

data through a glass electrode and reference electrode, requiring

regular calibration. An alternative method is the ion-selective field-

effect transistor (ISFET), which includes a drain, source, and gate

electrode. pH-sensitive materials like silicon oxide, silicon nitride,

and aluminum oxide are coated on the gate electrode. When in

contact with the solution, these materials induce changes in gate

voltage, affecting the current between the source and drain

electrodes based on pH variations. Due to the complexity of soil,

ISFETs must be well-protected to avoid damage during insertion

(Shylendra et al., 2025).

2.2.3 Temperature sensors
Soil temperature, which varies between -10 and 50°C, is a

significant determinant in agriculture, affecting germination,

flowering, decomposition, and multiple phases of plant

development (Bollero et al., 1996; Onwuka and Mang, 2018). It

profoundly affects the physical, chemical, and microbiological

processes in soil that are critical for plant growth. Soil temperature

is influenced by factors such as specific heat capacity, thermal

conductivity, bulk density, texture, water content, and surface

coverings (Passioura, 2002; Hatfield and Prueger, 2015).

A soil temperature sensor operates by converting temperature

fluctuations into an electrical signal, which is then processed into

digital data. Various types of electronic temperature sensors suitable

for this application include thermocouples, resistance temperature

detectors (RTDs), thermistors, and semiconductor-based sensors

(Davaji et al., 2017). Thermocouples function by generating a

voltage due to the temperature difference at the junction of two

dissimilar metals, typically iron and constantan. They are

recognized for their rapid response and automation capabilities,

making them appropriate for monitoring soil temperature. Specially

calibrated cables are essential for long-distance measurements.

Resistance temperature detectors (RTDs) are composed of a

conductive metal wire coiled around a non-conductive core,

offering high accuracy and stability. They display increased

delicacy relative to thermocouples and show a reduced response

time to temperature changes due to their protective housing (Kool

et al., 2016).

Thermistors, made from ceramic or polymer materials,

demonstrate a change in resistance when subjected to temperature
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fluctuations. They provide high resolution due to significant thermal

coefficients; however, they require complex calibration because of

their non-linear response. The resolution of this issue can be achieved

(Xu et al., 2023). Kool and colleagues’ study highlights the importance

of accurately measuring soil temperature gradients to determine soil

heat and latent heat fluxes. They used thermistors to monitor soil

temperature, but found discrepancies of 0.2°C under uniform

conditions. To improve accuracy, they developed an in-situ

calibration technique that minimized uncertainty to 0.05°C. This

allowed for more precise measurements in a vineyard under arid

conditions and showed stable thermistor offsets over a five-year

period (Kool et al., 2016).

2.2.4 Nutrient sensors
Nutrient sensors for soil are advanced tools critical for precision

agriculture, designed to identify and measure essential soil nutrients,

including nitrogen, phosphorus, and potassium. These sensors

operate on various principles, including ion-selective electrodes,

optical sensors, electrochemical sensors, and spectroscopy, each

tailored for specific nutrient types (Burton et al., 2020a). They

enable real-time monitoring and mapping of soil nutrient levels,

thus facilitating precise and efficient fertilizer application. This

approach improves crop yields and optimizes fertilizer use,

reducing costs and minimizing environmental impacts by

preventing nutrient runoff, thus preserving soil health and

protecting water quality. Nutrient sensors represent a significant

advancement in agricultural technology, enhancing sustainable

farming practices by optimizing plant growth and resource

management (Horváth et al., 2024).

Various nutrient sensors have been developed for agricultural

applications, each demonstrating unique capabilities and stages of

development (Burton et al., 2020b). The Visible-Near Infrared (Vis-

NIR) sensor is currently in use in both laboratory and field settings,

effectively measuring soil pH and nutrient levels. Similarly, the

Visible-Mid Infrared (Vis-MIR) sensor has shown promise in

laboratory settings for assessing soil mineral nitrogen content

(Ehsani et al., 1999, 2001). The Attenuated Total Reflectance

(ATR) spectroscopy sensor operates in both laboratory and field

environments, focusing on soil nutrient analysis (Christy et al., 2003).

Raman spectroscopy, used in laboratory and field applications,

is effective for evaluating various soil nutrients (Jahn et al., 2006).

Additionally, Ion Selective Electrodes (ISE) and Ion-Selective Field

Effect Transistors (ISFET) are utilized in laboratory and field

settings for measuring soil pH and nutrients (Sudduth et al.,

1997; Adamchuk et al., 2005; Aravamudhan and Bhansali, 2008;

van Staden et al., 2018). Each sensor type contributes vital insights

into soil health and nutrient management, enhancing precision

agriculture practices (Burton et al., 2020b).

2.2.5 Electrical conductivity sensors
Soil electrical conductivity (EC) is a crucial indicator in

agriculture, as high soil salinity can negatively impact crop

growth and reduce agricultural productivity. Soil EC is directly

related to the types and concentrations of ions in soil moisture, such

as sodium, chloride, calcium, and magnesium, which enhance the
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soil’s electrical conductivity. Higher moisture levels generally

increase soil EC because they facilitate the movement of soluble

salts (Liu et al., 2024). The physical composition of the soil,

including its clay, sand, and organic matter content, can also

influence EC readings. Clay soils typically have higher EC values

due to their finer texture and greater cation exchange capacity.

Techniques for measuring soil EC include laboratory

measurements, in-situ sensors, and remote sensing techniques.

High levels of soil salinity can lead to osmotic stress, which can

cause dehydration and stunted growth, and ion toxicity, which can

accumulate in plant tissues to toxic levels. To mitigate these effects,

various soil amendments and management practices may be

employed, such as leaching, which involves applying ample

irrigation water to flush out excess salts from the root zone, soil

amendments, and crop selection and rotation (Wang et al., 2025).

