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OsAPSE modulates non-covalent
interactions between
arabinogalactan protein
O-glycans and pectin in
rice cell walls
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Tom Desmet3 and Els J. M. Van Damme1*

1Department of Biotechnology, Laboratory for Biochemistry & Glycobiology, Ghent University,
Ghent, Belgium, 2Unité Mixte de Recherche (UMR) 152 PharmaDev, Université Toulouse III Paul
Sabatier, Institut de Recherche et Développement, Toulouse, France, 3Department of Biotechnology,
Centre for Synthetic Biology, Ghent University, Ghent, Belgium
Flexibility of cell walls is crucial to accommodate cell elongation and growth,

typically associated with the reorganization of cell wall polysaccharides. Seed

germination is a fast-paced developmental process in which cell wall adaptability

is highly required. The plant cell utilizes multiple strategies to obtain a flexible cell

wall and in part relies on cell wall-active enzymes to loosen both covalent and

non-covalent interactions between cell wall polysaccharides. OsAPSE is an

example of a cell wall-active enzyme originating from Japanese rice (Oryza

sativa subsp. Japonica) belonging to the glycoside hydrolase family 27 (GH27),

potentially active on the pectin–arabinogalactan protein O-glycan junction. We

provide insights into the biochemical and enzymatic properties of this protein,

characterized by the presence of a GH27 domain linked to a ricin-B-like domain.

Using small-scale production experiments in a cell-free protein synthesis system,

we demonstrated the catalytic activity of the recombinant OsAPSE towards

synthetic and natural substrates. Furthermore, subcellular localization analysis

and in silico data suggest that OsAPSE may undergo unconventional secretion to

the cell surface. We hypothesize that OsAPSE plays a role during rice seed

germination by removing terminal a-D-Galp and b-L-Arap moieties along the

pectin–arabinogalactan protein O-glycan network. This activity may abolish

non-covalent interactions between pectic rhamnogalacturonan I and O-

glycans of arabinogalactan proteins, contributing to cell wall relaxation for

growth during germination.
KEYWORDS

cell wall, glycoside hydrolase, a-D-galactopyranosidase, b-l-arabinopyranosidase,
Oryza sativa, rice, arabinogalactan protein, germination
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1 Introduction

Glycoside hydrolases (GHs) are carbohydrate-active enzymes

(CAZymes), catalyzing the hydrolytic cleavage of glycosidic bonds

(Henrissat and Davies, 1997). Today, 1.9 million modules are

classified in almost 190 GH families in the CAZy database (Drula

et al., 2022). Members from the same GH family are evolutionarily

related, show a conserved protein structure and act mechanistically

similar on substrates.

The GH family of interest in this study is the GH27 family,

which is present in every kingdom of life (Naumoff, 2004).

Members of the GH27 family can display several activities,

including a-D-galactopyranosidase (AGAL)/melibiase, N-

acetylgalactosaminidase (NAGA) or b-L-arabinopyranosidase
(ARAP) activity. In general, bona fide GH27 enzymes catalyze the

hydrolysis of glycosidic bonds between a-D-galactopyranosyl (a-
D-Galp), a-1,3-N-acetyl-D-galactosaminyl (a-D-GalNAc) and/or

b-L-arabinopyranosyl (b-L-Arap) residues and other carbohydrates

in a wide range of substrates (Supplementary File S1). Several GH27

enzymes are bifunctional proteins and display both AGAL and

ARAP activity (Sakamoto et al., 2010; Kotake et al., 2016; Imaizumi

et al., 2017; Kikuchi et al., 2017). This property is attributed to the

structural similarities between a-D-Galp and b-L-Arap (Kotake

et al., 2016), but also to the presence of conserved residues in the

catalytic pocket of GH27 enzymes (Imaizumi et al., 2017) that make

use of the Koshland double displacement mechanism and retain the

anomeric configuration of the substrate upon hydrolysis (McCarter

and Stephen Withers, 1994). The catalytic residues are aspartic acid

residues and are strongly conserved within the GH27 family (Zhu

et al., 1995; Hart et al., 2000; Ly et al., 2000; Garman et al., 2002;

Fujimoto et al., 2003; Guce et al., 2010; Okazawa et al., 2015;

Kytidou et al., 2018). Non-canonical activities have been reported

sporadically, including glucan-a-1,6-isomaltosidase and galactan:

galactosyltransferase activity (Supplementary File S1). These

aforementioned activities, whether or not canonical, have also

been observed in other GH families. Families GH27, GH31 and

GH36 constitute the GH-D clan, a GH superfamily with

mechanistic and structural resemblances (Comfort et al., 2007). In

eukaryotes, the canonical activities are confined to the GH-D clan,

while in prokaryotes these activities are also found in families

outside the GH-D clan, i.e. in GH4, GH31, GH57, GH97, GH109,

GH110 and GH129.

GH27 enzymes are of interest for various applications (Katrolia

et al., 2014). In human medicine, several debilitating disorders,

including Fabry, Schindler and Kanzaki disease, are associated with

mutations in AGAL and NAGA genes, causing accumulation of

glycosphingolipids and glycoproteins (Garman et al., 2002; Guce

et al., 2010). Enzyme replacement therapy and gene therapy are

employed to treat the aforementioned diseases (Kytidou et al., 2018;

Umer and Kalra, 2023). Furthermore, NAGA and AGAL can be

used to convert blood type A and B antigens respectively, to the

universal donor type O blood (Rahfeld and Withers, 2020). In

animal feed industry, AGALs are used to degrade raffinose family

oligosaccharides (RFOs) in legumes, since non-ruminants are

unable to digest RFOs (Di Stefano et al., 2007; Elango et al.,
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2022). RFOs are fermented by gut bacteria, causing abdominal

discomfort, flatulence and diarrhea (Mutuyemungu et al., 2023). In

plants, GH27 enzymes have been implicated in several

developmental processes including seed germination (Guimaraes

et al., 2001; Blöchl et al., 2008; Jia et al., 2015; Lien et al., 2018;

Arunraj et al., 2020; Zhang et al., 2021a; Okazawa et al., 2022; Gojło,

2023), fruit development (Soh et al., 2006; Tsaniklidis et al., 2016;

Hua et al., 2021; Liu et al., 2022), and senescence (Chrost et al.,

2006; Lee et al., 2009; Zhang et al., 2021b), but also in the response

towards biotic (Evers et al., 2006) and abiotic stresses (Pennycooke

et al., 2003; Tapernoux-Lüthi et al., 2004; Zhao et al., 2006; Gu et al.,

2018; Chen et al., 2023). The physiological roles for GH27 enzymes

are multifarious and mostly associated with AGAL/ARAP-

mediated degradation of storage oligosaccharides/polysaccharides

(i.e. RFOs, galactomannan) or modification of structural

glycoconjugates (i.e. galactolipids, O-glycans of arabinogalactan

proteins (AGP)).

GH domains occur often in combination with a carbohydrate-

recognition domain (CRD), which supports their function as a

catalyst by enhancing substrate binding (Boraston et al., 2004). In

plants, GH27 sequences often encode multidomain proteins in

which the catalytic domain is coupled to a carbohydrate binding

module (CBM) of family 13 or a ricin-B(-like) domain (Van Holle

et al., 2017; Van Holle and Van Damme, 2019; De Coninck

et al., 2024b).

The subject of this study is OsAPSE, a GH27 enzyme from

Japanese rice (O. sativa subsp. Japonica), which was named after its

characterized homolog AtAPSE from Arabidopsis thaliana

(Imaizumi et al., 2017). The goal of this study is to provide clues

about the enzymatic properties of the GH27 domain towards

synthetic and natural substrates, the biological function of this

bifunctional enzyme in relation to seed germination and cell wall

metabolism, and its occurrence and phylogeny in the

plant kingdom.
2 Materials and methods

2.1 Cloning, protein production and
analysis

2.1.1 Cloning of the GH27 domain of OsAPSE
The native coding sequence of the GH27 domain, flanked by 5’

NcoI and 3’ KpnI restriction sites, an N-terminal His6-tag and

double stop codon, was synthetically produced and cloned into a

shuttle vector using the GeneArt Gene Synthesis service (Thermo

Fisher Scientific, Waltham (MA), USA). The GH27 domain of

OsAPSE was cloned into the pALiCE02 expression vector for cell-

free protein production (LenioBio GmbH, Düsseldorf, Germany) by

means of a double restriction digest using 5 μg shuttle vector or 5 μg

expression vector, 2.5 U NcoI and 2.5 U KpnI in 10X rCutSmart

buffer (New England Biolabs, Ipswich (MA), USA) for 1 hour at 37°

C, and 20 min heat inactivation of the restriction enzymes at 80°C.

The double digests were purified using the QIAquick® PCR & Gel

Cleanup Kit (Qiagen, Hilden, Germany). The GH27 insert was
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ligated into the expression vector in a 3/1 insert-to-plasmid ratio

using 5 U T4 DNA ligase (Thermo Fischer Scientific), 0.5 mM

dithiothreitol (Thermo Fisher Scientific) and 10X ligase buffer

(Thermo Fisher Scientific). The resulting expression plasmid was

transformed into heat-shock competent Escherichia coli TOP10

cells (Thermo Fisher Scientific). Putatively transformed colonies

were selected on lysogeny broth agar plates containing 80 μg/mL

carbenicillin (Duchefa Biochemie, Haarlem, The Netherlands) and

analyzed by colony PCR using Taq DNA polymerase (VWR,

Radnor (PA), USA) and gene-specific primers (Supplementary

File S2), with 5 min initial denaturation at 95°C, 35 cycles (30s at

95°C, 30s at 53°C, 1 min at 72°C) and 5 min final elongation at 72°

C. Transformed TOP10 cells were propagated in lysogeny broth

with 80 μg/mL carbenicillin and plasmids were purified at ultra-

high purity using the NucleoBond Xtra Midi kit (Macherey-Nagel,

Düren, Germany). Finally, the recombinant expression vector was

analyzed by Sanger sequencing (Biosearch/LGC Genomics GmbH,

Berlin, Germany) with plasmid-specific primers (Supplementary

File S2).

2.1.2 Cell-free production of the GH27 domain of
OsAPSE

Protein synthesis was executed using the ‘Almost Living Cell-

free Expression’ (ALiCE) cell-free production system (CFPS).

Multiple reactions were initiated, by adding 500 ng of purified

pALiCE02::GH27_OsAPSE per reaction at a final volume of 50 μL.

Reactions with the pALiCE02 empty vector were used as a control.

After 48 hours of incubation at 25°C and 700 rpm on a

thermomixer, the produced proteins were collected as described

by the manufacturer’s protocol (Buntru et al., 2022). Due to the

small scale of the CFPS reactions, no further purification

was undertaken.

2.1.3 Protein analysis
Protein concentrations were determined using the Bradford

assay (Bio-Rad, Hercules (CA), USA) (Bradford, 1976) with bovine

serum albumin (BSA) (MP Biomedicals, Irvine (CA), USA) as

reference protein (0–1 mg/mL) in 96-well plates using a TECAN

Infinite 200 PRO (TECAN, Männedorf, Switzerland) plate reader.

