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based on YOLOv10n-MCS
Niman Li1,2, Xingguang Dong1*, Yongqing Wu2*, Luming Tian1,
Ying Zhang1, Hongliang Huo1, Dan Qi1, Jiayu Xu1, Chao Liu1,
Zhiyan Chen2 and Yulu Mou1

1Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of
Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs,
Xingcheng, China, 2School of Software, Liaoning Technical University, Huludao, China
Introduction: Wild Ussurian Pear germplasm resource has rich genetic diversity,

which is the basis for genetic improvement of pear varieties. Accurately and

efficiently identifying wild Ussurian Pear accession is a prerequisite for

germplasm conservation and utilization.

Methods:We proposed YOLOv10n-MCS, an improvedmodel featuring: (1) Mixed

Local Channel Attention (MLCA) module for enhanced feature extraction, (2)

Simplified Spatial Pyramid Pooling-Fast (SimSPPF) for multi-scale feature

capture, and (3) C2f_SCConv backbone to reduce computational redundancy.

The model was trained on a self-made dataset of 16,079 wild Ussurian Pear

leaves images.

Results: Experiment results demonstrate that the precision, recall, mAP50,

parameters, FLOPs, and model size of YOLOv10n-MCS reached 97.7(95% CI:

97.18 to 98.16)%, 93.5(95% CI: 92.57 to 94.36)%, 98.8(95% CI: 98.57 to 99.03)%,

2.52M, 8.2G, and 5.4MB, respectively. The precision, recall, and mAP50 are

significant improved of 2.9%, 2.3%, and 1.5% respectively over the YOLOv10n

model (p<0.05). Comparative experiments confirmed its advantages in precision,

model complexity, model size, and other aspects.

Discussion: This lightweight model enables real-time wild Ussurian Pear

identification in natural environments, providing technical support for

germplasm conservation and crop variety identification.
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1 Introduction

The genus Pear is a worldwide fruit tree, which originated in the

mountainous areas of southwest China in the Tertiary Period, and

evolved into two groups of Occidental and Oriental pear,

respectively and there are 22 primary Pyrus species recognized by

the academic community (Bell, 1996). China is the center of origin

of oriental pear, with 13 native species, including 5 basic species: P.

pyrifolia, P. ussuriensis, P. pashia, P. betulaefolia, and P. calleryana

(Pu and Wang, 1963). Among them, the Ussurian Pear (P.

ussuriensis) is the most cold-tolerant species, with wild and

cultivated types, which grow in northeast China, northern Hebei

and northern Shaanxi, and also have wild distribution in the

Russian Far East and North Korea. Northeast China is the

characteristic production area of Ussurian Pear, and there are

more than 150 cultivated varieties. The fruit of Ussurian Pear is

generally small, round, rich in flavor, and eaten after ripening and

softening, The representative varieties are Nanguo, Jingbai, Anli

and so on, which are deeply loved by the local people. It is generally

thought that the cultivars have been domesticated from wild

species, and the diversity of wild species is more abundant, and

our study of the genetic diversity of the Ussurian Pear has reached

the same conclusion (Cao et al., 2012). The wild Ussurian Pear are

mainly used as rootstocks in Northeast China, and their ecological

and production value are far from being explored. Due to its long-

term wild state, wild Ussurian Pear has strong adaptability to the

environment, and the diversity of biological and botanical

characteristics is also very rich, and these excellent traits are

important gene sources for cultivated species improvement

(Thakur et al., 2024).

Accurate and rapid identification of germplasm resources is the

foundation for their preservation, research, and utilization.

However, due to interspecific and intraspecific hybridization

being the main mode of pear evolution, pear populations are

large and with a high degree of heterozygosity. This leads to

significant difficulties in identifying and classifying pear

germplasm resources (Xue et al., 2017). Morphological

identification is the most fundamental and important method for

pear variety identification (Zhang et al., 2022a). The staff identifies

pear varieties by analyzing their phenotypic characteristics, such as

observing leaf morphology, branch color, and fruit characteristics.

However, due to the susceptibility of this method to individual plant

development, environmental conditions, cultivation measures, and

human factors, the identification process is time-consuming and

has a high error rate (Adão et al., 2025). With the rapid

development of high-throughput sequencing and molecular

biology techniques, pear varieties can be accurately identified

using molecular markers. However, this method has limitations

such as cumbersome operation, time-consuming, and high cost due

to the high requirements for operating steps and equipment (Liu

et al., 2024).

In the study of plant variety identification, leaves are easier to

collect than other organs. The leaves of any plant have their unique

characteristics, such as leaf shape, leaf bases, leaf apex, and leaf

margin (Wang et al., 2023b). Pear leaves are mainly divided into
Frontiers in Plant Science 02
circular, ovate, elliptical, lanceolate, and lobed shapes. Among them,

ovate shaped resources are the most abundant. Leaf base refers to

the proximal part of the leaf near the stem. The shapes of pear leaf

bases are mainly divided into narrow cuneate, cuneate, broad

cuneate, round, truncate, and cordate, with broad cuneate being

the most prevalent. The shapes of pear leaf apices can be divided

into acuminate, obtuse, acute, and caudate. And the leaf margins

can be classified as entire, crenate, obtusely serrate, sharply serrate,

and doubly serrate. In recent years, with the advancement of

agricultural informatization, computer vision, machine learning

and other technologies are widely used different areas in

agriculture (Zhang et al., 2022b). More and more researchers are

focusing on image classification and pattern recognition, and using

them to quickly identify and classify plant leaves. Pan et al. (2024)

used four deep learning networks, including GoogleNet, ResNet50,

ResNet101, and VGG16, to identify and classify the leaf images of

23 wild grapes, and realized automatic real-time identification of

wild grapes. Chen et al. (2022) used Convolutional Neural Network

(CNN) to extract features and classify 30 types of apple leaves,

significantly improving the classification accuracy of apple cultivars.