2.2.6 Soil pollutant sensors
Soil pollutant sensors are essential tools in modern agriculture and

environmental management, designed to detect and measure harmful

substances in the soil, such as heavy metals, pesticides, herbicides, and

industrial pollutants. Excessive application of agrochemicals, industrial

activities, and household waste contribute significantly to soil health

degradation, crop safety concerns, and environmental quality

deterioration. Advanced technologies, including electrochemical

detection, optical sensing, and biosensing, enable precise and real-

time monitoring of soil pollutants (Garlando et al., 2020).

Electrochemical sensors quantify changes in soil conductivity due to

specific contaminants, while optical sensors utilize light interactions to

identify pollutants, such as organic chemicals. Biosensors employ

biological components, including enzymes or microbes, for the

precise detection of toxic substances. These sensors are employed in

multiple applications, such as monitoring soil health in agriculture,

optimizing fertilizer use, ensuring environmental compliance, and

aiding soil remediation efforts. Soil pollutant sensors enable the early

identification of contaminants, which mitigates risks to human health,

protects ecosystems, and promotes sustainable agricultural practices.

Their role is essential in addressing soil contamination problems

(Garnaik and Nayak, 2024).
2.3 Insect/pest sensors

Plant diseases and pests can significantly compromise the quality

and yield of agricultural products by inflicting damage on plant roots,

bulbs, and aerial parts through their feeding behaviors. Common soil-

dwelling pests that contribute to agricultural loss include various

species such as beetles, moths, butterflies, and flies. To facilitate the

detection of these soil pests, a range of advanced methodologies has

been developed. Optoelectronic sensors harness light-based

technologies to identify changes in environmental conditions

attributable to pest activity. Acoustic sensors capture the sounds

generated by pests while they interact with plants or soil, thereby

enabling their identification. Impedance sensors assess variations in

electrical resistance that may indicate the presence of pests or their

feeding behavior (Stańczyk et al., 2023).
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Furthermore, nanostructured biosensors provide a highly sensitive

detection mechanism by utilizing nanomaterials to enhance their

capabilities, facilitating the identification of specific pests or biological

markers associated with pest-induced damage. These innovative

detection methodologies furnish agricultural practitioners with

essential tools to monitor and manage pest populations more

effectively, ultimately contributing to the protection of crop health

and the enhancement of agricultural productivity.

Fazeel Ahmed Khan and his team have developed an IoT-based

system for environmental monitoring and disease detection in

smart greenhouses. The system monitors the greenhouse’s

environment, manages water irrigation, collects images, and

predicts plant diseases using leaf datasets. The research validates

the proposed system design and architecture for IoT-based

monitoring and water irrigation management. The system also

enhances greenhouse management and supports agribusinesses

and farmers by transitioning traditional greenhouses into smart

greenhouses, thereby automating and improving agricultural

practices using advanced technologies (Khan et al., 2020).
2.4 Plant stress sensors

Plant stress refers to the negative impact on plant growth and

development due to biotic and abiotic factors, such as pests, diseases,

drought, salinity, and extreme temperatures (Bashir et al., 2021).

Understanding and managing plant stress is crucial for improving

crop yield and sustainability, especially in the face of global challenges

like climate change and food security issues (Galieni et al., 2021;

Mansoor et al., 2022). Plant stress mechanisms involve complex

physiological and biochemical processes, triggering a cascade of

molecular and cellular responses. Techniques for detecting plant

stress include remote sensing, thermal imaging, fluorescence imaging,

and spectroscopy and hyperspectral imaging. Types of stress sensors

include moisture sensors, nutrient sensors, soil salinity sensors, gas

exchange sensors, and chlorophyll fluorescence sensors. Moisture

sensors monitor soil and plant water status, while nutrient sensors

detect deficiencies or toxicities of nutrients. Soil salinity sensors

measure soil salinity, which can adversely affect plant growth due to

osmotic stress and nutrient imbalance (Yin et al., 2021). Gas exchange

sensors measure photosynthesis and respiration rates, indicating plant

health and stress levels. Future directions in plant stress detection

include Positron Emission Tomography (PET) and advanced

metabolomics, which offer deeper insights into physiological and

metabolic changes occurring in plants under stress (Galieni et al.,

2021). These technologies provide more detailed data and non-

destructive ways to monitor plants, facilitating timely interventions

and better management practices to enhance plant health and crop

yields (Yin et al., 2021; Galieni et al., 2021).
2.5 Positional and motion sensors

Motion and positional sensors are critical tools in precision

agriculture, enhancing the implementation of farming practices.
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These sensors enable precise navigation and guidance of

agricultural machinery, ensuring the accurate execution of tasks

such as planting, fertilizing, and harvesting. The integration of GPS

and IoT technologies facilitates the creation of comprehensive field

maps, the tracking of machinery movement, and the enhancement

of automated systems, including tractors and drones (Pandey et al.,

2021; Getahun et al., 2024). The application of variable rate

technology (VRT) through these sensors allows farmers to apply

precise amounts of seeds, fertilizers, or water in designated areas,

thus reducing waste and improving efficiency (He, 2023). They

enhance sustainability by reducing fuel consumption, limiting

chemical overuse, and decreasing environmental impact. Motion

and positional sensors are critical for tracking livestock movement

and protecting valuable agricultural assets (Tenreiro et al., 2023).

The ability to provide real-time feedback and data-driven insights

allows farmers to make informed decisions, enhancing productivity,

lowering costs, and fostering sustainable agricultural practices.

With the advancement of precision agriculture, these sensors play

a crucial role in improving accuracy and efficiency in modern

farming practices (Nackley et al., 2021; Rajak et al., 2023; Naidu

et al., 2024).
3 IoT and sensor integration in
precision agriculture

The IoT is revolutionizing agriculture by enabling smarter

resource management and enhancing productivity. IoT-based

systems use intelligent sensors to monitor field conditions in real-

time, transmitting data via wireless networks to cloud platforms for

precise irrigation adjustments (Rajak et al., 2023). IoT integration

with mobile internet allows farmers to remotely monitor and control

agricultural systems using mobile applications. Combining IoT with

agricultural robotics advances intelligent farming practices, with

robots autonomously performing tasks like seeding, fertilization,

and pesticide application (Botta et al., 2022).