Discontinuous acrylamide gels containing 0.01% SDS (MP

Biomedicals) and different concentrations of acrylamide/

bisacrylamide ROTIPHORESE® Gel 30 (37.5:1) (Carl Roth

GmbH, Karlsruhe, Germany) in the stacking gel (pH 6.8, 4%

acrylamide) and separating gel (pH 8.8, 15% acrylamide)

respectively, were prepared. Polymerization was initiated with

TEMED (Carl Roth GmbH) and 10 V% ammonium persulfate

(Thermo Fisher Scientific). Protein samples were heat-treated (98°

C) for 10 minutes with 4X sample buffer containing 1 M Tris-HCl

pH 6.8 (MP Biomedicals), 8% SDS (MP Biomedicals), 40% glycerol

(Chem-Lab), 0.4% bromophenol blue (Sigma-Aldrich, Saint Louis

(MO), USA) and 1.125 M 2-mercaptoethanol (Sigma-Aldrich).

Proteins were analyzed in a continuous electric field (180 V) for 1

hour in the presence of running buffer containing 25 mM Tris, 200

mM glycine (MP Biomedicals) and 0.1% SDS using a Mini-

PROTEAN Tetra cell (Bio-Rad). Afterwards, acrylamide gels were
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stained with acidic Coomassie solution containing 0.1% Coomassie

Brilliant Blue R250 (Merck, Darmstadt, Germany), 2.9 M glacial

acetic acid (Chem-Lab) and 10.2 M HPLC-grade methanol (Chem-

Lab), and destained with acidic destaining solution, containing 2.5

M technical ethanol (Chem-Lab) and 1.3 M glacial acetic acid for 2–

3 hours.

Western blotting on methanol-activated Amersham

Hybond™-P PVDF membranes (GE Healthcare, Chicago (IL),

USA) was performed by semi-dry electroblotting (Bio-Rad) in

Towbin buffer containing 25 mM Tris, 2.45 M HPLC-grade

methanol and 192 mM glycine. After blotting, the membranes

were incubated in 5% non-fat milk powder solution (AppliChem

GmbH, Darmstadt, Germany). Immunodetection was executed

with subsequent incubation steps (1 hour at room temperature)

in consecutively 1/5000 THE™ His-tag monoclonal antibody

(GenScript, Piscataway (NJ), USA), 1/1000 polyclonal rabbit anti-

mouse antibody conjugated with horseradish peroxidase (Agilent/

DAKO, Santa Clara (CA), USA), 1/300 peroxidase anti-peroxidase

antibody (Sigma-Aldrich) and final detection in 100 mM Tris-HCl

pH 7.6 buffer containing 1 mM 3,3’-diaminobenzidine (DAB)

(Thermo Fisher Scientific) and 320 μM H2O2 (Acros Organics,

Geel, Belgium). Trissaline containing 10 mM Tris, 150 mM NaCl

(Chem-Lab) and 0.1 V% Triton-X100 (Sigma Aldrich) was used as

diluent for all antibodies and for membrane washes (3x5 min) in

between antibody incubations.
2.2 Enzymatic assays

2.2.1 Experimental set-up
Different experimental set-ups were applied for the enzymatic

assays including the initial screening for AGAL and ARAP activity,

determination of the pH/temperature optima, determination of KM

and Vmax and the activity on natural substrates (Table 1). The pH/

temperature optima and enzymatic characteristics were determined

using synthetic substrates, i.e. pNP-a-D-Galp and pNP-b-L-Arap
(Sigma-Aldrich) and detection through absorbance measurements

at 405 ± 10 nm using a TECAN Infinite 200 PRO plate reader.

Activity assays on natural substrates made use of 50 mM melibiose

monohydrate (Merck), 50 mM raffinose pentahydrate (Sigma-

Aldrich), 50 mM verbascose (Megazyme, Wicklow, Ireland), 2.5

mg/mL arabinogalactan from larch wood (Sigma-Aldrich), 2.5 mg/

mL carob bean galactomannan (Megazyme) and 2.5 mg/mL AGPs

from A. thaliana PSB-D plant cell suspension cultures (Van Leene

et al., 2011; Tryfona et al., 2012). Released a-D-Galp and b-L-Arap
moieties were detected using the K-ARGA kit (Megazyme), which

makes use of a galactose mutarotase and b-galactose dehydrogenase
to convert L-Ara and D-Gal to their b-anomeric form and to

oxidize the b-sugars to L-arabinonic acid, D-galactonic acid and

NADH + H+. The amount of NADH formed is measured

spectrophotometrically at a wavelength of 340 nm (Fukimura,

1988; Sturgeon, 1988) using a GENESYS150 UV/Vis

spectrophotometer (Thermo Fisher Scientific) with 1.5 mL

disposable 1 cm cuvettes (BRAND GmbH, Wertheim, Germany).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1588802
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


1 https://pubchem.ncbi.nlm.nih.gov/.

De Coninck et al. 10.3389/fpls.2025.1588802
2.2.2 Calculation of kinetic parameters
Initial reaction velocities (v0) in mol·L-1·s-1 are calculated by

measuring the release of pNP or NADH using the Lambert-Beer law

(Equation 1).

v0 =
d½P�
dt

=
dA

e · L · dt
(1)

With: d[P]: increase of product concentration in mol·L-1; dt:

time coordinate in s; dA: increase of absorbance at 405 ± 10 nm

(pNP) or 340 nm (NADH), unitless; e: molecular extinction

coefficient (pNP: 18000 mol·L-1·cm-1; NADH: 6300 mol·L-1·cm-1);

L: pathlength in cm.

The catalytic activity expressed as katals (1 kat = 1 mol·s-1) is

calculated by multiplication of the initial velocity with the reaction

volume as indicated in Table 1. We define 1 unit (U) as the release of

1 μmol product (i.e. pNP or NADH) in 1 minute. For the

determination of KM and Vmax, the Hanes-Woolf linearization

method was used (Hanes, 1932). The calculated the KM and Vmax

were used to construct a theoretical Michaelis-Menten plot according

to Equation 2 (Michaelis andMenten, 1913). The resulting hyperbole
Frontiers in Plant Science 04
was compared with the obtained experimental values for v0 and the

quality of the fit was evaluated by R² values.

v0 =
Vmax · ½S�
KM + ½S� (2)

With: [S]: substrate concentration in mol·L-1, Vmax: maximum

reaction velocity in mol·L-1·s-1; KM: Michaelis constant in mol·L-1.
2.3 Protein modelling, molecular dynamics
and phylogeny

2.3.1 Determination of substrate-binding affinities
Modeling of OsAPSE was performed with AlphaFold (Jumper

et al., 2021) (RRID: SCR_025454), while the thermodynamic quality

of the model was assessed in Swiss-Model (Waterhouse et al., 2018)

(RRID: SCR_018123). Molecular structures of monosaccharides (L-

Arap, D-Xylp, D-Glcp, D-Galp, D-GalNAc) and oligosaccharides
TABLE 1 Experimental setup for the different enzymatic assays.

Experiment
Initial activity
screening

pH and temperature
stability

Determination
of

kinetic
parameters

Activity on
di/oligosaccharides

Activity
on

polysaccharides

Substrate a 50 mM pNP-a-D-Galp or
50 mM pNP-b-L-Arap
(100 μL)

50 mM pNP-a-D-Galp (80 μL) 1–100 mM pNP-a-
D-Galp (120 μL)

50 mM melibiose monohydrate
50 mM raffinose pentahydrate
50 mM verbascose
(240 μL)

2.5 mg/mL
arabinogalactan from
larch wood
2.5 mg/mL
galactomannan
2.5 mg/mL
arabinogalactan protein
O-glycans from A.
thaliana PSB-D
(240 μL).

Assay type Continuous Discontinuous Discontinuous Discontinuous

Control reaction pALiCE02 + pNP-a-D-Galp pALiCE02 + pNP-a-D-Galp pALiCE02 + pNP-a-
D-Galp

pALiCE02 + pNP-a-D-Galp

Total
reaction volume

200 μL 160 μL 240 μL 480 μL

Buffer 50 μL 200 mM Tris-HCl
pH 7.5

40 μL 200 mM Tris-HCl (pH
6, 7, 7.5, 8, 9).

60 μL 200 mM Tris-
HCl (pH 8)

120 μL 200 mM Tris-HCl (pH 8)

Enzyme 50 μL 40 μL 60 μL 120 μL

Temperature 22°C (room temperature) 25°C, 30°C, 35°C, 40°C 25°C 25°C

Sampling
volume

Not applicable 50 μL 100 μL

Sampling points Every 5 min for 2 h 5 min, 1 h, 2 h 5 min, 30 min, 1 h,
2 h

5 min, 30 min, 1 h, 2 h

Inactivation Not applicable 50 μL 500 mM Na2CO3 (pH
11) (Sigma-Aldrich)

50 μL 500 mM
Na2CO3 (pH 11
(Sigma-Aldrich)

5 min at 95°C

Assay Absorbance at 405 ± 10 nm K-ARGA enzymatic/colorimetric kit (Megazyme),
absorbance measurement at 340 nm.
aconcentrations correspond to initial concentrations. The final concentration equals half of the initial concentration.
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(melibiose, raffinose) used in the docking experiments, were

retrieved from PubChem1 (RRID: SCR_004284). Carbohydrates

were docked to the GH27 domain of OsAPSE with SwissDock

(Grosdidier et al., 2011; Bugnon et al., 2024) (RRID: SCR_022564),

using the Attractive cavities method (Zoete et al., 2016; Röhrig et al.,

2023). Binding affinities between the GH27 domain of OsAPSE

and the carbohydrates were calculated. Molecular cartoons were

drawn with the Chimera software (Pettersen et al., 2004)

(RRID: SCR_004097).

2.3.2 Molecular dynamics simulations
The number of hydrogen bonds arising between the GH27

domain of OsAPSE and different carbohydrate structures was

determined for simulations of 100 ns duration (Osterne et al.,

2024). For these analyses, the AlphaFold structure of OsAPSE was

used, combined with a set of additional carbohydrates compared to

previous simulations, downloaded from PubChem or ChemSpider2

(RRID: SCR_006360) (D-Galp, L-Arap, D-GalNAc, D-GlcNAc,

pNP-D-Galp, pNP-L-Arap, melibiose, raffinose, stachyose,

verbascose and ajugose). Carbohydrates were docked into the

catalytic site of the GH27 domain using the GOLD software

v2023 (RRID: SCR_000188) within the Hermes suite using

standard settings (Jones et al., 1997; Verdonk et al., 2003).

Docking grids of 7 Å and 12 Å, were established around the

catalytic site for docking of monosaccharides and oligosaccharides

respectively. CHEMPLP scores were used to evaluate the most

favorable protein-carbohydrate interactions. CHARMM-GUI

(RRID: SCR_025037) was used to prepare a TIP3P solution

system, with neutralizing Na+ and Cl- ions (Jorgensen et al., 1983;

Jo et al., 2008; Brooks et al., 2009; Lee et al., 2020). The simulations

were executed using the pmemd.cuda module of AMBER23 with

the ff19SB and GLYCAM_06j force fields for the protein and

carbohydrates, respectively (Kirschner et al., 2008; Tian et al.,

2020; Case et al., 2023). Simulations were performed under

isobaric (Monte Carlo barostat, 1 bar) and isothermal (Langevin

thermostat, 300 K) conditions (Berendsen et al., 1984; Loncharich

et al., 1992). Pressure and temperature were equilibrated by 500 ps

in the NPT and NVT ensembles, respectively. Every simulation was

run for 50 ns, collecting 5000 frames. Intermolecular hydrogen

bonds were analyzed using of the Cpptraj module and visualized in

Xmgrace (Roe and Cheatham, 2013).