Wei Tan et al. (2018) proposed a CNN model called the D-leaf

model, which utilizes leaf vein morphometric to classify plant

species. And three different CNN models (pre trained AlexNet,

fine-tuned AlexNet, and D-Leaf) were used to preprocess the leaf

images and extract feature information. To classify the extracted

features, five machine learning approaches were utilized, including

Artificial Neural Networks (ANN), Support Vector Machines

(SVM), and CNN, etc. The results confirm that deep learning-

based models are effective for tasks such as leaf recognition and

variety categorization.

Although the use of deep learning for leaf classification is highly

effective, many of the models used have limitations such as complex

network structures and large parameter quantities, which consume

a significant amount of computing resources and can only be

deployed on the server side (Fang et al., 2019), resulting in

certain limitations in leaf recognition tasks.”You Only Look

Once” (YOLO) target detection algorithm is the leading single-

stage algorithm in deep learning object detection methods (Adarsh

et al., 2020). It can predict the category and location of objects in the

image by recognizing image information. In recent years, with the

continuous innovation of the YOLO series (Redmon, 2016;

Redmon and Farhadi, 2017; Farhadi and Redmon, 2018;

Bochkovskiy et al., 2020; Jocher, 2020; Li et al., 2022; Wang et al.,

2023a; Jocher et al., 2023; Wang et al., 2025a, 2024), its performance

has gradually improved, achieving a balance between recognition

speed and accuracy. It has better performance and application

prospects in quickly identifying plant leaves and deploying on

mobile devices. The leaves of different pear varieties have

differences in shape, leaf apex, and leaf margin. These differences

can serve as the basis for YOLO classification. And the

characteristics of pear leaves are highly matched with YOLO’s

advantages such as real-time detection and multi-target

processing. YOLO can extract these morphological features

through CNN and learn the differentiation patterns of different

varieties through training. In addition, by optimizing the model,
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YOLO’s potential for using leaves to classify pear varieties can be

fully utilized. Many recent studies have demonstrated that YOLO

series target detection algorithms can effectively achieve leaf species

identification and classification tasks. Yang et al. (2024) used the

YOLOX algorithm and combined with the self-made tea bud

dataset to establish a tea bud classification model, which can

recognize and classify four types of tea buds, in which the

recognition accuracy for the yellow mountain species could reach

90.54%. Niu et al. (2024) improved the YOLOv8 algorithm and

proposed a lightweight YOLOv8-EFS model based on their own

soybean seedlings and weeds image datasets, which can quickly and

accurately identify multiple weed species and provide support for

intelligent weed control in farmland management and

unmanned farms.

The rapid and accurate identification of wild pear accessions

relies on high-quality datasets and high-performance detection

models. Although significant achievements have been made in

plant species recognition through existing research, there are still

problems such as excessive consumption of computational

resources and low recognition accuracy in the models used for

recognition. In addition, there is currently limited research on the

identification of wild pear germplasm resource, and there have been

no reports on the use of target detection algorithms to identify wild

pear leaves for variety classification.

In response to the above issues, this article takes wild Ussurian

Pear leaves in natural environments as the research object, selects

YOLOv10n as the baseline model, and proposes an improved leaves

recognition and classification model YOLOv10n-MCS. Firstly, this

study selected 30 wild Ussurian Pear accessions and constructed a

dataset of wild Ussurian Pear leaves images. Collect 500–600 images

for each accession to meet the requirements of multitasking

classification. Secondly, based on YOLOv10n, Mixed Local
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Channel Attention (MLCA) module, C2f SCConv module, and

Simplified Spatial Pyramid Pooling - Fast (SimSPPF) module were

introduced to enhance the feature extraction ability of the model,

reduced computational redundancy, and improve detection

performance. Finally, the improved model was combined with the

dataset of wild Ussurian Pear leaves images to establish a

recognition and classification model covering 30 wild Ussurian

Pear accessions, thereby achieving automatic recognition and

classification of wild Ussurian Pear leaves. This study can

accurately and quickly identify and classify wild Ussurian Pear

leaves, reducing complicated labor costs. In addition, it also

provides reference for the protection, utilization, classification

research of wild pear germplasm resource, as well as the

identification of other crop varieties.
2 Materials and methods

2.1 Image data acquisition

Training a wild pear leaves recognition and classification model

requires inputting a large number of pear leaves images as sample

images into the network model. Model accuracy and efficiency are

significantly influenced by the quality of the dataset used for

training. We selected 30 wild Ussurian Pear accessions as the

research objects for wild pear leaves recognition and classification,

and constructed a natural background wild Ussurian Pear leaves

images dataset. The origin of these 30 wild Ussurian Pear accessions

is shown in Figure 1. We went to the “National Pear and Apple

Germplasm Resources Repository (Xingcheng)” to collect images of

wild Ussurian Pear leaves. From October 5th to 12th, 2024, use a

high-resolution camera on the same mobile phone to capture
FIGURE 1

Map of the origin regions of wild Ussurian Pear accession.
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images of leaves from 30 wild pear resources under natural

conditions. Place the camera at a distance of 20-60cm from the

leaves, take frontal images of adult leaves, and try to ensure that the

leaf shape, leaf bases, leaf apex, and leaf margin in the image are

clear as much as possible. Collect 500–600 images for each variety.

The collected images are in JPG format with a resolution of 3072

pixels × 4096 pixels. The weather conditions during the shooting

process include sunny, cloudy, and rainy days. There are both

shooting under soft lighting and strong afternoon lighting, covering

various common weather conditions and natural lighting

conditions, increasing the diversity and complexity of the natural

conditions in which the leaves are located. Ultimately, a total of

16997 images of wild Ussurian Pear leaves were obtained through

this process, and some of the leaves images dataset samples are

shown in Figure 2.
2.2 Images annotation and dataset
construction

After careful manual screening, images with clear leaves

contours and textures were selected, and a total of 16079 leaves
Frontiers in Plant Science 04
images were used to form the wild Ussurian Pear leaves images