IoT platforms also facilitate environmental monitoring and

early pest detection, with tools like video surveillance and pest-

monitoring lamps enabling remote observation of pest activity.

Meteorological data collected by IoT sensors aids in forecasting

agricultural disasters. However, challenges like high costs,

inconsistent standards, and limited compatibility across platforms

hinder widespread IoT adoption in agriculture. Addressing these

barriers by developing unified data standards and cost-effective IoT

products can enhance agricultural productivity, expand benefits to

more farmers, and promote sustainable agricultural development

(Xu et al., 2022).

The integration of IoT with diverse sensor technologies allows

for continuous, real-time monitoring of various agricultural

parameters such as soil moisture, pH levels, temperature, nutrient

status, and plant health (Marios and Georgiou, 2017; Khanal et al.,

2020). These sensors collect data at high temporal and spatial

resolutions, providing a detailed view of the field conditions. The

real-time data transmission enabled by IoT technologies ensures

immediate availability of information, which is crucial for timely
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decision-making and intervention (Wang et al., 2011). IoT-enabled

sensor networks offer the capability for remote monitoring of

agricultural fields, reducing the necessity for physical presence

(Srbinovska et al., 2015).

Through web interfaces and mobile applications, farmers can

access data collected by sensors from anywhere, enabling them to

monitor and manage their fields more effectively. This remote

accessibility is particularly beneficial for large-scale operations or

farms located in hard-to-reach areas (Hashim et al., 2015).

Integrating sensors with IoT in agriculture offers significant

benefits, including process automation driven by real-time data.

For instance, irrigation systems can adjust automatically based on

soil moisture levels, while fertilizer and pesticide applications can be

tailored to the specific needs of different crop zones, reducing waste

and environmental impact (Liang and Shah, 2023). IoT platforms

aggregate data from various sensors, enabling advanced analytics

and predictive insights that help farmers anticipate issues like pest

outbreaks and plant diseases. Furthermore, ML algorithms optimize

resource allocation and crop management by leveraging historical

and real-time data (Mowla et al., 2023).

The scalable design of IoT platform allows for the integration of

diverse sensors and data sources, ensuring adaptability to changing

farm conditions and facilitating a flexible management approach in

precision agriculture (Sharma and Shivandu, 2024). The use of IoT

technology in precision agriculture is markedly reducing human

involvement while improving operability and system stability. IoT-

driven smart irrigation systems, autonomous machinery, and real-

time soil and crop monitoring facilitate efficient resource utilization

and enhanced productivity. Soil moisture sensors and automated

irrigation optimize water consumption, while GPS-guided tractors,

drones, and robotic seeders execute field operations autonomously

(Shantaram et al., 2005; Pratama et al., 2021).

AI-driven predictive maintenance guarantees equipment

dependability by identifying problems before to failure (McCole

et al., 2023). Furthermore, cloud-based farm management systems

provide farmers with remote monitoring and decision-making

capabilities, including real-time sensor data, weather predictions,

and AI analytics. The use of 5G, LoRaWAN, and edge computing

enhances system connectivity and reactivity, allowing fully

autonomous, data-driven agriculture. These developments result

in reduced labor costs, optimal resource use, and improved

sustainability, guaranteeing that the future of precision agriculture

is more efficient, resilient, and ecologically sustainable (Liu

et al., 2024).
4 Smart sensors and IoT in precision
agriculture

Modern technology is important in maintaining agricultural

productivity even with limited resources. It helps farmers monitor

climate changes, track soil nutrient levels, manage water usage,

and streamline data handling in farming operations. Various

sensors and computing tools are now available to collect and

manage data from cropping systems to make timely and
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informed decisions (Ali et al., 2023). Various digital platforms

and camera-based monitoring systems empower farmers to

observe their fields remotely. IoT applications and smart farming

techniques enhance decision-making by simulating and forecasting

crop yields under anticipated climatic conditions (Akbar et al.,

2024). Moreover, advanced neural networks and simulation models

have reliable decision support for farming activities (Figure 3). By

integrating these technologies, farmers can optimize resource use,

minimize waste, and enhance crop health and productivity,

contributing to more sustainable and efficient farming systems

(Mana et al., 2024).

Precision farming uses IoT-enabled sensors to monitor and

manage agricultural operations with the highest accuracy. Various

sensors embedded in fields collect data on soil moisture, pH,

temperature, and nutrient levels. These sensors provide farmers

with real-time data for the health and needs of various crops. The

biggest advantage of this granular data includes the optimization of

irrigation, fertilization, and pest control resulting in increased

yields and reduced resource wastage (Sishodia et al., 2020). For

example, soil moisture sensors can help farmers determine the

optimal watering schedule, preventing over-irrigation and

conserving water (Figure 4). Similarly, nutrient sensors analyse

soil composition to recommend precise fertilizer applications,

reducing costs and minimizing environmental runoff. Precision

farming technologies also give variable-rate application of inputs

which helps to treat specific areas of a field differently based on their

unique conditions. This level of customization improves

productivity while promoting environmental sustainability

(Sishodia et al., 2020).

IoT and sensors have transformed livestock management by

continuous monitoring of animal health, behavior, and the

environment. Some wearable sensors on livestock collect data on

body temperature, movement, heart rate, and feeding habits. This

information is then transmitted to centralized platforms where

farmers can identify health issues or various irregularities (Isaac,

2021; Monteiro et al., 2021). For example, sensors can detect signs

of illness, such as reduced movement or abnormal temperature.