2.3.3 Phylogenetic analyses
Phylogenetic analyses of GH27 and APSE sequences from plant

species (Viridiplantae), grasses and cereals (Poales) and across

kingdoms were executed. GH27 sequences were obtained through

the Conserved Unique Peptide Patterns (CUPP) database

(Supplementary File S3) (Barrett et al. , 2020) (RRID:

SCR_026501). The CANDY tool for carbohydrate active enzyme

domain analysis was employed to analyze the protein domain

modularity (Windels et al., 2024). Additional phylogenetic

analyses based on the GH27 domain sequences were executed

using phylogeny.fr (Dereeper et al., 2008) (RRID: SCR_010266).
2 https://www.chemspider.com/.
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Sequences were aligned using MUSCLE v3.8.31 (RRID:

SCR_011812). Phylogenetic analysis was performed using the

Maximum Likelihood method implemented in PhyML v3.1/3.0

aLRT (RRID: SCR_014629) within the phylogeny.fr pipeline. Tree

reconstruction employed the WAG substitution model with

empirical amino acid frequencies. Rate heterogeneity among sites

was modeled using a gamma distribution and included a proportion

of invariant sites. Amino acid frequences were estimated from the

alignment and used in the Maximum Likelihood calculations.

Support for clades was evaluated using both bootstrap analysis

and approximate likelihood-ratio tests. Trees were rendered using

TreeDyn v198.3 (RRID: SCR_015946) and the resulting phylograms

were visualized using the interactive Tree of Life v6.0 (Letunic and

Bork, 2024) (RRID: SCR_018174) and formatted using inkscape

v1.3.2 (RRID: SCR_014479). Multiple sequence alignments were

performed in Clustal Omega (Madeira et al., 2024) (RRID:

SCR_001591) and used as input to generate a WebLogo using

WebLogo3 (Crooks et al., 2004) (RRID: SCR_010236). PyMOL

v2.5.4 (RRID: SCR_000305) was used for structural comparisons of

3D models, either from crystallization data (PDB) or AlphaFold

models obtained via UniProt (RRID: SCR_002380) (Supplementary

File S4). Domain coordinates were extracted from InterPro (RRID:

SCR_006695). Root-mean square deviation (RMSD) values were

used to assess the structural alignment quality (Shindyalov and

Bourne, 1998; Kufareva and Abagyan, 2011).
2.3.4 In silico prediction of biochemical protein
properties

Biochemical protein properties including molecular weight, iso-

electrical point, amino acid distribution, stability index and

hydrophobicity index were calculated using ExPASy ProtParam

(Gasteiger et al., 2003) (RRID: SCR_018087). Prediction of post-

translational modifications (PTMs) was done through NetNGlyc

v1.0 for N-glycosylation (Gupta and Brunak, 2002) (RRID:

SCR_001570), NetOGlyc v4.0 for O-glycosylation (Steentoft et al.,

2013) (RRID: SCR_009026), diANNA v1.1 for disulfide bridges

(Ferre and Clote, 2005) (RRID: SCR_018529), SignalP v6.0 for

signal peptides (SP) (Teufel et al., 2022) (RRID: SCR_015644),

TargetP v2.0 for other transfer peptides (Almagro Armenteros et al.,

2019) (RRID: SCR_019022), NucPred for the presence of Nuclear

Localization Signals (NLS) (Brameier et al., 2007) (RRID:

SCR_026502) and DeepLoc v2.1 for membrane association

(Ødum et al., 2024) (RRID: SCR_026503).
2.4 Expression of OsAPSE during rice seed
germination

2.4.1 Cultivation of transgenic, mutant and wild
type rice

Transgenic O. sativa subsp. Japonica cv. Kitaake lines were

created by means of Agrobacterium-mediated transformation,

including 3 overexpression pUBI::OsAPSE and 3 knock-out osapse

lines. The overexpression pUBI::OsAPSE lines were generated using

a binary vector harboring a hygromycin resistance gene, in which
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the OsAPSE coding sequence is under the control of the constitutive

maize ubiquitin promoter and a nopaline synthase terminator.

Mutant osapse lines were generated using the CRISPR-Cas9

system, with 2 guide RNAs (gRNA) directed against the coding

sequence of OsAPSE: 5’-CTTGCTGAGTTTCCACCAAGAGG-3’

and 5’-CATCATCCAGAATTGATAAAGGG-3’ (i.e. single gene,

dual target) (Jiang and Doudna, 2017).

Rice seeds were de-husked with coarse sandpaper, sterilized by

incubation on a rotary wheel (10 rpm) in 70% ethanol (Chem-Lab)

for 5 min followed by 45 min in 5% commercial bleach (Carrefour

supermarket), washed 7–10 times with sterile water and incubated

overnight in sterile water on a rotary wheel. Afterwards, rice seeds

were sown on Murashige and Skoog (MS) medium (pH 5.7-5.8)

with modified vitamins (Duchefa Biochemie), 3% sucrose (Chem-

Lab) and 1.5% micro agar (Duchefa Biochemie). Seeds were

germinated for 10 days inside a controlled Adaptis growth

cabinet (Conviron, Winnipeg (MB), Canada) at 28°C using a 16/8

photoperiod with photon flux density of 310 μmol·m-2·s-1.

Afterwards, rice seeds were brought to greenhouses of the

Institute for Agriculture and Fishery Research (Instituut voor

Landbouw en Visserijonderzoek) in Melle, Belgium (50°

59’35.667” N, 3°47’4.902” O) for seed multiplication. Rice

plantlets were transferred from MS medium to general potting

soil in 30 cm diameter pots. The rice plants were cultivated

aerobically at 25-30°C and were watered daily using a tidal

irrigation system. Additional iron and ammonium were

supplemented with 0.18% FeSO4 (Carl Roth GmbH) and 0.09%

(NH4)2SO4 (Chem-Lab) during the first weeks of growth. After 6–8

months, rice seeds were harvested and dried at 28°C for 2 weeks

prior to further usage.

2.4.2 Characterization of transgenic and mutant
rice plants

Wild type (WT), transgenic overexpression pUBI::OsAPSE and

mutant osapse plants were grown as described above. At the age of 1

month, 3–4 cm samples of young rice leaves were collected in

duplicate in sterile round-bottom safe-lock Eppendorf tubes and

stored on dry ice during transportation and at -80°C until further

usage. Rice material was ground using a Tissue Lyser II (Qiagen)

with magnetic beads (Ø 3 mm) and prior cooling on liquid

nitrogen. Afterwards, 0.1 g crushed leaf material was mixed with

1 mL DNA extraction buffer containing 2% hexadecyl-trimethyl

ammonium bromide (CTAB) (Sigma-Aldrich), 0.1 M Tris-HCl, pH

7.5, 1.4 M NaCl and 2 mM Na2EDTA (Sigma-Aldrich) followed by

extraction using a mixture of chloroform (Chem-Lab) and isoamyl-

alcohol (Carl Roth GmbH) in 24:1 ratio. Total genomic DNA

(gDNA) was precipitated with 100% isopropanol (Chem-Lab) and

washed with mixtures of 76% ethanol + 0.2 MNaOAc pH 8 (Merck)

and 76% ethanol + 10 mM NH4OAc pH 6 (Chem-Lab). The DNA

pellet was dissolved in 50 μL sterile water and stored at -20°C.

PCR analyses using gDNA extracted from pUBI::OsAPSE

plants, allowed to amplify a fragment of the hygromycin

resistance gene using Taq DNA polymerase (VWR), 2 μL DNA

with initial denaturation at 95°C for 5 min, 35 cycles (95°C for 30s,

52°C for 30s, 72°C for 30s) and final elongation at 72°C for 5 min
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(Supplementary File S2). Similarly PCR using gDNA from mutant

osapse plants, aimed to amplify the target region for CRISPR knock-

out using ALLin™ Mega HiFi Red Mastermix (highQu GmbH,

Kraichtal, Germany), 2 μL DNA with initial denaturation at 95°C

for 5 min, 35 cycles (95°C for 30s, 60°C for 45s, 72°C for 30s) and

final elongation at 72°C for 5 min (Supplementary File S2). The

resulting PCR amplicons were purified using the QIAquick® PCR &

Gel Cleanup Kit (Qiagen) and sequenced (Biosearch/LGC

Genomics GmbH). Amplified sequences of WT and osapse plants

were aligned to screen for mutations, caused by non-homologous

end-joining after Cas9 endonuclease-mediated double-stranded

breaks. The effect of mutations on the resulting polypeptides was

assessed using AlphaFold (Jumper et al., 2021).

2.4.3 OsAPSE expression during rice seed
germination

WT seeds, transgenic overexpression pUBI::OsAPSE and

mutant osapse seeds from the F3 generation were de-husked,

sterilized and sown on non-selective MS medium as described

above. The number of germinating and non-germinating (dead)

seeds was counted at 1, 4, 7 and 11 days post imbibition (dpi), with

20 seeds per time point. Germination rates were calculated. Total

seedling material, including roots, shoots and seeds from 8–10

plantlets per biological replicate were collected at 3, 7 and 10 dpi for

the pUBI::OsAPSE and osapse lines, and at 1, 4, 7 and 11 dpi for WT,

with minimum 3 biological replicates per sampling point. Different

samples were used for RNA extraction and for germination assays.

The OsAPSE transcript levels for WT at 4-7–11 dpi, pUBI::OsAPSE

overexpression lines and mutant osapse lines at 3-7–10 dpi were

correlated to the germination rates of WT, pUBI::OsAPSE

overexpression lines and mutant osapse lines at 4-7–11 dpi. The

germination rates at 1 dpi were excluded since OsAPSE transcript

levels in pUBI::OsAPSE overexpression lines and mutant osapse

lines were not determined at 1 dpi.

Plant material was crushed to a fine powder using a mortar,

pestle and liquid nitrogen. All materials were decontaminated and

rinsed between samples, using 70% ethanol and RNase AWAY

(Thermo Fisher Scientific). Crushed materials were stored at -80°C

until further usage. Total RNA was extracted using the Spectrum™

kit (Sigma-Aldrich), treated with RNase-free DNase I (Thermo

Fisher Scientific) and RiboLock RNase inhibitor (Thermo Fisher

Scientific) to remove co-extracted gDNA. Complementary DNA

(cDNA) was synthesized from 500 ng RNA using Maxima Reverse

Transcriptase (Thermo Fisher Scientific) according to the

manufacturers’ protocol. The obtained cDNAs were diluted 5

times in ultrapure water prior to further usage, and stored at -20°

C. In between operations, RNA quality and quantity were analyzed

using a NanoDrop2000 spectrophotometer (Thermo Fisher

Scientific). RT-PCR for quality control of the cDNA samples was

executed, amplifying reference genes as controls (Supplementary

File S2), using 2 μL cDNA and Taq DNA polymerase with initial

denaturation at 95°C for 5 min, 40 cycles (95°C for 30s, 58°C for

30s, 72°C for 30s) and final elongation at 72°C for 5 min. Finally,

RT-qPCR was performed with 8 μL 4x diluted cDNA, 1 μL of each

primer and 10 μL iQ™ SYBR® Green Supermix (Bio-Rad) in a CFX
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Duet Real-Time PCR System (Bio-Rad) using the following

amplification protocol: 95°C for 3 min followed by 42 cycles (95°

C for 15s, 60°C for 25s, 72°C for 20s). Melting curves from 65°C to

95°C were generated with 0.5°C increments and fluorescence

measurements every 5 s and analyzed using the CFX Maestro

v2.3 software. The generated output was analyzed in qBase+

(Hellemans et al., 2007). The list of reference genes is included in

Supplementary File S2. Primers were designed using Primer3Plus

(Rozen and Skaletsky, 1999) (RRID: SCR_003081). Primer

amplification efficiency and stability (Bustin et al., 2009) were

analyzed using the GeNorm algorithm in qBase+ (Vandesompele

et al., 2002) (RRID: SCR_003370).