dataset. Manually annotate the filtered leaves images using

LabelImg software(can be in https://github.com/HumanSignal/

labelImgget). Use the “Create RectBox” function in the software

to annotate each leaf based on the minimum external rectangle in

the image, and select a category for the annotated blade, such

as’Sunwu-3’. In order to avoid inaccurate labeling and blurry targets

affecting the quality and performance of the model, blades with an

occlusion area exceeding 70% are not labeled. And ensure that the

rectangular box contains as little background as possible to improve

recognition precision. The annotation example is shown in Image 1

of the Supplementary File. Subsequently, after annotation, obtain

the.txt format annotation file required by YOLO. This file contains

the category of the blade, the coordinates x and y of the center point

of the rectangle, the width w and height h relative to the image Fan

et al. (2024). To facilitate model training and evaluation, the wild

Ussurian Pear leaves images dataset was randomly split into

training, validation, and test sets in a 7:2:1 ratio, corresponding to

model training, validation, and prediction tasks, respectively. The

training set contained 11243 samples, the validation set included

3371 samples, and the test set comprised 1465 samples. Detailed

sample information is provided in Table 1.
FIGURE 2

Some representative samples of the leaves images dataset.
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2.3 YOLOv10n model

YOLO is a single-stage target detection algorithm. From

focusing on detection speed in YOLOv1 to optimizing the overall

architecture, balancing speed, accuracy, and model size in

YOLOv10, each version update is gradually addressing the

shortcomings of the previous YOLO series. Among them, the

YOLOv10 algorithm was proposed by researchers Wang et al.

from Tsinghua University in 2024. It addresses the shortcomings

in terms of post-processing and model architecture of previous
Frontiers in Plant Science 05
versions of YOLO. Compared to previous versions, it improves both

detection precision and speed.

The YOLOv10 network architecture consists of three parts:

backbone, neck, and head. It selects YOLOv8 as the baseline model

and proposes a new model design based on it. It introduces compact

inverted block (CIB) and designs a C2fCIB structure to reduce

computational costs and improve efficiency. YOLOv10 proposes an

efficient partial self-attention (PSA) module design that improves

detection performance and efficiency without increasing excessive

computational costs. The head section employs a dual label
TABLE 1 Leaves samples information of 30 species of wild pear.

No. Name Origin Trained

Number of images Number of labels

0 P. ussuriensis ‘Wuchang-2’ Heilongjiang Wuchang 361 508

1 P. ussuriensis ‘Sunwu-8’ Heilongjiang Sunwu 354 498

2 P. ussuriensis ‘Sunwu-6’ Heilongjiang Sunwu 378 475

3 P. ussuriensis ‘Ning’an-1’ Heilongjiang Ning’an 368 480

4 P. ussuriensis ‘Autu-4’ Jilin Antu 404 497

5 P. ussuriensis ‘Dongning-3’ Heilongjiang Dongning 372 487

6 P. ussuriensis ‘Xilin-3’ Heilongjiang Xilin 361 490

7 P. ussuriensis ‘Ning’an-2’ Heilongjiang Ning’an 403 506

8 P. ussuriensis ‘Xilin-2’ Heilongjiang Xilin 375 526

9 P. ussuriensis ‘Sunwu-3’ Heilongjiang Sunwu 365 530

10 P. ussuriensis ‘Sunwu-7’ Heilongjiang Sunwu 363 530

11 P. ussuriensis ‘Dongning-1’ Heilongjiang Dongning 413 512

12 P. ussuriensis ‘Xilin-5’ Heilongjiang Xilin 375 498

13 P. ussuriensis ‘Dongning-2’ Heilongjiang Dongning 364 529

14 P. ussuriensis ‘Sunwu-2’ Heilongjiang Sunwu 385 510

15 P. ussuriensis ‘Suiling-3’ Heilongjiang Suiling 365 501

16 P. ussuriensis ‘Suiling-2’ Heilongjiang Suiling 362 478

17 P. ussuriensis ‘Xinbin-1’ Liaoning Xinbin 391 517

18 P. ussuriensis ‘Hayuansuo-1’ Heilongjiang Haerbin 357 502

19 P. ussuriensis ‘Autu-2’ Jilin Antu 391 509

20 P. ussuriensis ‘Yongji-1’ Jilin Yongji 376 510

21 P. ussuriensis ‘Xinbin-3’ Liaoning Xinbin 389 490

22 P. ussuriensis ‘Kuandian-1’ Liaoning Kuandian 371 507

23 P. ussuriensis ‘Sunwu-4’ Heilongjiang Sunwu 381 482

24 P. ussuriensis ‘Sunwu-9’ Heilongjiang Sunwu 366 468

25 P. ussuriensis ‘Hayuansuo-2’ Heilongjiang Haerbin 364 505

26 P. ussuriensis ‘Xinbin-2’ Liaoning Xinbin 364 481

27 P. ussuriensis ‘Suiling-4’ Heilongjiang Suiling 387 507

28 P. ussuriensis ‘Autu-1’ Jilin Antu 368 501

29 P. ussuriensis ‘Sunwu-5’ Heilongjiang Sunwu 370 482
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assignment strategy, which combines a one-to-many approach with

a one-to-one matching mechanism. This approach removes the

need for non-maximum suppression (NMS), significantly reducing

inference latency.

YOLOv10 performs well on COCO Lin et al. (2014),

maintaining high accuracy in complex background detection

while also being lightweight and easy to deploy on embedded

devices. The YOLOv10 includes six variants, namely YOLOv10n,

YOLOv10s, YOLOv10m, YOLOv10b, YOLOv10l, and YOLOv10x,

to meet different application scenarios. Among them, YOLOv10n is

the lightest in terms of parameters and floating-point operations

(FLOPs), meeting the lightweight requirements.
2.4 Principle of YOLOv10n-MCS model

In target detection tasks based on deep learning, the size and

complexity of the model directly affect the effectiveness of practical

applications. Although YOLOv10 algorithm has high recognition

accuracy and speed, for wild Ussurian Pear leaves targets in
Frontiers in Plant Science 06
complex scenes, the model still has problems such as slow

recognition speed and low precision due to the high similarity of

leaf features and occlusion between leaves. Due to the fact that

leaves recognition is an efficient and lightweight task, in order to

ensure the feature extraction capability of the model for wild

Ussurian Pear leaves and enhance the detection performance of

the model, this paper selects YOLOv10n as the baseline model and

proposes a new YOLOv10n-MCS model. Firstly, the MLCAmodule

is introduced into the neck of the network to enhance the model’s

feature extraction capability and improve recognition accuracy.