Additionally, sensors monitor reproductive cycles showing

timely breeding and increasing reproduction rates. IoT platforms

can also track the location and activity of grazing animals, reducing

the risk of theft and improving pasture management. This

combination of real-time monitoring and predictive analytics

helps increase animal welfare, boost productivity, and reduce

economic losses (Davaji et al., 2017).
4.1 Smart irrigation systems

Water is one of the most critical resources in agriculture and its

efficient use is important in growing scarcity (Mansoor and Chung,

2024). IoT-enabled smart irrigation systems provide a solution by

automating water distribution based on real-time data. Sensors

placed in fields monitor soil moisture, weather conditions, and crop

water requirements. These systems then analyze the data to activate

irrigation systems only when needed. Smart irrigation reduces water
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consumption by preventing overwatering and ensuring even

distribution (Figure 4). For example, drip irrigation systems

equipped with IoT sensors deliver water directly to plant roots.

This minimizes evaporation and runoff (Math et al., 2018).

Water scarcity is a significant challenge for global agriculture,

necessitating the adoption of smart irrigation systems that utilize

real-time data from soil moisture sensors, weather conditions, and

crop water requirements to optimize water use efficiency (Ingrao

et al., 2023) Traditional irrigation methods often lead to water

wastage, uneven distribution, and reduced crop yields due to

inefficient scheduling and overwatering. IoT-enabled smart

irrigation systems integrate wireless sensors, cloud computing,

and AI to automate water distribution based on real-time
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environmental conditions, ensuring crops receive the optimal

amount of water while minimizing losses due to evaporation and

runoff (Koul et al., 2022).

Soil moisture sensors provide continuous feedback on volumetric

water content (VWC) and soil matric potential. Weather monitoring

systems allow dynamic adjustments to irrigation schedules, while

evapotranspiration models predict water loss through transpiration

and soil evaporation. The optimization of smart irrigation is achieved

through various adaptive techniques that integrate sensor data with

AI-based decision models (Veeramanju, 2024).

Real-time irrigation optimization has been shown to yield

significant water savings while improving crop productivity.

Studies indicate that smart irrigation can reduce agricultural
FIGURE 4

It explains a five-stage process for implementing smart irrigation systems. The figure depicts a sequential workflow for establishing effective smart
irrigation. This involves: (a) Evaluating site-specific irrigation requirements. (b) Selecting appropriate sensors and controllers. (c) Providing training on
system operation. (d) Continuously checking system performance. (e) Making necessary adjustments for efficiency. Each stage is visually represented
by a potted plant progressing in growth, illustrating the impact of effective irrigation management.
FIGURE 3

Figure highlights key applications including resource efficacy, data-driven decision-making, livestock monitoring, precision farming, pest and disease
management, smart irrigation, greenhouse automation, and supply chain optimization. Sustainability, cost reduction, yield improvement and
resource management can enhance productivity, sustainably manage re-sources, and improve agricultural efficiency.
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water consumption by 30-50% compared to conventional practices

(Mallareddy et al., 2023). AI-based irrigation scheduling improves

water-use efficiency (WUE) by up to 60%, ensuring that each unit of

water applied contributes maximally to crop growth and yield.

Smart irrigation also prevents soil erosion and nutrient leaching,

preserving soil fertility and long-term sustainability (Alharbi

et al., 2024).

As technology continues to evolve, the future of smart irrigation

systems looks promising. Innovations such as AI and ML are

expected to enhance the predictive capabilities of these systems,

allowing for even more precise irrigation management (Figure 4).

Additionally, the increasing focus on sustainable agriculture and

water conservation will likely drive the adoption of smart irrigation

technologies worldwide (Zhang et al., 2021; Sharma and Shivandu,

2024). Smart irrigation systems are transforming the way we

manage water resources in agriculture. By leveraging technology

to optimize irrigation practices, these systems not only conserve

water but also promote sustainable farming and enhance crop

productivity. As we move towards a future where water scarcity is

a growing concern, the importance of smart irrigation systems will

only continue to rise. The effectiveness of these systems hinges on

various sensor types, each with a specific function, and application.

As water scarcity, drought, climate changes intensify, the

importance of smart sensor systems will continue to grow.
4.2 Pest and disease management

Crop losses due to pests and diseases are a significant challenge

for farmers. Various sensors installed in fields can detect

environmental conditions that favour pest infestations or disease

outbreaks, such as high humidity or temperature fluctuations

(Wang et al., 2024). Additionally, advanced imaging sensors can

identify early signs of plant stress or damage caused by pests. IoT

networks connect these sensors to central platforms which analyze

the data and send alerts to farmers. This early warning system leads

to targeted interventions, such as applying pesticides or introducing

biological control agents (Wang et al., 2024).

Crop health sensors and smart pest traps provide real-time data

on plant stress and pest populations, allowing for early detection of

pests and diseases. This data is analyzed using advanced algorithms

and farm management software, enabling predictive analytics and

threshold alerts for timely intervention. By targeting specific problem

areas, farmers can implement focused control measures, thereby

minimizing the use of chemical pesticides. This approach supports

Integrated Pest Management (IPM) and enhances sustainable

farming practices, ultimately promoting healthier crops and

reducing environmental impact. IPM emphasizes the use of

monitoring and assessment to identify pest species and their life

cycles, enabling targeted and timely interventions. IPM utilizes a mix

of biological control, cultural practices, habitat manipulation, and,

when necessary, chemical methods in a way that minimizes risks to

human health, beneficial organisms, and the environment. By

fostering ecological balance and promoting natural pest resistance,

IPM seeks to reduce reliance on chemical pesticides and improve the
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long-term health of ecosystems. This approach is particularly relevant

in agriculture but is also applicable in urban settings and natural

resource management, making it a valuable framework for

sustainable pest management (Khan et al., 2020; Chin et al., 2023).
4.3 Supply chain optimization

The benefits of IoT in agriculture extend beyond the farm,

revolutionizing the agricultural supply chain. Smart sensors track

the journey of produce from the field to the market. This ensures

quality control and traceability. For example, temperature and

humidity sensors in storage and transport facilities monitor

conditions for perishable goods that reduce spoilage and ensure

freshness. IoT platforms also provide real-time updates on the

location and status of shipments thereby improving delivery times.