2.4.4 Analysis of agronomical traits
Agronomical traits such as number of (im)mature seeds per

panicle, seed setting rate, panicle mass and seed mass were

determined by counting and weighing F3 seeds of WT, osapse and

pUBI::OsAPSE plants. Panicles from 4–5 individual plants per line

were used. Images of wild type, pUBI::OsAPSE and osapse panicles

were taken using a Canon EOS 70D digital camera (Canon Inc.,

Shimomaruko (Tokyo), Japan) on a statue with fixed height.
2.5 Subcellular localization of OsAPSE

2.5.1 Transient expression of OsAPSE-EGFP in
Nicotiana benthamiana leaves

The OsAPSE coding sequence was codon-optimized for

expression in N. benthamiana and synthetically produced

through the GeneArt Gene Synthesis service (Thermo Fisher

Scientific). The OsAPSE sequence was cloned into the Gateway™-

compatible (Invitrogen, Carlsbad (CA), USA) pK7FWG2 vector for

C-terminal fusion with the Enhanced Green Fluorescent Protein

(EGFP) (Karimi et al., 2002) under control of the constitutive 35S

Cauliflower Mosaic Virus promoter, following the cloning

procedure as described earlier (Van Hove et al., 2011). The

expression plasmid was confirmed through sequencing

(Biosearch/LGC Genomics GmbH) and transformed (300–500 ng

of plasmid DNA) in electrocompetent A. tumefaciens EHA105 cells

through electroporation (2.5 kV, 25 μF, 400 W, time constant 5–6

ms). Agrobacterium cells were selected on yeast extract medium

containing 5 g/L beef extract (Lab M Ltd., Heywood, United-

Kingdom), 5 g/L peptone (Merck), 1 g/L yeast extract (Merck), 5

g/L sucrose, 15 g/L bacterial agar (Thermo Fisher Scientific), 200 μg/

mL rifampicin (Duchefa Biochemie) and 50 μg/mL spectinomycin

(Duchefa Biochemie), for 2 days at 28°C. Putatively transformed

Agrobacterium colonies were analyzed through colony PCR using

Taq DNA polymerase and gene-specific primers (Supplementary

File S2), with 5 min initial denaturation at 95°C, 35 cycles (30s at 95°

C, 30s at 50°C, 2 min at 72°C) and 5 min final elongation at 72°C.

Recombinant Agrobacterium cells were cultured overnight at

28°C (180 rpm) in selective yeast extract broth. Similarly, A.

tumefaciens GV3105 cells harboring the empty vector pK7FWG2

plasmid as free-EGFP positive control was cultured. All

Agrobacterium cells were cultured until OD600 = 0.75 – 0.85.
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Thereafter, cells were washed using infiltration medium (pH 5.6)

containing 10 mM 2-(N-morpholino)-ethanesulfonic acid (Carl

Roth GmbH), 2 mM Na2HPO4 (VWR), 0.5% glucose (Carl Roth

GmbH), till OD600 = 0.4 and prepared for infiltration by adding

acetosyringone (Sigma Aldrich) to a final concentration of 100 μM.

The abaxial side of 3–5 weeks old N. benthamiana leaves (Bally

et al., 2018) was transiently transformed with a suspension of

Agrobacterium cells harboring either the pK7FWG2::OsAPSE

plasmid or the empty vector pK7FWG2 control (Sparkes et al.,

2006). The Agrobacterium suspensions were administered using 2

mL syringes without a needle. Thereafter, the infiltrated area was

highlighted with thin marker and the plants were incubated at 28°C

for 2–3 days prior to microscopic analysis. Nuclear colocalization

was visualized with 4’,6-diamidino-2-phenylindole (DAPI)

(Thermo Fisher Scientific), whereby a working solution at final

concentration of 10 μg/mL was infiltrated 30 minutes prior to

microscopy analysis.

2.5.2 Confocal fluorescence microscopy and
image acquisition

ANikon A1R confocal laser scanning microscope mounted on a

Nikon Ti-E inverted epifluorescence body (Nikon instruments,

Shinjuku, Japan) was used to capture confocal images. EGFP was

excited at a wavelength of 488 nm using an argon laser and detected

using an emission filter (515–530 nm). Microscopy analysis and

image acquisition with the Fiji ImageJ software (Schindelin et al.,

2012) were executed as described earlier (Dubiel et al., 2020).

2.5.3 In silico prediction of subcellular
localization of OsAPSE

Subcellular localization was also predicted in silico using online

webservers including MultiLoc2 (Blum et al., 2009) (RRID:

SCR_003151), Plant-mPLoc (Chou and Shen, 2010) (RRID:

SCR_023014), CELLO v2.5 (Yu et al . , 2014) (RRID:

SCR_011968), DeepLoc v1/v2.1 (Almagro Armenteros et al.,

2019; Ødum et al., 2024) and MuLocDeep (Jiang et al., 2023)

(RRID: SCR_026504).
2.6 Statistical analyses and visualizations

Statistical analyses were performed using SPSS v29.0 (RRID:

SCR_002865). Throughout this study, significance levels at p < 0.05

were enforced. Comparison of means with n degrees of freedom (df)

was executed using the Student’s T-test for comparison between 2

samples or one-way ANOVA for comparison between >2 samples.

Prior analysis of normality using the Shapiro-Wilk test and

homogeneity of variance using the Levene’s test was executed

when applicable. In case the normality criterium was violated, the

non-parametric Mann-Whitney U test or pairwise Kruskal-Wallis

test were performed. The Welch test was executed when the

homoskedasticity criterium was violated. Effect sizes for

comparison of means was assessed based on the reported h²
value, explaining a proportion of the observed variance per

dataset. For the germination assays, a generalized linear model
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(GLM) was fitted with a binomial distribution and logit link

function to model the probability of seed germination as a

function of transgenic line, time point and their interaction. For

each time point, differences in germination rates between transgenic

lines, knock-out lines and WT were assessed using separate

binomial logistic regression models, with WT as the reference.

Bar charts were generated by means of Microsoft Excel (RRID:

SCR_016137) and reformatted in Inkscape v1.3.2. Diagrams were

generated in BioRender (RRID: SCR_018361).
3 Results and discussion

3.1 Phylogeny of GH27 sequences from
grasses and cereals

Most of the GH27 sequences found in the CUPP database

belong to the taxonomical division of Bacteria (60.0%), followed by

Fungi (24.1%), Metazoa (7.4%) and Viridiplantae (7.3%)

(Supplementary File S3.1). A total of 140 GH27 sequences from

grasses and cereals (Poales) were retrieved. After removal of 38

duplicate sequences or gene fragments (Supplementary File S3.2),

the CANDY tool was employed for modularity analysis (Windels

et al., 2024). Several recurring InterPro domains were found across

the GH27 sequences (Supplementary File S3.3). All sequences were

attributed with the GH27-related IPR002241 and GH superfamily-

related IPR017853 identifiers. The IPR041233 and IPR013780

identifiers both refer to the same domain, although the

IPR041233 identifier is used specifically for MELs and the

IPR013780 identifier applies to GH-all-beta domains in general.

Almost every retrieved GH27 sequence contained the C-terminal

GH-all-beta domain, which is a common terminal domain for a

number of GH families, including GH5, GH13 and GH42.

Structurally, this C-terminal domain resembles a Greek key b-
sandwich (Hutchinson and Thornton, 1993). Furthermore, several

sequences were provided with the IPR035992 identifier describing

ricin-B-like lectin domains (Van Holle et al., 2017; De Coninck

et al., 2024b).

Phylogenetic analyses based on the full-length sequences of

GH27 enzymes were executed and enabled the identification of

distinct clades (Figure 1A). The gamma shape parameter was

estimated at a = 4.44 indicating moderate rate variation across

sites. Approximately 9.4% of the sites were inferred to be invariant.

Intriguingly, ricin-B-like domains have only been identified in a

subpopulation of the GH27 sequences from Poales. As shown in the

phylogram (Figure 1A), ricin-B-like domains are present only in the

so-called “APSE clade”, which is distant from other GH27

sequences without a ricin-B-like domain. This is also observed

when GH27 sequences across kingdoms are studied

(Supplementary File S3.1). Members within the APSE clade in

Poales species show high sequence similarity (median >70%;

Supplementary File S3.4) towards the characterized APSE from

Arabidopsis thaliana (Imaizumi et al., 2017) and have highly

conserved amino acid sequences, judging from weblogos
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(Supplementary File S3.5) and multiple sequence alignments

(Supplementary File S3.6).

The presence of a ricin-B-like domain is a distinctive trait to

categorize the GH27 family. Almost all members from the APSE

clade have been designated as CUPP group GH27:14, while all other

GH27 sequences from Poales are found in CUPP groups GH27:6

and GH27:23 (Figure 1A). Belonging to different CUPP groups

indicates that unique peptide patterns exist amongst APSE proteins

and other GH27 proteins. These peptide patterns are highly

conserved across species and are indicative for a unique protein

structure and biological function (Barrett et al., 2020). Next to the

APSE clade, three other clades have been identified, numbered with

Greek letters I, II and III, and coincide mostly with CUPP groups

GH27:6 and GH27:23. The apparent separation of the APSE clade

from the other clades is not only attributed to the ricin-B(-like)

domain, but also to the GH27 domain itself. When phylogenetic

analysis is executed only on the GH27 domains of Poales, the APSE

clade remains phylogenetically isolated from the other GH27

sequences, but the formation of clades I, II and III is now lost

(Supplementary File S3.7), emphasizing the highly dissimilar nature

of the APSE GH27 domain compared to other GH27 sequences.

Striking differences are apparent between GH27 domains from

the APSE clade compared to GH27 domains from clades I, II and

III. Although GH27 domains from clades I, II and III are mutually

remarkably similar, they contain several large gaps compared to

GH27 domains from the APSE clade (Figure 1B, Supplementary

File S3.8). Despite the important differences between APSE and

clade I, II, III GH27 sequences, the catalytic residues are conserved,

which is a known characteristic of the GH27 family (Figure 1C,

Supplementary File S3.8) (Hart et al., 2000; Ly et al., 2000; Garman

et al., 2002; Fujimoto et al., 2003; Guce et al., 2010).