Secondly, using SimSPPF module instead of the original network

pyramid pooling layer can improve the detection efficiency of the

model. Finally, design a C2f SCConv module to replace C2f in

backbone, reducing computational redundancy and improving

detection performance. The network structure of the improved

YOLOv10n-MCS is shown in Figure 3.

2.4.1 The MLCA module
In deep learning, attention mechanisms are designed to emulate

the human visual and cognitive processes. By enabling models to
FIGURE 3

The architecture of the YOLOv10n-MCS model.
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concentrate on critical regions while disregarding irrelevant data,

attention mechanisms enhance both efficiency and accuracy in

information processing. Currently, most channel attention

mechanisms, including Squeeze-and-Excitation (SE) Hu et al.

(2018) and Efficient Channel Attention (ECA) Wang et al.

(2020), focus solely on channel features and neglect spatial

information within each channel. This limitation may result in

the loss of crucial feature information, negatively impacting model

performance in object detection and leading to inaccurate category

predictions. Additionally, spatial attention modules, while effective,

tend to be computationally intensive. To address this issue, Wan

et al. Wan et al. (2023) developed the lightweight MLCA module,

which balances performance and complexity. The MLCA module

integrates channel and spatial information, along with local and

global features, thereby preventing the loss of critical information

and enhancing the expressive power and detection performance of

object detection algorithms. A better balance has been achieved

between detection accuracy, speed, and model parameters without

significantly increasing computational costs. Therefore, we

incorporated the MLCA module into the neck of our model to

improve its feature extraction capabilities.

As illustrated in Figure 4, the feature vectors are fed into the

MLCAmodule and converted into a 1 * C * ks * ks vector to capture

local spatial details. The input is then processed through two

parallel branches, each converting the data into one-dimensional

vectors. The first branch focuses on local spatial features, while the

second branch captures global information. One-dimensional
Frontiers in Plant Science 07
convolution is applied independently to the vectors in both

branches. The original resolution of the vectors is recovered

through anti-pooling, followed by information fusion to achieve

mixed attention. In the figure, k denotes the convolution kernel size,

and C represents the channel dimension, with both being

proportional. This indicates that local cross-channel interactions

are captured by considering only the relationships between each

channel and its k neighboring channels. The formula for calculating

k is provided in Equation 1. Among them, g and b are

hyperparameters, odd means that k is only odd, and if k is even,

add 1.

k = F(C) =
log2C)

g
+
b
g

����
����
odd

(1)
2.4.2 The C2f SCConv module
Building a deep network with few parameters and low

computational complexity requires compact and highly efficient

model design. The C2f module of YOLOv10 enhances its feature

extraction capability through the bottleneck structure, but it

introduces a large amount of irrelevant interference information

for equivalent processing of all channel and position information.

The C2f module is internally stacked with a large number of

convolution operations, resulting in highly similar features

between adjacent channels, leading to redundant features

during iteration.
FIGURE 4

The principle of MLCA algorithm: LAP (Local Average Pooling) which divides the feature map into k * k patches and applies average pooling to each
patch; GAP (Global Average Pooling), which uses adaptive pooling to reduce the feature map to a 1 * 1 output size; UNAP (Anti-average Pooling),
which mainly focuses on the figure’s properties and scaling to the needed size.
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Spatial and Channel reconstruction Convolution (SCConv),

introduced by Li et al. (2023), is an advanced convolutional

module designed to minimize spatial and channel redundancy in

feature maps, leading to more compact CNN models and enhanced

performance. As illustrated in Figure 5, the SCConv module

comprises two key components: the Spatial Reconstruction Unit

(SRU) and the Channel Reconstruction Unit (CRU). The SRU

employs a Separate-and-Reconstruct approach to effectively reduce

spatial redundancy. For an input feature X, the SRU first performs a

separate operation, dividing the feature maps into two categories

based on their spatial information content: one category includes

feature maps with rich spatial details, while the other contains maps

with minimal or redundant information. These are then

reconstructed to produce the spatially refined feature Xw. The

CRU utilizes a Split-Transform-andFuse strategy to mitigate

channel redundancy. It processes Xw by splitting its channels into

two branches. The upper branch employs GWC and PWC

convolutions to efficiently extract representative features, while

the lower branch uses PWC convolutions to enhance hidden

details. To adaptively fuse the features from both branches, the

SKNet Li et al. (2019) technique is applied, producing a channel-

refined output Y that significantly reduces redundancy,

computational overhead, and memory usage. Together, the SRU

and CRU synergistically reduce redundant information in

convolutional layers, lower model complexity, and enhance

feature extraction capabilities.

Therefore, a new C2f SCConv module is designed by replacing

the ordinary convolutions in C2f with SCConv. Replace C2f in

YOLOv10n’s backbone with C2f SCConv module to improve the

model’s learning ability and further reduce the number of model

parameters. Reduce redundant features, decrease computational

complexity, and improve detection performance. The C2f

SCConv module is shown in Figure 6.
2.4.3 SimSPPF
Spatial Pyramid Pooling-Fast (SPPF) in YOLOv10n is a pooling

operation that introduces three-layer max pooling and connects the

outputs of each layer to extract multi-scale information from the

input feature map. It extracts and aggregates input feature maps

from different perspectives, achieving the fusion of local and global
Frontiers in Plant Science 08
features. Improved computational efficiency while maintaining

unchanged performance.

To further enhance the feature extraction capability and

training speed of the model, this paper replaces SPPF in the

backbone network with SimSPPF. The SimSPPF module is a

simplified spatial pyramid pooling module proposed in YOLOv6,

which can be used for feature extraction in computer vision tasks.