This transparency is best for consumer confidence in the safety and

authenticity of agricultural products (Shiyale et al., 2020). Supply

chain optimization is a critical aspect of modern business strategy,

aiming to enhance efficiency and effectiveness from raw material

procurement to product delivery to the end customer. The initial step

in this process involves comprehensive data collection and analysis,

which provides a foundation for understanding current performance.

By gathering data from procurement, production, inventory, and

distribution, businesses can identify bottlenecks and areas for

improvement. Utilizing advanced analytics tools aids in diagnosing

issues and setting the stage for continuous improvement. Following

data analysis, accurate demand forecasting becomes imperative.

Leveraging historical data alongside market trends allows

organizations to predict market demand with greater precision,

thereby reducing the likelihood of overproduction or shortages.

Advanced forecasting methods enable dynamic adjustments,

informed by real-time data, ensuring that businesses remain agile

and responsive to market changes.

Inventory management plays a crucial role in supply chain

optimization by balancing stock levels to avoid both overstock and

stockouts. Techniques such as just-in-time (JIT) inventory or safety

stock calculations help maintain this balance. Efficient inventory

management reduces holding costs and improves cash flow while

ensuring product availability. In optimizing supplier relationships,

businesses need to focus on collaboration and effective

communication. Building strong relationships with suppliers is

essential for negotiation and reliability. Developing supplier

scorecards can help evaluate performance, fostering a culture of

continuous improvement and innovation. These relationships are

pivotal in creating a resilient supply chain. Process and workflow

improvements are another critical component. Streamlining

operations by eliminating waste and redundancies can significantly

enhance productivity.

Methodologies such as Lean, Six Sigma, or Total Quality

Management (TQM) are valuable in identifying inefficiencies and

driving process enhancements, ultimately leading to increased

operational efficiency. Technology integration offers transformative

potential in supply chain optimization. Implementing supply chain

management software and automation tools can increase visibility and
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coordination across the supply chain. Emerging technologies like the

Internet of Things (IoT), Artificial Intelligence (AI), and Blockchain

provide opportunities for real-time tracking and secure transactions,

further enhancing supply chain efficiency.

Logistics and distribution optimization are vital for minimizing

costs and delivery times. By planning optimal transportation routes

and utilizing distribution centers strategically, businesses can ensure

rapid delivery and reduced logistics costs. This logistical agility is

crucial in today’s fast-paced business environment, where customer

expectations for quick delivery are high (Figure 5).

Risk management and contingency planning are essential for

safeguarding against potential disruptions such as supplier failures or

demand fluctuations. Identifying these risks and developing

comprehensive contingency plans ensures that businesses can

maintain operations even in adverse conditions, thereby increasing

supply chain resilience. Finally, performance measurement and

continuous improvement are necessary to sustain supply chain

optimization. Establishing key performance indicators (KPIs)

provides a benchmark for evaluating success. Regularly reviewing

and refining strategies based on KPI performance ensures that the

supply chain remains efficient and aligned with organizational goals.

Engaging in cross-functional collaboration and enhancing

communication channels within the organization further supports

this ongoing optimization process. Supply chain optimization is

essential for businesses aiming to enhance their operational

efficiency and customer satisfaction. By implementing effective

strategies and leveraging technology, organizations can navigate the

complexities of supply chains and achieve sustainable growth.

Continuous assessment and adaptation to market changes will

further ensure that supply chains remain resilient and competitive.
4.4 Greenhouse automation

IoT-enabled sensors and actuators automate greenhouse

operations for the optimal conditions for plant growth. Sensors

monitor variables such as temperature, humidity, light intensity, and
Frontiers in Plant Science 13
carbon dioxide levels, while actuators adjust ventilation, heating, and

lighting systems accordingly. For example, if sensors detect high

temperatures, IoT platforms can automatically activate cooling fans

or open vents to regulate the environment (Mishra et al., 2025). This

level of automation reduces labour costs, maintains consistent growing

conditions, and maximizes yields. Greenhouse automation is an

innovative approach in modern agriculture that significantly

enhances productivity and sustainability by integrating various

technologies. Greenhouse automation offers significant advantages

for modern agriculture, leading to enhanced environmental control,

increased labor efficiency, data-driven decision-making, optimized

resource utilization, and ultimately, higher crop yields (Shiyale et al.,

2020; Acharya et al., 2022). This technology leverages several key

components, including climate control systems for precise

management of temperature, humidity, and ventilation, automated

irrigation systems for efficient water distribution, sophisticated lighting

systems to optimize light exposure, and automated nutrient delivery

systems for precise feeding (Kumar et al., 2022a). Additionally, a

network of monitoring sensors collects real-time data on various

environmental parameters and plant health.

4.4.1 Climate control systems

i. Temperature Management: These systems employ heaters,

coolers, and fans to maintain optimal temperature ranges

for plant growth.

ii. Humidity Control: By utilizing dehumidifiers and

humidifiers, these systems help maintain appropriate

moisture levels, which is vital for plant health.

iii. Ventilation: Automated vents and exhaust systems regulate

airflow, preventing overheating and ensuring fresh

air circulation.
4.4.2 Automated irrigation systems

i. Drip or Sprinkler Irrigation: These systems allow for

precise water delivery directly to plant roots or over crop

surfaces, minimizing water waste.
FIGURE 5

This figure illustrates key strategies for optimizing supply chains, which include (a), Identification of need (b) Inventory Management, (c) Demand
Forecasting, (d) Supplier Relationship Management, (e) Logistics Optimization, (f) Technology Integration, (g) addressing challenges and (h) achieve
growth by enhance overall supply chain performance. Each strategy plays a critical role in enhancing efficiency, reducing costs, and improving
customer satisfaction within the supply chain framework.
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ii. Soil Moisture Sensors: These sensors monitor soil moisture

levels, enabling irrigation to be scheduled based on real-

time data rather than a fixed schedule.
4.4.3 Sophisticated lighting systems

i. LEDs and Grow Lights: These specialized lights provide

optimal wavelengths for photosynthesis and can be

controlled to simulate natural light cycles, promoting

healthy plant growth.