The dissimilarities between APSE members and other GH27

sequences are also present at the structural level. Structural

comparison between OsAPSE and a selection of GH27 AGAL

AlphaFold or PDB models from Z. mays, T. aestivum, O. sativa

and S. viridis (Supplementary File S4.1) yields bad structural

alignments with mean RMSD = 5.97 ± 0.06 Å. Surprisingly, also

the alignment between OsAPSE and the other OsAGALs from rice

yields bad structural alignments with mean RMSD = 4.57 ± 1.54 Å

(Figure 1D) (Supplementary File S4.2). Likewise, poor RMSD values

(5.37 ± 1.15 Å) are obtained when the OsAPSE GH27 domain was

compared to the GH27 domains of characterized GH27 proteins

from other kingdoms (Supplementary File S4.1). In contrast,

structural comparison between OsAPSE and APSE sequences from

the characterized A. thaliana AtAPSE (Figure 1E) and H. vulgare, A.

comosus, Z. mays, Triticum monococcum (Figure 1F) yields close

structural alignments (0.74 ± 0.51 Å) (Supplementary File S4.2).
3.2 Modelling and molecular dynamics of
OsAPSE

3.2.1 Modelling of OsAPSE
The OsAPSE protein is composed of 3 domains: an N-terminal

GH27 catalytic domain, linked by a long loop (L1) to a b-trefoil
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FIGURE 1

Phylogenetic and structural analysis of GH27 domain sequences from Poales. Modularity of the full-length GH27 sequences, represented by their
corresponding GenBank IDs, is displayed by blue rectangles (GH27 domain), red circles (Ricin-B(-like) domain) or green hexagons (GH-all-beta
domain). The outer strips represent taxonomy and CUPP-group and are colored as indicated in the legend. OsAPSE (GenBank ID: BAD73696.1) is
highlighted in red. GH27 domain sequences used in the sequence alignment are highlighted with an orange circle (A). Partial alignment of a
selection of GH27 domains from the APSE clade and defined clades I, II and III denoted as AGAL1, AGAL2 and AGAL3 (B). Partial alignment of GH27
domains from the APSE clade with the characterized APSE domain from Arabidopsis thaliana (highlighted in green) and OsAPSE (highlighted in red),
illustrating the conservation of the catalytic residues. The catalytic nucleophile is highlighted in yellow and the catalytic acid/base in cyan (C).
Explanation of symbols: gap (-), conserved residue (.), highly conserved residue (): identical residue (*). The OsAPSE sequence is highlighted in red.
Structural alignment of OsAPSE (cyan) with OsAGAL2 (green; GenBank ID: BAC79549.1) (D). Structural alignment of OsAPSE (cyan) with AtAPSE
(magenta) (E). Multiple structural alignments of OsAPSE (cyan) with other APSE clade members of Hordeum vulgare (orange; GenBank ID:
BAK07302.1), Zea mays (green; GenBank ID: ACN31209.1), Ananas comosus (magenta; GenBank ID: CAD1820060.1) and Triticum monococcum
(yellow; GenBank ID: ACJ06602.1) (F). RMSD values were calculated using the cealign algorithm.
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ricin-B-like domain with a putative CRD, and a C-terminal GH-all-

b domain of unknown function linked by a shorter loop (L2) to the

ricin B(-like) domain (Figure 2A). Modeling of the structure of

OsAPSE resulted in a low Qualitative Model Energy Analysis

(QMEAN) value of 0.54. The low QMEAN value mostly depends

on the occurrence of extended loops L1 and L2 connecting the ricin-

B-like domain with the N-terminal GH27 and C-terminal GH-all-

beta domain, respectively (Benkert et al., 2011; Studer et al., 2020).

Modelling of extended loops typically gives conformations of poorly

reliable geometric and thermodynamic quality (Fiser et al., 2000), in

our case accounting for 1.85% and 1.78% of the Ramachandran and

rotamer outliers, respectively. In addition, the QMEAN value of the

individual GH27 domain was determined, yielding a QMEAN value
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of 0.69. The reported QMEAN value is considerably higher

compared to the value of the complete OsAPSE protein, due to

the presence of rigid a-helices and b-sheets in the TIM barrel of the

GH27 domain. However, the value was somewhat lowered due to

the presence of flexible loops connecting the a-helices and b-sheets.
The catalytic domain exhibits a canonical TIM (a8b8) barrel

structure, made of a central crown of 8 b-strands, linked by short

loops to a peripheral crown of 8 a-helices (Figure 2B), which is a

common structure in enzymes (Vega et al., 2003). The catalytic cleft

occupies the center of the TIM barrel and two aspartic acid residues

(D226 and D282) located at the center of the catalytic cleft, form the

active site of the enzyme (Figure 2B). These catalytic residues are

highly conserved (Figure 2E) within the GH27 family (Zhu et al.,
FIGURE 2

Structure of OsAPSE and interaction with monosaccharide substrates. OsAPSE is a 3-domain protein (A) comprising of a GH27 domain (B) with a
catalytic cleft (E). The other subdomains are the ricin-B-like domain (C) and the GH-all-b domain (D). The Roman numbers I, II and III enumerate the
subdomains of OsAPSE. L1 and L2 are two linkers connecting the GH27 domain with the ricin-B-like domain and the ricin-B-like domain and the
GH-all-b domain respectively. The capital italic letters N and C indicate the N and C-terminal ends of OsAPSE and its subdomains. OsAPSE is shown
without its native signal peptide. The catalytic residues D226 and D282 are indicated in red in sub-figures (B, E). In sub-figure (E), the protein surface
is represented with a transparency of 40% to show localization of a-helices, b-strands and catalytic residues D226 and D282 in the vicinity of the
entry of the active site (encircled yellow dashed line) within the catalytic groove of the domain (parallel yellow dashed lines). The monosaccharide
substrates a-D-Galp (F) and b-L-Arap (G) were docked in the catalytic site of the GH27 domain. The black dashed line is indicative for the distance
between the two catalytic residues D226 and D282 and measures 6.8 Å.
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1995; Hart et al., 2000; Ly et al., 2000; Garman et al., 2002; Fujimoto

et al., 2003; Guce et al., 2010; Okazawa et al., 2015; Kytidou et al.,

2018). The ricin-B(-like) domain comprises 3 bundles of b-sheets
organized in a typical b-trefoil lectin structure with putative

carbohydrate-binding activity (Figure 2C) (Hazes, 1996; Steeves

et al., 1999). The short C-terminal all-beta domain is made of 2 anti-

parallel b-sheets forming a b-sandwich (Figure 2D). The function of

all-beta domains is multifarious: they provide structural stability

and assist in protein folding by acting as a nucleation site (Boissinot

et al., 1997; Kemplen et al., 2015).

3.2.2 Docking of substrates and molecular
dynamics

Because of its close structural similarity to AtAPSE, it was

expected that OsAPSE will display AGAL and ARAP activity

against carbohydrate structures from the cell wall. Therefore, it

was hypothesized that the main substrates for OsAPSE would be

molecules with a-D-Galp and/or b-L-Arap side chains. Docking

experiments performed with the GH27 domain (Supplementary

File S5.1) showed that all the assayed mono- and oligosaccharides

bind to the catalytic pocket via a network of hydrogen bonds with

the catalytic residues D226 and D282 and surrounding hydrophilic

residues (N47, D83, H143, K224, S255, S257, R278, D318, D320,

M321), although these residues varied in number and type

depending on the ligand (Supplementary File S5.1). The

substrates a-D-Galp and b-L-Arap were docked in stable chair

conformation. For a-D-Galp (Figure 2F), O1/2, and O3/4are

predicted to make contact with the catalytic residues D226 and

D282, respectively. In addition, stacking interactions between

aromatic residues Y49 (O4/6), Y84 and W189 located around the

catalytic pocket, and the pyranose ring of the saccharides complete

and reinforce the interaction with the GH27 domain (Asensio et al.,

2013; Spiwok, 2017). Similar stacking residues were observed in

other GH27 enzymes from fungi (Brumer et al., 1999), chicken

(Garman et al., 2002), human (Garman and Garboczi, 2004; Guce

et al., 2010), rice (Fujimoto et al., 2003) and tobacco (Kytidou et al.,

2018). It was expected that more or less the same residues would be

involved in substrate binding to a-D-Galp and b-L-Arap (Ichinose

et al., 2009). However, despite b-L-Arap being a smaller molecule,

the in silico docking yielded two additional residues, D83 (O1) and

K224 (O2), to be involved in substrate binding next to Y49 (O4),

H143 (O1), D226 (O1) and D282 (O2/3) (Figure 2G). These results

showcase the ability of the OsAPSE GH27 domain to accommodate

substrates with terminal a-D-Galp and b-L-Arap residues.

GH27 enzymes, including OsAPSE, adhere to the classical

Koshland double-displacement retaining mechanism, characterized

by two consecutive displacement steps resulting in the retention of

the anomeric configuration of the released sugar (Sinnott, 1990). In

OsAPSE, D282 functions as the general acid, while D226 serves as the

catalytic nucleophile. Upon substrate binding, D282 protonates the

aglycone, facilitating glycosidic bond cleavage and generating an

oxocarbenium ion-like transition state. Subsequently, the carboxylate

group of D226 attacks the C1 atom of the sugar moiety, forming a

covalent galactosyl/arabinosyl-OsAPSE intermediate (Vocadlo et al.,

2001). In the second step, D282 deprotonates a water molecule,
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activating it for nucleophilic attack on C1, leading to a second

oxocarbenium ion-like intermediate. This results in the cleavage of

the catalytic bond between D226 and the galactosyl/arabinosyl group,

releasing free galactose or arabinose, and restoring the enzyme to its

initial state.

All saccharides displayed energetically favorable interactions

(DG < 0), within the same range (KD = 8-59 μM), (Supplementary

File S5.1), even with carbohydrates for which no particular

interaction was expected, such as D-Glcp and D-Xylp. The

binding affinity for D-Glcp is lower compared to other

saccharides. The limited differences in binding affinity between

the assayed carbohydrates is probably due to the strong structural

resemblance between D-Galp and D-Glcp, which are only differing

in their configuration at C4 (Homolak et al., 2024), and similarly, L-

Arap and D-Xylp are only different at the C4 anomeric

configuration (Guo et al., 2025). However, it should be

emphasized that the possibility to dock alternative ligands into

the catalytic site does not necessarily mean that OsAPSE will cleave

off these moieties. The structural flexibility of carbohydrates during

molecular dynamics simulations is often exaggerated and may

distort genuine protein-carbohydrate interactions (Boonstra et al.,

2016), hence experimental validation is always required (Lerbret

et al., 2007). Docking of carbohydrates to the ricin-B-like domain

was outside the scope of this study.

Additional saccharides with varying degree of polymerization

(DP) (i.e. stachyose, verbascose, ajugose, GalNAc, pNP-a-D-Galp
and pNP-b-L-Arap) were docked in the catalytic pocket of the

GH27 domain of OsAPSE, within a docking grid of 7Å and the

number of hydrogen bonds during molecular dynamics simulations

was determined (Supplementary File S5.2). Most stable interactions

were observed for the smaller substrates L-Arap, D-GalNAc, pNP-

a-D-Galp and D-Galp, while the interactions were least stable for

verbascose (DP = 5) and ajugose (DP = 6). It should be emphasized

that the results should be interpreted with reservation, as ligand

docking and molecular dynamics simulations were performed with

modelled protein structures.
3.3 Production and activity of the
recombinant GH27 domain of OsAPSE

Several attempts have been undertaken to produce OsAPSE or

its GH27 domain recombinantly in multiple prokaryotic and

eukaryotic hosts and strains, under a wide range of experimental

conditions and construct designs, but these assays were mostly

unsuccessful due to protein insolubility. The lack of soluble

recombinant proteins is widely recognized as a main bottleneck

in proteomics research (Bhatwa et al., 2021; Beygmoradi et al.,

2023). CFPS platforms derived from cell lysates can be considered

when cell-based strategies are inadequate (White et al., 2013).