SimSPPF replaces the activation function Sigmoid Linear Unit

(SiLU) of the CBS module in SPPF with a simpler Rectified Linear

Unit (ReLU) function, eliminating complex operations and effectively

avoiding unnecessary information interference, further improving

the computational efficiency of the model. This module first performs

convolution operation to compress the input feature map, and then

sequentially uses three identical 5 × 5 max pooling layers to obtain

feature maps with different receptive field information in a

concatenated manner. Then, the feature maps from multiple

dimensions are concatenated to finally output the fused feature map.
2.5 Evaluation of algorithm performance

In the task of identifying and classifying wild pear leaves, the

precision, efficiency, and complexity of the model are the most

important aspects. To assess the performance of different models in

the task of wild pear leaf identification and classification, this study

employed precision (P), recall (R), and mean Average Precision

(mAP) as evaluation metrics. The definitions of these metrics are

provided below.

P quantifies the accuracy of positive predictions by the model,

defined as the ratio of correctly predicted positive samples to all

samples predicted as positive. R measures the model’s ability to

identify all actual positive samples, calculated as the ratio of

correctly predicted positive samples to the total number of actual

positive samples. The formulas for P and R are given in Equations 2,

3, Tang et al. (2023). Here, true positives (TP) are samples correctly

predicted as positive, false positives (FP) are samples incorrectly

predicted as positive, and false negatives (FN) are samples

incorrectly predicted as negative when they are actually positive.

P =
TP

TP + FP
(2)
FIGURE 5

The architecture of SCConv integrated with SRU and CRU.
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R =
TP

TP + FN
(3)

To evaluate model performance, a P-R curve is generated with R

on the x-axis and P on the y-axis. The area under the P-R curve

represents the Average Precision (AP), which measures the model’s

detection accuracy for each category. A higher AP value indicates

better detection performance. The mAP is the average of AP values

across all categories and serves as a key metric for assessing overall

model performance. mAP50 is the mAP value at an IoU threshold

of 0.5 Yan et al. (2024), while mAP50–95 is the mAP value

calculated across multiple IoU thresholds. Higher mAP values

correspond to more accurate bounding box predictions. The

formulas for AP and mAP are given in Equations 4, 5, where N

represents the total number of categories.

AP =
Z 1

0
P(r)dr (4)

mAP = o
N
i=1AP(i)

N
(5)

Additionally, we assess the lightweight characteristics of the

model by considering its size, number of parameters, and FLOPs.

Model size refers to the amount of memory the model occupies on

the hardware. Parameters indicate the total count of trainable

variables in the model, while FLOPs measure the computational

workload required by the model. These metrics are crucial for

evaluating model complexity and the computational resources

needed Zhao et al. (2023).
2.6 Statistical analysis

Confidence intervals (CI) Shreffler and Huecker (2023) can be

used to evaluate the reliability of the performance of the model and

the significance of differences. The p-value is used to determine

whether there are significant differences between models. P<0.05

indicates significant differences. In this study, IBM SPSS 20

Surendran et al. (2024) and a test set from the wild Ussurian Pear

leaf dataset were used for the test. Compare the performance

metrics of multiple models on the same test set to evaluate the

performance of each model and verify whether the improved model

in this paper has statistical significance.
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3 Results and discussion

3.1 Experimental environment and
parameter settings

This experiment is performed on a system running Ubuntu

20.04. Using Python 3.9.19 programming language. The

development environment is CUDA 11.8. Use the PyTorch 2.0.0

deep learning framework. The GPU is NVIDIA GeForce RTX 3090.

Equipped with 14 vCPU Intel (R) Xeon (R) Gold 6330 CPU @

2.00GHz processor and 80GB memory.

The network training parameters are set as follows: the image

input size is 640 × 640, the batch size is set to 16. The learning epoch

is set to 200. Train the model using SGD as the optimizer and

dynamically adjust the learning rate using the cosine annealing

strategy. The initial learning rate is configured as 0.01, with a

momentum factor of 0.937 and a weight decay coefficient of

0.0005. In this study, no pre-trained models are utilized; instead,

all models are trained from scratch. To maintain experimental

fairness, all models are trained under identical conditions. The

ablation experiment uses the same hyperparameter settings, while

the comparative experiments of different models use their own

default hyperparameter settings.
3.2 Analysis of identification and
classification results of wild Ussurian Pear
leaves

The identification and classification of wild Ussurian Pear

accessions in natural environments is crucial for the conservation

of wild pear resources. To this end, the recognition and

classification performance of the YOLOv10n-MCS model was

tested using the self-made test set of wild Ussurian Pear leaves

images dataset. Randomly select five images from the test set for

heatmap visualization. Heatmap is a commonly used visual tool for

displaying the importance of different regions in an image. The

Gradient-weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al. (2017) method is employed to generate the

model’s heatmap. Grad-CAM calculates the model classification

weights and overlays them in the form of heatmap with the original

image in equal proportions. To highlight important areas in the
Conv Split SCConv SCConv Concat Conv

N

FIGURE 6

C2f-SCConv module structure diagram.
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image. Figure 7 shows the visual detection results of YOLOv10n and

YOLOv10n-MCS on wild Ussurian Pear leaves. Among them, the

areas of contribution to model detection are indicated in red and

yellow, and the areas with less contribution are blue Wang et al.

(2025b). By comparing the heatmap performance of YOLOv10n

and YOLOv10n-MCS models in pear leaf classification and

detection, significant differences in feature extraction can be

found. The attention of the YOLOv10n model is highly focused

on the central and lateral vein structures of the leaves, and the

heatmap shows a clear linear distribution pattern, indicating that

the model mainly relies on leaf vein morphological features for

variety classification. The YOLOv10nMCS model demonstrates a

more comprehensive feature capture capability, with its heatmap

not only focusing on leaf vein structure, but also extensively

covering the leaf surface, forming a more uniform activation
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distribution. This multi-scale feature extraction method enables it

to simultaneously capture leaf morphology, texture, and overall

contour features. YOLOv10n-MCS has achieved richer feature

representation through its multi-channel strategy, which may

have stronger discriminative ability and robustness in pear leaf

variety classification tasks. This indicates that the method proposed

in this study can improve the feature extraction ability of the model

and achieve accurate and efficient recognition of wild Ussurian

Pear leaves.