ii. Light Intensity and Duration Control: Automated systems

adjust light intensity and exposure duration depending on

plant needs and growth stages.
4.4.4 Nutrient delivery systems

i. Fertigation Systems: These automatically mix fertilizers

with irrigation water, ensuring plants receive nutrients in

the right proportions at the right times.

ii. Monitoring Nutrient Levels: Sensors can measure nutrient

concentrations in the substrate, allowing for adjustments

in real-time.
4.4.5 Monitoring sensors and data collection

i. Environmental Sensors: These devices collect data on

temperature, humidity, light intensity, CO2 levels, and

more, providing a comprehensive view of the

greenhouse environment.

ii. Plant Health Monitoring: Sensors can track plant growth

metrics and detect stress indicators, allowing for

timely interventions.
4.4.6 Implementation strategy

i. Needs Assessment: Conduct a thorough evaluation of the

greenhouse’s current capabilities and limitations to

determine which automation features are most beneficial.

ii. Technology Selection: Choose technologies and systems

that align with the greenhouse’s specific requirements

while ensuring compatibility with existing infrastructures.
Successful greenhouse automation hinges on an iterative

process of evaluation and adaptation. Regular data analysis allows

growers to identify areas for improvement, streamline processes,

and incorporate new technologies as they become available (Kumar

et al., 2022b). This ongoing commitment to enhancement not only

maximizes immediate benefits but also prepares the greenhouse for

future challenges and opportunities. By understanding and

implementing these components and strategies, growers can fully

realize the advantages of greenhouse automation, ensuring more

efficient and sustainable agricultural practices (Acharya et al., 2022).

Greenhouse automation presents numerous opportunities for

innovation and growth in the agricultural sector. By embracing
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these technologies, farmers can enhance productivity, reduce costs,

and contribute to a more sustainable food system. As the industry

continues to evolve, those who invest in automation will likely lead

the way in meeting the challenges of modern agriculture.
4.5 Decision-making, resource efficiency
and sustainability

The vast amounts of data generated by sensors and IoT devices

enable advanced analytics and AI applications in agriculture.

Farmers can use this to make informed decisions about planting

schedules, crop rotation, and resource allocation. Predictive

analytics can forecast weather patterns, pest outbreaks, and

market trends. AI-driven systems analyze historical and real-time

data to recommend optimal farming practices (Qazi et al., 2022).

For example, ML algorithms can identify patterns in soil and

weather data to suggest the best times for planting and

harvesting. Precision agriculture leverages technology and data

analysis to improve decision-making, optimize resource efficiency,

and enhance sustainability. By using various tools, such as satellite

imagery, drones, sensors, and weather stations, farmers can collect

vast amounts of data regarding crop health, soil conditions, and

environmental factors. This data-driven insight allows for informed

decisions that can lead to more effective management practices,

reducing uncertainty and risk in agricultural operations (Xu et al.,

2022; Hoque and Padhiary, 2024).

One of the key aspects of decision-making in precision

agriculture is predictive analytics. Advanced algorithms and

machine learning techniques can analyze historical and real-time

data to forecast crop yields, pest outbreaks, and potential disease

occurrences. This predictive capability enables farmers to take

proactive management steps, thereby enhancing crop resilience.

Additionally, precision agriculture promotes customized farming

practices by employing variable rate technology (VRT), which allow

farmers to tailor inputs—such as seeds, fertilizers, and pesticides—

to specific areas in their fields based on need rather than applying

uniform treatments across the entire area (Bwambale et al., 2022;

Kanimozhi and Vadivel, 2024). Resource efficiency is another

significant advantage of precision agriculture. By facilitating

precise application of fertilizers, pesticides, and water, farmers can

optimize input costs while maximizing effectiveness. For example,

by using soil moisture sensors and automated irrigation systems,

water can be applied only where and when necessary, which is

crucial especially in regions facing water scarcity. Moreover, GPS-

guided machinery ensures accurate planting, cultivation, and

harvesting, thereby reducing fuel consumption and wear on

equipment. This attention to resource management not only saves

costs but also minimizes environmental impacts, particularly

regarding chemical runoff and waste (Pandey et al., 2021; Xu

et al., 2022; Naidu et al., 2024). Sustainability is a fundamental

principle underlying precision agriculture. The approach

encourages practices that enhance soil health, such as cover

cropping, reduced tillage, and crop rotation, all while monitoring

soil conditions over time (Ullo and Sinha, 2021; Liu et al., 2022).
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This focus on maintaining soil quality is crucial for long-term

agricultural productivity. Moreover, by precisely targeting resource

applications, farmers can significantly decrease the use of pesticides

and herbicides, helping preserve local ecosystems and promote

biodiversity within farming landscapes. This sustainable approach

can effectively lower the carbon footprint of agricultural operations,

as efficient resource use translates to reduced greenhouse gas

emissions (Ehsani et al., 1999).
5 Integration of IoT sensors with AI
and ML

The integration of IoT sensors with AI and ML is

revolutionizing precision agriculture by enabling real-time data

collection, predictive analytics, and automated decision-making

(Zhang et al., 2021; Hoque and Padhiary, 2024). IoT sensors

deployed across agricultural fields continuously monitor and

transmit real-time environmental and crop data, collecting

information on key parameters such as soil moisture and pH,

temperature and humidity, light intensity, leaf chlorophyll

content, and NDVI. These sensors communicate data wirelessly

via long range wide area network (LoRaWAN), 5G, or satellite

networks, feeding it into AI-powered cloud platforms for further

processing (Xu et al., 2022).