Although, prokaryotic CFPS systems are often preferred due to

the low production costs, high productivity and scalability, they

may not be the platform of choice for eukaryotic proteins due to the

absence of appropriate PTMs and chaperones, which impact

protein folding, structure and activity (Harbers, 2014; Zemella
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et al., 2015). About 10 years ago a CFPS based on tobacco BY-2

lysates was developed, facilitating oxidative folding, PTMs and

assembly of multidomain enzymes/antibodies (Buntru et al., 2014,

2015). The performance of this platform was already demonstrated

by successfully producing an array of eukaryotic glycoproteins

with disulfide bridges and proper N-glycosylation (Buntru

et al., 2022).

3.3.1 Cell-free production of the GH27 domain of
OsAPSE and screening for GH27 activity

The GH27 domain of OsAPSE consists of 352 amino acids and

has a predicted molecular weight of 39.9 kDa and pI = 5.99.
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Furthermore, the protein is predicted to be stable (instability

index = 34.79) and moderately hydrophilic (Grand Average of

Hydropathicity index = -0.365). Protein concentrations were

estimated (Figure 3A) using BSA as reference protein

(Supplementary File S6). GH27_OsAPSE was detected after

Western blot analysis (Figure 3B). A distinct and unique protein

band can be observed for the reaction with pALiCE02::

GH27_OsAPSE. The protein polypeptide appears somewhat

smaller (< 5 kDa) compared to the predicted size, but is not

attributed to protease activity (Buntru et al., 2014). Deviating

protein sizes are sometimes observed and are attributed to their

charge distribution and more compact protein folding (Rath et al.,
FIGURE 3

Quantification, visualization and screening for GH27 activities. Proteins were quantified using the Bradford assay. Error bars represent standard
deviations based on four independent biological replicates (A). Western blot with DAB detection using anti-His6 antibodies. The arrows indicate the
protein of interest (i.e. GH27_OsAPSE) while the asterisk indicates the yellow fluorescent protein, present in the control reaction as reporter (B).
AGAL and ARAP activity expressed in U/mL, measured in a continuous assay. The control is the CFPS reaction with empty vector pALiCE02
incubated at 25°C at pH 7.5 (C). Structural comparison between a-D-Galp and b-L-Arap. Structural images were drawn using ChemSketch (D).
Abbreviations: EV (empty vector).
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2009; Shi et al., 2012). The pALiCE02 plasmid used in the control

reactions contains a His6-tagged yellow fluorescent protein (YFP)

reporter sequence, yielding a polypeptide with estimated size of 33

kDa (Figure 3B). The YFP sequence is removed from the

pALiCE02::GH27_OsAPSE construct during the cloning process

(Supplementary File S7).

A continuous enzymatic assay detected both AGAL and ARAP

activity (Figure 3C) in the CFPS protein fractions (Supplementary File

S8.1). This is not surprising since a-D-Galp and b-L-Arap are

structurally very similar (Figure 3D) (Kotake et al., 2016), and both

fit in the active site of the GH27_OsAPSE domain (Figure 2). OsAPSE

shows high sequence identity (65%) (Supplementary File S3.4) and

structural similarity (RMSD = 0.75Å) towards the characterized

AtAPSE (Figure 1E), although the latter mainly demonstrated ARAP

activity. However, it has been reported that AGALs may display both

ARAP and AGAL activity (Imaizumi et al., 2017).
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Absorbance measurements were used to calculate reaction

velocities and activities (Equation 1). The reactions with

pALiCE02::GH27_OsAPSE yielded an enzymatic AGAL and

ARAP activity of 67.2 U/mL and 78.2 U/mL, respectively,

whereas the control reaction with pALiCE02 only released

negligible pNP moieties (Figure 3C), most probably due to

spontaneous degradation over the course of the enzymatic assay.

Background activity originating from deglycosylases should not be

present, as it was already demonstrated before that the ALiCE CFPS

system gives rise to intact N-glycans (Buntru et al., 2022).

3.3.2 Determination of temperature/pH optima
and enzyme kinetics

Discontinuous enzymatic assays with pNP-a-D-Galp revealed

the temperature optimum of GH27_OsAPSE at 25°C (Figure 4A)

and pH optimum at pH = 8 (Figure 4B) (Supplementary File S8.2).
FIGURE 4

Determination of the temperature/pH optima and kinetic parameters KM and Vmax. Comparison of relative activity at different temperatures (A).
Comparison of relative activity at different pH values (B). The control is the CFPS reaction with empty vector pALiCE02 incubated at 25°C at pH 7.5.
Hanes-Woolf linearization was applied to determine KM and Vmax. The slope represents Vmax

-1, the KM value is obtained by multiplying Vmax and the
value of the y-intercept. The obtained Hanes-Woolf curve is considered linear according to the R² value (C). Linear relationship between v0 and [S]
indicates that the performed experiment was conducted under substrate-saturated conditions at which v0 = Vmax (D).
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The relative activity decreases with increasing temperature. At

temperatures around 50°C, the reaction mixtures turned opaque,

due to protein denaturation and precipitation. However, the relative

activity at various pH conditions shows a typical bell-shaped curve,

with >95% of the activity retained between pH 7.5–8 and sharp

decline when deviating from the optimum.

GH27 enzymes from plant origin are often categorized based on

their pH optimum (Supplementary File S8.5), as there are acidic and

alkaline AGALs present in plants. Plant AGALs usually display pH

optima around 4.5-8.5 and temperature optima around 30-40°C

although there are also AGALs with somewhat extreme optima, for

instance in fava bean (pHopt = 2.5) (Dey and Pridham, 1972) and

maize and melon (pHopt = 8.5) (Gao and Schaffer, 1999; Zhao et al.,

2006). However, the pHopt of OsAPSE (7.5-8) is not in accordance

with its supposed biological environment, being the apoplast with

typical apoplastic pH values (pHapo) between 5.5-6, although pHapo

values as low as 3.5 and as high as 8.5 have been reported before (Yu

et al., 2000). The pHapo in rice tissues has not been reported yet but

is likely to be within the same range as closely related organisms

such as barley leaves (pHapo = 5.6-6.6) and maize coleoptiles (pHapo

= 5.7-6.0). Several cell wall-active enzymes display pHopt values that

differ from their surrounding physiological pH. For instance,

expansins typically have a pHopt = 4, which is far below the acidic

pHapo of 5.5-6 (Sampedro and Cosgrove, 2005). In addition, pectin

methylesterases from Arabidopsis and citrus often have an pHopt =

7–8 despite residing in generally acidic cell wall environments (Xu

et al., 2022; Hocq et al., 2023). It is suggested that such pH optimum

discrepancies imply enzyme dormancy until pH shifts occur. In this

way, the enzyme activity is inhibited and becomes active only upon

cell wall acidification or alkalinization. This built-in pH discrepancy

is thought to enable rapid regulation of wall-loosening by the cell

but also prevents excessive enzyme action until local conditions are

adequate. Alternatively, pH discrepancies may also arise from

artefacts of recombinant expression (altered folding, missing

processing). An upward shift of the optimal pH due to the

changed electrostatic environment of the catalytic site has been

reported before (Montor-Antonio et al., 2017; Hofer et al., 2020). It

is, however, difficult to predict whether or not OsAPSE was

produced with an aberrant catalytical site.

AGALs with a Topt = 60-65°C were reported in papaya (Soh

et al., 2006) and sugarcane (Chinen et al., 1981). Stability towards

pH is usually ± 2–3 pH values around the optimum. Likewise, the

Q10 temperature coefficient for most plant enzymes is typically 2-4,

meaning that the reaction rate decreases 2–4 fold with a 10°C

temperature increase (Bernacchi et al., 2002; Elias et al., 2014).

Kinetic parameters including the KM value and Vmax were

determined (Supplementary File S8.3). The absorbance did not

further increase after 1 hour of incubation. The Hanes-Woolf

linearization calculations were performed with the data point

between substrate concentrations of 0.5–50 mM and yielded a

linear relationship (R² = 0.9895) (Figure 4C). It was calculated

that KM = 0.67 mM and Vmax = 3.9 nM·s-1. The initial fit to the

hyperbolical Michaelis-Menten plot, according to Equation 2,

yielded a poor R² 0.237 (n = 6 data points) or R² = 0.399 (n = 4

data points).
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v0 =
Vmax · ½S�
KM + ½S� =

3:9  · 10−9  · ½S�
0:67 · 10−3 + ½S�

It is obvious that the relationship between v0 and [S] is linear

(R² = 0.9858) (Figure 4D). This is not surprising, since the

experiment made use of a range of substrate concentrations

between 0.5–50 mM, which are far above the calculated KM,

under substrate-saturated conditions (v0 = Vmax). The value for

Vmax mainly depends on the enzyme concentration. The KM value,

on the other hand, is an intrinsic enzyme parameter, independent of

the enzyme concentration. The observed KM is in line with values

reported in scientific literature (Supplementary File S8.5) for

experiments with comparable substrates and enzymes. For

instance, an AGAL from rice was produced recombinantly in P.

pastoris and yielded a KM = 0.47 mM for pNP-a-D-Galp as

substrate, which is only slightly lower compared to the KM value

in this study (Chien et al., 2008). Furthermore, KM values are

correlated with the complexity of the used substrate

(Supplementary File S8.5). Larger substrates (f.i. RFOs), typically

yield higher KM values, i.e. lower enzyme-substrate affinity. We did

not determine the KM and Vmax for pNP-b-L-Arap as substrate due
to limited availability of the used CFPS system and the very high

probability of achieving similar values. It would not be

unreasonable to assume that the KM value for pNP-b-L-Arap
would be in the same order of magnitude, since we demonstrated

that GH27_OsAPSE displays similar AGAL and ARAP activity at

identical concentrations of substrate and protein (Figure 3C).
3.3.3 Activity on natural substrates
A wide range of putative substrates decorated with a-D-Galp

and/or b-L-Arap side chains were submitted to enzymatic

hydrolysis by the GH27 domain of OsAPSE (Figure 5A). Highest

activities were observed for the disaccharide melibiose, the

trisaccharide raffinose and the polysaccharide galactomannan

(Supplementary File S8.4). An activity slightly higher compared to

the empty vector pALiCE02 control was observed for verbascose

(+36.3%), arabinogalactan from larch wood (+24.2%) and AGPs

from A. thaliana cell suspension cultures (+30.6%) (Figure 5B). The

modest activity may be due to the inherently low abundance of a-
D-Galp and b-L-Arap moieties in AGP O-glycans (Tryfona et al.,

2012). Furthermore, AGAL activity is typically lower for RFOs with

a higher DP (Supplementary File S8.5).