In order to further evaluate the recognition and classification

ability of YOLOv10n-MCS on wild Ussurian Pear leaves, Table 2

shows the detection results of YOLOv10n and YOLOv10n-MCS on

the recognition and classification of wild Ussurian Pear leaves. The

results showed that YOLOv10n-MCS performed better in the task

of identifying and classifying wild Ussurian Pear leaves. Compared
FIGURE 7

Grad-CAM heatmaps of some test set images: (a) P. ussuriensis ‘kuandian-1’, (b) P. ussuriensis ‘dongning-3’, (c) P. ussuriensis ‘xilin-5’, (d) P.
ussuriensis ‘Sunwu-7’, (e) P. ussuriensis ‘ningan-2’.
TABLE 2 The results of identifying and classifying wild Ussurian Pear leaves.

Model Precision Recall mAP50 mAP50-95 Params FLOPs Model-size

(%) (%) (%) (%) (M) (G) (MB)

YOLOv10n 94.8 [93.66-95.88] 91.2 [89.81-92.6] 97.3 [96.76-97.82] 93.2 2.71 8.5 5.8

YOLOv10n-MCS 97.7 [97.18-98.16] 93.5 [92.57-94.36] 98.8 [98.57-99.03] 94.7 2.52 8.2 5.4
Among them, the precision, recall, and mAP formats are: value [CI at 95% confidence level].
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with YOLOv10n, YOLOv10n-MCS has improved precision, recall,

mAP50, and mAP50–95 by 2.9%, 2.3%, 1.5%, and 1.5%,

respectively. In addition, the parameters, FLOPs, and model size

of the model are reduced by 1.9M, 0.3G, and 0.4MB, respectively,

and the model complexity is improved. Perform statistical analysis

on precision, recall, and mAP separately. Among them, the

precision of YOLOv10n is 94.8 (95% CI: 93.66 to 95.88)%, the

recall is 91.2 (95% CI: 89.81 to 92.6)%, and the mAP is 97.3 (95% CI:

96.76 to 97.82)%. The precision of YOLOv10n-MCS is 97.7 (95%

CI: 97.18 to 98.16)%, the recall is 93.5 (95% CI: 92.57 to 94.36)%,

and the mAP is 98.8 (95% CI: 98.57 to 99.03)%. Compared with the

original model, YOLOv10n-MCS showed better precision, recall,

and mAP, and the difference is statistically significant (p<0.05).

Figure 8 shows the detection results of YOLOv10n and YOLOv10n-

MCS on 30 wild Ussurian Pear accessions leaves. From the figure, it

can be seen that YOLOv10n has slightly higher recognition

precision for the two varieties ‘Xilin-5’ and ‘Xinbin-1’ than

YOLOv10n-MCS. In addition, the recognition precision of the

other 28 accessions, YOLOv10n-MCS is higher than YOLOv10n.

Overall, YOLOv10n-MCS performs better in the task of identifying

and classifying wild pear leaves, with a precision of over 92% for all

accessions, meeting the demand for high recognition accuracy.
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3.3 Ablation experiments

To assess the performance and practicality of the proposed

YOLOv10n-MCS model in wild Ussurian Pear leaves identification

and classification, ablation experiments were performed using the

YOLOv10n model as the baseline. To maintain experimental

consistency, the same dataset, environment, and parameter

configurations were utilized throughout the experiments. The

YOLOv10n-MCS model consists of three improved methods:

MLCA, C2f SCConv, and SimSPPF. The ablation study

investigated the effects of three enhancement techniques on

model performance. Figure 9 illustrates the loss curves for all

models during training and validation. As shown in the figure,

the loss function values exhibit a decreasing trend. With increasing

epochs, both the training and validation loss curves gradually

decline and stabilize, indicating that the models have effectively

converged without underfitting or overfitting. The detailed results

of the ablation experiments are presented in Table 3. Among them,

“✓” represents the improvement methods that have been used.

According to the experimental results in Table 3, it is found that

all combinations improved the performance of the model compared to

YOLOv10n. After introducing the MLCA module into the baseline
FIGURE 8

Precision results of 30 wild pear accessions.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1588626
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1588626
network YOLOv10n (model ①), the precision, recall, mAP50, and

mAP50–95 of model ② are improved by 2.3%, 2.4%, 0.9%, and 0.9%,

respectively. The FLOPs have increased by 0.2G, and there is no

significant change in the parameters compared to the original. MLCA

divides the input feature map into multiple local blocks and preserves

important spatial information within each block separately. Then

calculate the global channel attention of the entire feature map

separately. Combine local and global attention weights to create a

comprehensive attention map that includes both local details and

global contextual information. Weighting the original feature map

with the comprehensive attention map highlights important features

and suppresses irrelevant information. Finally, the enhanced feature

map is input into the network, which improves the accuracy of

detection and classification. The experimental results demonstrate

that the MLCA module can effectively enhance the feature extraction

capability of the model and achieve a better balance between detection

performance, speed, and model parameter quantity. Therefore,

introducing MLCA module can improve model performance

without excessively increasing the parameters and FLOPs. After
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introducing the SimSPPF module separately, compared with the

baseline model, model ③ improved its precision, recall, mAP50, and

mAP50–95 by 1.8%, 2.6%, 0.9%, and 1%, respectively, without

significant changes in the parameters and FLOPs. SimSPPF uses

SimConv convolutional layers to extract features from the input

feature map, accelerating the training process and improving the

stability of the model, enhancing its expressive power. And through

multiple max pooling and concatenation operations, the fusion of

features at different scales is achieved. The simplified design improves

computational efficiency and enhances the training speed of the model

without increasing complexity. Similarly, after introducing the C2f

SCConv module separately, the precision, recall, mAP50, and

mAP50–95 of model ④ are improved by 2.1%, 1.3%, 0.6%, and

0.5%, respectively. At the same time, the parameters in the model

decrease by 0.19M, the FLOPs decrease by 0.6G, and the model size

decreases by 0.4MB. C2f SCConv introduces spatial and channel

reconstruction modules in convolution operations. Learn the spatial

correlation of feature maps through the spatial reconstruction module,

and learn the channel correlation of feature maps through the channel
TABLE 3 Comparison of ablation experiment results.