AI algorithms process the collected data to identify trends,

detect anomalies, and make predictions. Key applications include

ML for crop yield prediction, pest and disease detection, smart

irrigation and water management, VRT, and decision tree

algorithms for resource allocation and precision farming (He,

2023). Real-time decision-making and automated control are

possible through AI and ML models continuously analyzing IoT

data, allowing automated farming systems to activate smart

irrigation systems, adjust greenhouse ventilation and temperature

for ideal plant growth conditions, deploy autonomous drones or

robotic sprayers for targeted pesticide and nutrient application, and

send alerts and recommendations to farmers through mobile

applications (Bwambale et al., 2022; Kanimozhi and Vadivel, 2024).

The benefits of IoT-AI integration in precision agriculture

include higher crop yields, reduced costs, sustainability, labor

efficiency, and climate adaptation. Accurate yield predictions and

early disease detection lead to improved productivity, while

precision application of resources lowers input costs. Data-driven

decisions reduce waste and promote environmentally friendly

farming. Automated AI-powered systems minimize manual

intervention, and predictive models help farmers adjust to

changing weather patterns proactively (Veeramanju, 2024).
6 Challenges associated with
precision agriculture

The integration of advanced technologies such as AI, sensors

and the IoT in agriculture presents transformative opportunities to

enhance productivity and sustainability. However, the adoption of
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smart farming faces significant barriers that affect its successful

implementation. A major obstacle in smart farming is the unclear

ownership of data generated by precision agricultural technologies.

Farmers produce substantial volumes of data, yet uncertainties

regarding data rights, sharing practices, and usage often lead to

conflicts and reluctance in adopting new technologies. Additionally,

the heterogeneous nature of agricultural data necessitates

proprietary software platforms for storage and transfer, further

complicating ownership disputes (Wiseman et al., 2019;

Demestichas et al., 2020; Saiz-Rubio and Rovira-Más, 2020).

Increased connectivity in smart farming makes systems

vulnerable to cyberattacks, including data breaches and

unauthorized control of autonomous machinery. Hijacking

autonomous systems such as drones, robotic weeders, or tractors

can result in severe disruptions, financial losses, and crop damage.

The need for robust cybersecurity frameworks to safeguard data

privacy and system integrity is critical to building trust and

resilience in smart farming (Barreto and Amaral, 2018; Liu et al.,

2020). The implementation of smart sensors also comes with a

range of challenges that can hinder their effectiveness (Liu

et al., 2020).

In soil monitoring, the use of soil moisture sensors and NPK

sensors offers critical insights into soil health and fertility. Yet, the

high initial costs of these sensors can be a significant barrier for

farmers, especially small-scale operators. Additionally, NPK sensors

often face challenges related to data accuracy, which can be

compromised by issues like improper calibration. This often

necessitates additional time and resources for regular calibration

and maintenance to ensure reliable readings (Gupta et al., 2020).

When it comes to crop health monitoring, multispectral cameras

and drone sensors provide powerful tools for assessing crop

conditions. However, the complexities associated with data

processing and interpretation can overwhelm users without

adequate training or resources. Moreover, consistent data

management is essential to derive actionable insights; the lack of

systematic approaches can lead to missed opportunities for

improving crop yields. Weather tracking relies on weather

stations and atmospheric sensors, yet this area faces its own set of

challenges. These systems often rely on external data sources which

can introduce errors into the data if the sources are unreliable.

Furthermore, establishing infrastructure for atmospheric sensors in

remote areas can be logistically difficult, potentially limiting the

coverage and reliability of weather monitoring in sparsely populated

agricultural regions (Koduru and Koduru, 2022; Otieno, 2023).

In livestock management, GPS collars and RFID tags enhance

tracking and monitoring of animals, contributing to better herd

management. However, concerns around privacy and data security

can pose significant hurdles for adoption (Akhigbe et al., 2021).

Additionally, the reliance on battery-operated devices like RFID

tags presents challenges, as the effectiveness of these systems is

contingent upon maintaining adequate battery life to ensure

uninterrupted functionality. Supply chain efficiency through IoT-

enabled GPS devices and environmental sensors contributes to

streamlined operations, yet the complexity of data integration can

complicate the process (Tan and Sidhu, 2022). Farmers and supply
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chain managers must navigate various data formats and platforms,

which can lead to inconsistencies and inefficiencies. The potential

for system failures in environmental sensors is another concern, as

these interruptions can adversely affect operational continuity and

productivity (Kleinschmidt et al., 2019; Sarma and Barbhuiya, 2019;

de Araujo Zanella et al., 2020; Van Der Linden et al., 2020;

Yazdinejad et al., 2021; McCaig et al., 2023).

Lastly, in the realm of sustainability, smart irrigation sensors

and pH sensors represent vital innovations for resource

management. However, they require ongoing maintenance and

calibration to operate effectively, which can be a significant

commitment for farmers. Additionally, there can be resistance

from traditional farming practices, where growers may be hesitant

to adopt new technologies without clear demonstrable benefits

(Klerkx et al., 2019; Koduru and Koduru, 2022; Tiwari et al.,

2024). Implementing IoT platforms in agriculture demands

adaptability to local conditions and often requires substantial

customization, making it resource-intensive. Farmers with limited

technical expertise may find these systems difficult to manage,

adding to implementation challenges (Gupta et al., 2020).

Farmers must navigate varying regional regulations on data

protection, environmental standards, and agricultural practices.

Meeting these complex legal requirements can be burdensome,

especially in the absence of clear guidelines (Ali et al., 2024). The

absence of uniform standards for smart farming technologies

creates compatibility issues among devices and platforms,

hindering seamless integration (Koduru and Koduru, 2022;

Otieno, 2023).

The initial investment and operational expenses for advanced

technologies can be prohibitive, particularly for small-scale farmers.