Similar to AtAPSE, GH27_OsAPSE shows high activity for

substrates which are not colocalizing with OsAPSE at the cell

surface (Imaizumi et al., 2017). RFOs do not occur at the cell

surface of rice cells (De Coninck et al., 2024a), but are stored in

vacuoles (Van den Ende, 2013; Elango et al., 2022). Galactomannan

is speculated to be present in low quantities in the cell walls of rice

endosperm and the aleurone layer (Ren et al., 2007). However,

GH27 act iv i ty was a lso detected for AGPs with O-

glycans (Figure 5B).

GH27 enzymes from plants typically accommodate hydrolytic

cleavage of monosaccharides from storage polysaccharides or cell

wall structures (Gao and Schaffer, 1999; Imaizumi et al., 2017;

Chuankhayan et al., 2023). Most of the arabinose and galactose at
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the cell surface occurs as a/b-L-Araf and b-D-Galp (Ghosh et al.,

2023) and is present in arabinogalactan, rhamnogalacturonan I and

xylan side chains. Theoretical models depicting cell wall structure

do not always include b-L-Arap and a-D-Galp (Seifert, 2020;

Delmer et al., 2024) despite the fact that these residues have been

detected by NMR at. the extremities of AGP O-glycans (Odonmazig

et al., 1994; Ponder and Richards, 1997; Strasser et al., 2021) or in

side chains of pectin rhamnogalacturonan-I (Perez, 2003; Caffall

and Mohnen, 2009; Goetz et al., 2016). The structure (and function)

of AGP O-glycans and pectic polysaccharides depends on the

activity of CAZymes, such as glycosyltransferases for synthesis

and GHs for trimming and degradation (Leszczuk et al., 2023).

Both AGP O-glycans and pectic polysaccharides are highly complex

and heterogenous structures, and the relationship between glycan/

polysaccharide structure and biological function is not fully

understood (Strasser et al., 2021). In plants, most of the

transferases for glycan/pectin synthesis are known (Caffall and

Mohnen, 2009; Silva et al., 2020) while far less information is

available concerning O-glycan degradation in plants (Ellis et al.,
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2010), since only 5 AGP O-glycan degrading GHs are currently

known (Knoch et al., 2014).

The composition and modification of AGP O-glycans vary

significantly across cell types, tissues and species, suggesting that

plants modify these structures to their environment and

physiological needs (Leszczuk et al., 2023). Although not fully

understood, evidence indicates that AGP O-glycan structure is

linked to biological function. AGP O-glycans help plants respond

to environmental stresses. For example, the seagrass Zostera marina

produces O-glycans rich in 4-O-methylglucuronic acid, which

provides a polyanionic interface and contributes to osmotic

adjustment to salinity stress (Pfeifer et al., 2020). Such O-

glycosylation patterns are not observed in land plants, which

mostly obey to the typical ‘type-II AGP’ structure (Strasser et al.,

2021). In land plants, fungal degradation of AGP O-glycans can

impair cellulose production and growth, highlighting the

importance of glycan length and branching for cell wall integrity

(Kikuchi et al., 2022). AGP O-glycans also stabilize the cell wall by

binding ions like Ca2+ through negatively charged residues (f.i.
FIGURE 5

Enzymatic activity of GH27_OsAPSE on natural substrates. Structure of the considered natural substrates. The structures for galactomannan,
arabinogalactan and arabinogalactan protein O-glycans are average structures based on theoretical models (Knoch et al., 2014; Seifert, 2020;
Strasser et al., 2021; Voiniciuc, 2022; Tan et al., 2023) (A). Bar chart representing relative activities of GH27_OsAPSE on natural substrates. The
control is the CFPS reaction with empty vector pALiCE02 incubated at 25°C at pH 7.5 (B).
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glucuronic acid). Plants with reduced glucuronidation show severe

developmental issues, which can be alleviated by Ca2+

supplementation, indicating that ion binding plays a structural

role (Lopez-Hernandez et al., 2020). Additionally, AGP O-glycans

form covalent links with other cell wall components like pectic

rhamnogalacturonan-I and arabinoxylan, contributing to structural

stability of the cell wall matrix (Tan et al., 2013, 2023). Finally, AGP

O-glycans are also crucial in development, influencing cell division,

elongation and differentiation. For instance, trimming of AGP O-

glycans affects apple fruit ripening (Leszczuk et al., 2020), and

proper glycosylation by hydroxyproline-O-galactosyltransferases is

essential for pollen development, as shown by sterility in

Arabidopsis mutants lacking these enzymes (Kaur et al., 2022).
3.4 OsAPSE may be unconventionally
secreted to the cell surface

3.4.1 Arguments for unconventional protein
secretion

OsAPSE is predicted to be synthesized with an N-terminal SP.

No other localization signals are detected (Supplementary File S9.1).

Because of the presence of a SP, it can be expected that OsAPSE will

follow the secretory pathway involving protein synthesis on the

endoplasmic reticulum (ER). Furthermore, PTMs such as the

addition of N-glycans and the formation of disulfide bridges are

likely to occur. Asparagine residues N269, N372 and N380 occur in

a sequon and are predicted as N-glycosylation sites with high

confidence (Supplementary File S9.1). However, N380 is part of a

NPT sequon and will therefore not be recognized by the

oligosaccharyltransferase complex (Matsumoto et al., 2017). The

sequons at N269 and N372 are likely to accommodate N-glycans as

these asparagine residues are correctly oriented at the protein

surface (Supplementary File S9.2). Several disulfide bridges are

predicted in the structure of OsAPSE, although only 1 disulfide

bridge is likely to occur in the GH27 domain of OsAPSE. Cysteine

residues C187 and C227 are positioned under a favorable dihedral

angle and inter-atomic distance of 2.03 Å, which is within the

average disulfide bridge length of 1.8-3.0 Å.

It remains speculative whether or not secretion of OsAPSE

occurs conventionally or unconventionally. By default, it is assumed

that proteins with a SP are secreted at the cell surface through

conventional secretion (Rose and Lee, 2010). However, it was

shown that several secretory proteins do not necessarily possess a

SP (Wang et al., 2018). Unconventional protein secretion in

multivesicular bodies has been demonstrated for several cell wall-

active enzymes, including xyloglucan endotransglucosylase/

hydrolases from Arabidopsis (De Caroli et al., 2021) and HaAPSE

(HanXRQChr08g0208381), the Helianthus annuus (sunflower)

homologue of OsAPSE (50.2% sequence identity) (Regente et al.,

2017). Retrieving cell wall-active enzymes from multivesicular

bodies is significant and remarkable, as it was supposed for a long

time that these enzymes are trafficked by a SP and secreted

conventionally (Rose and Lee, 2010). However, it has been

hypothesized that some cell wall-active enzymes with SP may be
Frontiers in Plant Science 16
delivered at the cell surface using a vesicular “type IV-UPS” bypass

of the Golgi apparatus (Rabouille, 2017; Maricchiolo et al., 2022).

Alternatively, unconventionally secreted cell wall-active enzymes

with SP may bypass both the Golgi apparatus and vesicular

transport through ER-plasma contact sites (Bellucci et al., 2018).

Unfortunately, in contrast to mammalian proteins, tools for

predicting unconventional protein secretion, such as SecretomeP

(RRID: SCR_026505), are not available for plants (Bendtsen

et al., 2004).

3.4.2 Localization of OsAPSE according to in
silico prediction tools

OsAPSE was predicted to be located at the cell surface or cell

wall (Supplementary File S9.3). The results were mainly uniform,

predicting the localization of OsAPSE. This is in agreement with the

hypothesized function of OsAPSE being a cell wall-active enzyme.

Localization data from the WallProtDB-2 database (San Clemente

et al., 2022) (RRID: SCR_026506) reveals that OsAPSE has already

been detected in the cell wall proteome of rice callus cultures (Chen

et al., 2009).

3.4.3 Localization of OsAPSE-EGFP in transiently
transformed N. benthamiana leaves

Subcellular localization studies of OsAPSE in N. benthamiana

leaves, transiently transformed with the pK7FWG2::OsAPSE-EGFP

fusion construct, reveal that the OsAPSE-EGFP fusion protein is

localized at the cell surface (Figures 6A–E). No fluorescent signals

were detected in the cytosol. Transient expression of cytosolic

EGFP-fusion proteins typically shows cytoplasmic strands,

attributed to the voluminous (i.e. 80-90% of total volume)

vacuoles of the tobacco epidermal cells (Cui et al., 2020).

Cytoplasmic strands were abundantly observed in the free-EGFP

control treatments (Figures 6F–J), but only sporadically and faintly

in pK7FWG2::OsAPSE-EGFP treated plants (Figure 6A). In several

images, we also observed colocalization between OsAPSE-EGFP

and the DAPI signal, suggesting a nuclear localization (Figures 6B,

C) although no NLS was identified in the coding sequence of

OsAPSE (Supplementary File S9.2).

Heterologous expression of non-native SPs is often less efficient

(Jarvis et al., 1993; Wilbers et al., 2016), due to the occurrence of

certain amino acids in the SP (f.i. double arginine and multiple

repeated proline residues) that hinder helix formation, lower the

affinity towards the SP recognition particle and inhibit SP

peptidases (Nilsson and Von Heijne, 1992; Snapp et al., 2017).

The SP of OsAPSE contains such disturbing elements

(-PPPWRRLLRCALLPP-). RR motifs in SPs are ER retention

signals, due to their ability to interfere with vesicle formation that

would otherwise transport the protein along the secretory pathway

(Schutze et al., 1994). Disturbed recognition or incomplete SP

cleavage results in subpopulations of the protein of interest being

either processed adequately or accumulating in the ER (Wilbers

et al., 2016). Protein accumulation in the ER in turn leads to ER

stress and unfolded protein responses (Hicks, 2013; Srivastava et al.,

2014), which involve ER-associated degradation and retro-

translocation of the misfolded protein to the cytosol for
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degradation (Johnson and Haigh, 2000). Upon proteolytic cleavage

of the misfolded proteins, hidden NLS sequences are often exposed,

causing nuclear import (Srivastava et al., 2014). Likewise, cytosolic

degradation of (partially) misfolded OsAPSE-EGFP could result in
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the release of EGFP, which localizes by default to the nucleus (Seibel

et al., 2007). Such ‘protein reflux’ has been described in the context

of ER stress (El Meskini et al., 2001). Noteworthy, it has been

established that EGFP(-fusion) proteins with size up to 110 kDa
FIGURE 6

Subcellular localization of OsAPSE-EGFP in epidermal cells of Nicotiana benthamiana leaves. (A-E) show pK7FWG2::OsAPSE-EGFP infiltrated tissues,
while (F-J) show tissues infiltrated with the pK7FWG2 empty vector control. The domain architecture, orientation and size of the transiently
produced protein is shown. (A, F) show the green fluorescent signal. (B, G) show the DAPI signal. (C, H) show the combined green fluorescent and
DAPI signal. (D, I) show the transmission channel. (E, J) show the combination of all channels. Abbreviations: CS (cell surface), CyStr (cytoplasmic
strand), Nu (nucleus), s (stomata), Vac (vacuole).
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may diffuse spontaneously into the nucleus (Wang and

Brattain, 2007).