Methods YOLOv10n MLCA SimSPPF C2f SCConv Precision Recall mAP50 mAP50-
95

Params FLOPs Model-
size

(%) (%) (%) (%) (M) (G) (MB)

① ✓ 94.8 91.2 97.3 93.2 2.71 8.5 5.8

② ✓ ✓ 97.1 93.6 98.2 94.1 2.71 8.7 5.8

③ ✓ ✓ 96.6 93.8 98.2 94.2 2.71 8.5 5.8

④ ✓ ✓ 96.9 92.5 97.9 93.7 2.52 7.9 5.4

⑤ ✓ ✓ ✓ 97.3 93.2 98.4 94.5 2.71 8.7 5.8

⑥ ✓ ✓ ✓ 96.5 93 98 93.8 2.52 8.2 5.4

⑦ ✓ ✓ ✓ 96.3 92.9 97.9 93.7 2.52 7.9 5.4

⑧ ✓ ✓ ✓ ✓ 97.7 93.5 98.8 94.7 2.52 8.2 5.4
FIGURE 9

Loss curves of different models.
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reconstruction module. The use of segmentation transformation

fusion strategy reduces redundancy and computational costs. By

separating and reconstructing redundant features, spatial

redundancy is suppressed and feature representation is enhanced.

The experimental results indicate that the C2f SCConv module can

reduce redundant features, decrease parameters, and lower FLOPs. It

not only improve the model’s detection capabilities but also lowers its

computational demands.

In addition, SimSPPF and C2f SCConv modules are introduced

on the basis of MLCA module. It is found that when the SimSPPF

module is introduced, the precision, recall, and mAP of model ⑤ do

not significantly improve compared to model ②. The parameters,

FLOPs, and model size remain unchanged, and the complexity of

the model is not improved. When the C2f SCConv module is

introduced, compared with model ②, the precision, recall, mAP50,

and mAP50–95 of model ⑥ are reduced by 0.6%, 0.6%, 0.2%, and

0.3%, respectively. However, the parameters, FLOPs, and model size

are reduced by 0.19M, 0.5G, and 0.4M, respectively, and the

complexity of the model is reduced. Experiment ⑦ introduced the

C2f SCConv module on top of the SimSPPF module in the baseline

model. Compared with Experiment ③, its precision, recall, and

mAP have decreased, but the parameters, FLOPs, and model size

have decreased by 0.19M, 0.6G, and 0.4M, respectively. These

results indicate that introducing a single module alone in the task

of identifying and classifying wild pear leaves doesn’t effectively

improve model performance, but may instead lead to a decrease in

performance. Therefore, a holistic consideration of multiple factors

is essential to enhance model performance.
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Finally, the model introduced MLCA module, SimSPPF

module, and C2f SCConv module simultaneously. The precision,

recall, mAP50, and mAP50–95 of model ⑧ reached 97.7%, 93.5%,

98.8%, and 94.7%, respectively, which are improved by 2.9%, 2.3%,

1.5%, and 1.5% compared to model ①. At the same time, the

parameters, FLOPs, and model size of the model are reduced by

0.19M, 0.3G, and 0.4MB, respectively. While improving the

accuracy of the model in identifying wild Ussurian Pear leaves,

the complexity of the model is reduced, thereby improving the

detection performance of the model.
3.4 Comparison and analysis of different
network models

To further validate the effectiveness of the YOLOv10n-MCS

model, we compared it with eight mainstream object detection

models, including two common models YOLOv7n and YOLOv8n,

two other models in the YOLOv10 series YOLOv10s and

YOLOv10m, VGG16 Simonyan (2014), ResNet50 He et al.

(2016), RT-DETR Zhao et al. (2024), and the baseline model

YOLOv10n. And analyze the experimental results. Train these

eight models using the wild pear leaves dataset in the same

experimental environment, with each model undergoing 200

iterations. Subsequently, the model is evaluated using a validation

set and the results are compared with YOLOv10n-MCS.

Figure 10 shows the mAP50 values for all models. It can be seen

that the mAP50 value of YOLOv10nMCS is consistently better than
FIGURE 10

mAP50 curves of different detection models.
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other models. The precision and recall curves of all detection models

are shown in Figure 11. Table 4 displays detailed information on the

recognition and classification results of all models. From the table, it

can be seen that YOLOv10n-MCS achieves higher detection

accuracy compared to other models. Its precision reached 97.7%

and mAP50 reached 98.8%, higher than the other eight models. Its

mAP50 values are 11%, 3.5%, 1.5%, 2.3%, 2%, 0.4%, 9.6%, and 8.4%

higher than YOLOv7n, YOLOv8n, YOLOv10n, YOLOv10s,

YOLOv10m, RT-DETR, VGG16, and ResNet50, respectively.

YOLOv7n and YOLOv8n use traditional C3 modules with limited

receptive fields and insufficient feature extraction capabilities.

YOLOv10n-MCS uses large kernel deep convolution to expand the

receptive field and enhance the detection capability of targets. And

by introducing MLCA and SimSPPF modules, the feature extraction

capability of the model has been effectively enhanced. The

architecture design concept of VGG16 and ResNet50 adopts a

classification oriented static architecture, while YOLOv10n-MCS

solves the inherent defects of traditional classification models in
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object detection tasks through detection specific architecture design

and dynamic feature fusion. Therefore, it is possible to more

accurately identify and classify wild pear leaves.