Limited access to affordable options exacerbates the digital divide,

leaving smaller operators at a disadvantage compared to large-scale

enterprises [129]. Many farmers hesitate to adopt smart

technologies due to uncertain profitability. The lack of concrete

evidence demonstrating financial benefits further delays widespread

adoption (Tiwari et al., 2024). Limited power availability and poor

connectivity in rural regions pose additional barriers to using smart

farming tools. Advances in wireless power transfer and on-site

energy generation are needed to mitigate these limitations. A

significant knowledge gap exists between farmers and the

technologies they are expected to use. While farmers possess

practical expertise, many lack the specialized training required to

operate sophisticated tools driven by AI and big data (Liu

et al., 2020).

Ongoing education and skill development are essential for the

effective use of smart farming systems. However, limited access to

training programs in rural areas, along with a growing demand for

skilled labor, may displace traditional agricultural workers (McCaig

et al., 2023). A significant challenge with IoT devices used in smart

farming is their outdoor installation, which exposes them to harsh

environmental conditions such as heavy rain, dust, wind, and extreme

temperatures. These adverse conditions can lead to unforeseen

mechanical failures in sophisticated devices. To address this issue,

manufacturers of IoT devices should utilize materials that can endure

these environmental stresses, thereby enhancing the durability and
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reliability of their products for consistent performance over time (Rajak

et al., 2023).Environmental exposure causes gradual sensor

deterioration due to factors like corrosion and dust, reducing data

accuracy. The limited computational capacity of agricultural sensors

also makes implementing robust security measures challenging,

increasing the system’s vulnerability to attacks such as sleep

deprivation, which depletes battery life and disrupts data collection

(Sarma and Barbhuiya, 2019).

Many farmers resist adopting new technologies due to

adherence to traditional practices and skepticism about their

benefits. Demonstrating tangible, long-term advantages is key to

overcoming this reluctance (Van Der Linden et al., 2020) about data

privacy, security, and the reliability of AI-driven decisions

discourage full engagement with smart farming systems. Building

trust through transparency and reliable performance is essential for

widespread adoption (Kleinschmidt et al., 2019; de Araujo Zanella

et al., 2020; Yazdinejad et al., 2021). Enhancing transparency and

reliable performance is crucial for building trust in smart farming

systems, particularly regarding data privacy, security, and AI-driven

decision-making. Transparency involves clearly communicating

how data is collected, stored, and utilized, allowing farmers to

understand what information is being gathered and how it benefits

their operations. By openly sharing details about algorithms used to

make decisions, alongside robust data privacy policies that comply

with regulations, stakeholders can alleviate concerns about data

misuse and unauthorized access. This clarity ensures that farmers

feel more secure in adopting smart farming technologies, knowing

that their data is managed responsibly (Supplementary Table S1).

Reliable performance, on the other hand, relates to the consistent

accuracy and effectiveness of AI-driven technologies in improving

agricultural outcomes. When farmers observe tangible benefits,

such as increased yields or resource optimization, they are more

likely to trust these systems (Koduru and Koduru, 2022). Providing

access to performance metrics and establishing feedback

mechanisms helps demonstrate the technology’s effectiveness and

fosters a sense of partnership. Furthermore, offering training and

support empowers farmers to use these systems competently, while

creating community platforms for sharing experiences enhances

mutual trust. Together, these elements form a foundation for

widespread adoption of smart farming technologies, ultimately

leading to more sustainable agricultural practices (Klerkx et al.,

2019). While smart farming offers immense potential to

revolutionize agriculture, its success depends on addressing a

diverse array of technical, regulatory, economic, educational, and

social barriers. Collaborative efforts among stakeholders—including

farmers, technology developers, policymakers, and researchers—are

vital to creating sustainable and inclusive smart farming ecosystems.
7 Conclusion and future

Precision agriculture, driven by the integration of sensors and

the IoT, presents a transformative opportunity to enhance

agricultural productivity and sustainability. In this review we

explored the diverse array of sensor technologies currently
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employed in precision agriculture. While offering significant

benefits, such as optimized resource utilization, increased yields,

and improved decision-making, the widespread adoption of these

technologies faces considerable challenges. High initial investment

costs, the need for specialized expertise, data security concerns, and

infrastructural limitations in rural areas pose significant barriers.

Furthermore, the lack of clear data ownership guidelines and

compatibility issues among various sensor systems and platforms

hinder seamless integration.

Future for precision agriculture are promising, particularly given

the ongoing advancements in AI, machine learning, and sensor

technologies. Digital twins, virtual farm replicas powered by IoT

data, will enable farmers to test strategies and optimize operations in

simulated environments. Sustainability will be a central focus, with

IoT technologies promoting carbon sequestration, minimizing

resource waste, and leveraging renewable energy-powered devices.

Improved connectivity through 5G networks and low power wide

area network (LPWANs) will bridge gaps in rural and remote

farming areas, enabling real-time monitoring and control of

agricultural systems. Customizable and scalable IoT platforms will

enhance affordability and usability, expanding accessibility. The

development of more affordable and user-friendly systems, coupled

with targeted training and education programs for farmers, will be

crucial in expanding the reach and impact of precision agriculture.

Addressing the data security concerns through robust cybersecurity

frameworks and establishing clear data ownership protocols will

foster trust and encourage wider adoption.

Practical applications in real production include automated smart

irrigation, AI-powered crop health monitoring and pest control,

autonomous farming equipment, supply chain optimization

through blockchain and IoT, and greenhouse automation for

controlled environments. These technologies provide significant

economic advantages by increasing productivity, reducing input

costs, and enhancing efficiency. Farmers can maximize yields while

minimizing operational expenses, resulting in higher profitability and

greater resilience to market fluctuations. Precision farming

techniques reduce waste, conserve natural resources, and lower the

carbon footprint, making agriculture more sustainable and

environmentally friendly. Collaborative efforts among technology

developers, policymakers, and farmers are essential to scaling up

adoption of precision agriculture. Investment in affordable, user-

friendly IoT solutions, standardization of sensor technologies, and

education initiatives will ensure broader accessibility to smart

farming practices. Establishing robust cybersecurity frameworks

and clear data ownership policies will foster trust and encourage

more widespread implementation.
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