Statistical analysis is conducted on the precision, recall, and

mAP of YOLOv10n-MCS compared to 8 other models. Among

them, its precision and mAP are significantly higher than

YOLOv7n, YOLOv8n, YOLOv10n, YOLOv10s, YOLOv10m,

VGG16, and ResNet50 (p<0.05). There is no significant difference

comparad to RT-DETR (p=0.64 and 0.38, respectively). Its recall is

significantly higher than YOLOv7n, YOLOv8n, YOLOv10n,

VGG16, and ResNet50 (p<0.05). There is no significant difference

between YOLOv10s and YOLOv10m (p=0.25 and 0.51,

respectively). The recall of RT-DETR is significantly higher than

that of YOLOv10n-MCS (p<0.05), but its parameters, FLOPs, and

model size are 32.87M, 108.1G, and 66.3MB, respectively, which are

too high compared to YOLOv10n-MCS. RT-DETR adopts an end-

to-end detection architecture based on Transformer, which has

computational redundancy and requires more computing resources
FIGURE 11

Precision and recall curves of different detection models.
TABLE 4 Comparison of detection performance of different models.

Model Precision Recall mAP50 Params FLOPs Model-size

(%) (%) (%) (M) (G) (MB)

YOLOv7n 84.8 [83.44-86.24] 81.6 [80.51-82.82] 87.8 [86.25-89.14] 37.35 105.6 75.1

YOLOv8n 94.6 [93.43-95.71] 90.4 [89.51-91.36] 95.3 [94.91-95.75] 3.02 8.2 6.3

YOLOv10n 94.8 [93.66-95.88] 91.2 [89.81-92.6] 97.3 [96.75-97.81] 2.71 8.5 5.8

YOLOv10s 95.5 [94.8-96.26] 92.6 [91.73-93.51] 96.5 [96.21-96.93] 8.09 24.9 16.6

YOLOv10m 96.1 [95.31-96.91] 93 [91.99-93.97] 96.8 [96.54-96.99] 16.52 64.2 33.5

RT-DETR 97.3 [96.88-97.79] 94.9 [93.64-96.18] 98.4 [97.99-98.79] 32.87 108.1 66.3

VGG16 84.3 [82.94-85.74] 84.1 [83.16-85.08] 89.2 [88.30-90.18] 134.4 15.5 517.6

ResNet50 85.6 [84.28-86.97] 85.3 [84.55-86.14] 90.4 [89.83-90.93] 23.58 4.12 103.4

YOLOv10n-MCS 97.7 [97.18-98.16] 93.5 [92.57-94.36] 98.8 [98.57-99.02] 2.52 8.2 5.4
Among them, the precision, recall, and mAP formats are: value [CI at 95% confidence level].
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and larger memory for training. High model complexity hinders its

suitability for lightweight tasks. YOLOv10n-MCS uses depthwise

separable convolution and channel compression techniques to

reduce the model parameters and FLOPs. The FLOPs of

YOLOv8n and YOLOv10n-MCS is the smallest, at 8.2G.

However , YOLOv10n-MCS reduces redundancy and

computational costs by introducing the C2f SCConv module.

Compared to YOLOv8n, YOLOv10n-MCS has fewer parameters

and lower model complexity. Its model size is 5.4MB, which is more

lightweight compared to other models. Overall, the YOLOv10n-

MCS model performs better. Therefore, it is more suitable for the

task of identifying and classifying wild Ussurian Pear leaves.
4 Conclusion

Wild Ussurian Pear contains abundant genetic resources and is

a good material for genetic improvement. Efficient and accurate

identification and classification of wild Ussurian Pear accessions are

the basis for resource collection, preservation, research and

utilization. At present, there are no reports on the classification of

wild pear germplasm resource by identifying leaves. Therefore, this

article collected wild Ussurian Pear leaves images in the natural

background and constructed a dataset of leaves images covering 30

accessions. And using YOLOv10n as the baseline model, a

lightweight model called YOLOv10n-MCS was proposed for the

recognition and classification of wild Ussurian Pear leaves in

complex scenes. We have introduced the MLCA module based on

YOLOv10n to enhance the feature extraction capability of the

model. Use SimSPPF module instead of SPPF in the baseline

model to improve the detection efficiency of the model. C2f

SCConv module was designed to replace C2f in the original

network backbone, reducing the computational redundancy of the

model. We used a dataset of wild Ussurian Pear leaves images to

validate the performance of the improved model. The experimental

results showed that YOLOv10n-MCS achieved recognition

precision, recall, mAP50, and mAP50–95 of 97.7%, 93.5%, 98.8%,

and 94.7% for 30 accessions of wild Ussurian Pear leaves,

respectively. The precision of 18 wild pear accessions can reach

over 97%, while the precision of the other 12 accessions remains

between 92% and 97%. Among them, the recognition precision of P.

ussuriensis ‘Xinbin-1’ can reach 100%, meeting the accuracy

requirements for wild Ussurian Pear leaves recognition and

classification tasks. Statistical analysis was conducted on

YOLOv10n and YOLOv10n-MCS, and the results showed that

YOLOv10n-MCS exhibited statistically significant improvements

in precision (2.9% improvement, p<0.05), recall (2.3%

improvement, p<0.05), and mAP (1.5% improvement, p<0.05).

Further validated the effectiveness of the improvement,

particularly in terms of precision and recall.

Comparing the performance of the model with 8 mainstream

models, the results show that YOLOv10nMCS has advantages in

recognition precision, recall, and model size. It can improve detection

performance while reducing parameter and FLOPs. This model can

quickly and accurately identify wild Ussurian Pear leaves,
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outperforming baseline model and other mainstream models in

automatic recognition and classification tasks of wild pear leaves.

This study demonstrates the feasibility of using object detection

algorithms to identify wild Ussurian Pear leaves for accessions

classification. This method can quickly identify wild Ussurian Pear

germplasm resource while ensuring accuracy, reducing labor costs.

The model proposed in this article effectively meets the

requirements of accuracy and real-time performance, which helps

to automate the identification of wild Ussurian Pear accessions and

provides technical support and reference for the protection,

utilization, classification research of wild pear germplasm

resource. However, due to the limited sample size in this

experiment and significant differences between different

populations, its widespread use still requires continuous

optimization of performance according to specific requirements

and adaptation to new challenges. Nevertheless, the results of this

study still provide a good template for achieving this goal.
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