Alternatively, it is possible that the native SP of OsAPSE is

recognized both as a SP and a NLS. NLS sequences are typically

hydrophobic (Kiefer et al., 1994). The activity of background

proteases in N. benthamiana (Jutras et al., 2020) may trim the

native SP, explaining NLS recognition. Similar cases in which N-

terminal sequences were recognized simultaneously as SP and NLS

have been reported, albeit in animals (Kiefer et al., 1994), although

NLS sequences are functionally conserved amongst higher

eukaryotes (Wagner and Hall, 1993; Hicks, 2013). In these cases,

the protein of interest had a dual fate, in both the secretory pathway

and nucleus (Kiefer et al., 1994; Iwata et al., 2008). It should be

emphasized that not all NLS sequences in plants have been

discovered, as they are often non-canonical and not defined by a

consensus sequence (Hicks, 2013; Lu et al., 2021).

Further investigation of the subcellular localization at the cell surface

using propidium iodide as organelle marker for the plasma membrane

did not deliver reliable results (data not shown). The combination of in

silico predictions for OsAPSE localization, occurrence of OsAPSE in cell

wall proteome databases and the microscopy images suggest that

OsAPSE is most likely localized at the cell surface.
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3.5 OsAPSE is involved in germination of
rice seeds by acting on cell walls

3.5.1 Screening of transgenic and mutant rice
plants

Transgenic rice lines with overexpression (pUBI::OsAPSE) or

gene knock-out (osapse) were genotyped (Supplementary File S10)

and analyzed for agronomical qualities. pUBI::OsAPSE panicles

contained less mature seeds and showed lower seed setting rates

compared to WT and osapse seeds, while panicle mass and seed

mass where highest for WT seeds compared to osapse and pUBI::

OsAPSE panicles and seeds (Figure 7). The agronomical parameters

are in accordance with the model of Smith & Fretwell (Smith and

Fretwell, 1974) and indicate the high plasticity of seed number and

limited variation in seed mass (Supplementary File S11).

3.5.2 OsAPSE is involved in rice seed germination
and seedling development

The involvement of OsAPSE in seedling development and seed

formation was inferred from both in vitro rice seed germination

assays as well as RT-qPCR experiments on germinating and

developing seeds and seedlings. Results from RNA extraction,
FIGURE 7

Representative panicles and average agronomical parameters of wild type, overexpression pUBI::OsAPSE and knock-out osapse rice seeds.
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cDNA synthesis, RT-qPCR data and normalization of gene

expression are included in Supplementary File S12.

Figure 8 shows the OsAPSE transcript levels in developing WT

(Figure 8A), mutant osapse and overexpressing pUBI::OsAPSE

seedlings (Figure 8B). In WT seedlings, the transcript levels for

OsAPSE are low but show an increase over time (Figure 8A). The

OsAPSE transcript levels are drastically lowered in osapse mutants,

reaching an overall average transcript level of 0.22 ± 0.12 CNRQ

(calibrated normalized relative quantities) during rice seed

germination. The low OsAPSE transcript levels in knock-out

mutants illustrate that osapse plants are true knock-out mutants

(one-way ANOVA, F = 60.280; n = 75 df, p < 0.001, h² = 0.840)

compared to WT and pUBI::OsAPSE. Similar to WT seedlings, the

OsAPSE transcript levels in osapse mutants increase slightly over

time (Figure 8B) (one-way ANOVA, F = 20.037; n = 14 df; p <

0.001, h² = 0.845). Elevated and generally stable OsAPSE transcript

levels (on average 18.23 ± 5.94 CNRQ) are observed for pUBI::

OsAPSE overexpression lines, although the transcript levels in

pUBI::OsAPSE 28 show a decrease over time. An apparent

increase in OsAPSE transcription, though not statistically

different, was observed in WT and is mainly attributed to the

increased metabolic activity in developing seedlings. Indeed, it was

already reported that the transcript levels for several CAZymes

including AGALs and b-D-mannosidases increase during rice seed

germination (Ren et al., 2007).

Knock-out mutants of O-glycan-active enzymes and cell wall-

active enzymes often yield aberrant phenotypes (f.i. prolonged

roots, reduced hypocotyls) (Eudes et al., 2008; Nibbering et al.,

2020; Dash et al., 2023), as was also observed for atapse knock-out

plants (Imaizumi et al., 2017). Despite the strong structural

similarity between OsAPSE and AtAPSE, we did not observe

differences in coleoptile length in osapse or pUBI::OsAPSE

seedlings (data not shown).
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Differences in germination rates were apparent between osapse,

pUBI::OsAPSE and WT seeds across different time points

(Supplementary File S13) (Figure 9). The Omnibus Test of Model

Coefficients revealed that the constructed GLM, comprising the

relationship between sampling time, line and observed germination

rate was significant (c² = 343.460, n = 27 df, p < 0.001). The GLM

displayed main effects from the sampling time (c² = 84.672, n = 3 df,

p < 0.001) and type of line (c² = 251.142, n = 6 df, p < 0.001), but not

the interaction (c² = 18.488, n = 18 df, p < 0.424). Interestingly,

pUBI::OsAPSE and knock-out osapse lines displayed a lower

germination rate compared to WT, which consistently achieved

highest germination rates (80-97%) at the different time points

(Figure 9A). The transgenic pUBI::OsAPSE lines and knock-out

osapse lines demonstrated aberrant germination phenotypes.

Especially at time points 1 dpi and 4 dpi, large fractions of the

pUBI::OsAPSE seeds (40-70%) and osapse seeds (40-75%) displayed

seed lethality, no radicle emergence and disturbed root

development, arrested coleoptile elongation and seedling

etiolation, while WT seeds showed normal development, with

emerging leaves and root formation. Knock-out line osapse5

displayed germination rates that were most similar to WT, while

lines pUBI::OsAPSE28, pUBI::OsAPSE29, osapse9 and osapse4

demonstrated the most deviating germination rates (Figure 9A).

In general, the seed germination rates of osapse knock-out lines

were higher compared to pUBI::OsAPSE overexpression lines

(Figure 9B), but still lower compared to WT seeds. The

germination behavior of osapse4 and osapse5 seeds differed

considerably, despite bearing identical mutations (Supplementary

File S10). The differences between the overexpression lines are

attributed to the independent nature of these lines, as each

overexpression line is created by a single transformation event,

leading to specific OsAPSE transcript levels. Interestingly, data from

the germination assay and RT-qPCR experiments suggest that
FIGURE 8

OsAPSE transcript levels in developing rice seedlings. Transcript levels for OsAPSE in germinating WT seeds and seedlings (A). Transcript levels for
OsAPSE in germinating seeds and seedlings of knock-out and overexpression plants (B). Transcript levels are shown as calibrated normalized relative
quantities. Homogenous subsets, based on Tukey post-hoc ANOVA analysis are indicated with letters a and b.
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optimal OsAPSE transcription levels are required for rice seed

germination (Figure 9C). There are several examples of genes

with similar expression regulation patterns. OsMADS1 from rice

involved in flower development and pollen morphology (Liu et al.,

2023, 2025), AtWUS from Arabidopsis involved in shoot apical

meristem maintenance and floral development (Stephenson et al.,

2019; Li et al., 2023) and ZmCCT10 from maize involved in

photoperiod sensitivity and regulation of flowering time (Ikeda

et al., 2009; Yadav et al., 2011), exemplify genes whose expression

must be finetuned to ensure normal development. In each case, both

knock-out and overexpression lead to aberrant phenotypes, ranging

from sterility and disrupted organ formation to severe architectural

defects, highlighting their dosage-sensitive nature, similar

to OsAPSE.
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3.5.3 Involvement of OsAPSE in cell wall
metabolism during rice seed germination

The involvement of GH27 proteins in seed germination or

seedling development has been reported in pea (Blöchl et al., 2008),

chickpea (Arunraj et al., 2020), cluster bean (Hughes et al., 1988),

soybean (Guimaraes et al., 2001; Lien et al., 2018) and vetch (Gojło,

2023). Often, AGALs are involved in the germination process

through their ability to hydrolyze storage polysaccharides (Elango

et al., 2022) and galactomannan (Sharma et al., 2022), after which

the released D-Galp moieties are epimerized to D-Glcp and used as

energy source (Zhang et al., 2006) or act as extracellular signaling

molecules (Showalter, 2001).

We hypothesize that adequate OsAPSE transcription levels are

required for normal rice seed germination. Deviating transcript
FIGURE 9

Seed germination rates of mutant osapse and overexpressing pUBI::OsAPSE rice compared to wild type plants. Germination rates across mutant
osapse, overexpressing pUBI::OsAPSE and wild type rice at 1 dpi, 4 dpi, 7 dpi and 11 dpi (A). Average germination rates for knock-out lines and
overexpression lines compared to WT (B). Correlation between the transcript level of OsAPSE and the observed rice seed germination rate at time
points 3–4 dpi, 7 dpi and 10–11 dpi (C). Asterisks indicate the significance level: *(p < 0.05), **(p < 0.01), ***(p < 0.001). Error bars are standard
deviations originating from 3 biological replicates of 20 rice seeds per replicate. Abbreviations: n.s. (non-significant difference: p ≥ 0.05).
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levels, as observed in osapse and pUBI::OsAPSE plants, likely cause

metabolic imbalances, with repercussions for seed germination

capacity. The importance of OsAPSE for the germination process

is explained by dual ARAP/AGAL activity on cell wall structures.

We assume that OsAPSE displays AGAL/ARAP activity on a-D-
Galp and b-L-Arap residues occurring along the continuous pectin

(rhamnogalacturonan-I)-AGP O-glycan network (Figure 10) (Tan

et al., 2013, 2023). The ricin-B-like domain can enhance substrate

binding since ricin-B(-like) domains and related CBM13 modules

are known to recognize specifically D-Galp and D-GalNAc residues

(Hazes, 1996; Steeves et al., 1999), but can also recognize L-Arap

residues due to the structural similarity between D-Galp and L-Arap

as demonstrated in a GH27 ARAP from Streptomyces avermitilis

(Ichinose et al., 2009; Fujimoto, 2013).

Removal of terminal a-D-Galp and b-L-Arapmoieties fromAGP

O-glycans and rhamnogalacturonan-I likely abolishes non-covalent

interactions between the AGPO-glycan and the pectin fraction of the

primary cell wall (Figure 10). Removal of these residues contributes to

structural reorganization of the cell wall, as pectic polysaccharides and

AGPs are in turn directly tethered to cellulose microfibrils and

hemicellulose polysaccharides (Ellis et al., 2010; Peaucelle et al.,

2012; Jamet and Dunand, 2020). Weakened interactions between

AGP O-glycans and pectin reduce cell wall tension and allow cells to

elongate and expand under influence of turgor pressure (Figure 10).

The required degree of mobility between compounds of the primary

cell wall and AGPs could be regulated (i.e. tightening and loosening of

non-covalent interactions) through well-dosed activity of CAZymes
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like OsAPSE. Flexibility and extensibility of cell wall constituents is of

paramount importance to attain normal cell elongation, cell expansion

and growth in general (Cosgrove, 2024), especially in fast-paced

processes like seed germination (Wolny et al., 2018; Yang et al., 2020).
4 Conclusions

This study focused on the biological function of OsAPSE, a

member of the GH27 family from Japanese rice. Using a multi-

perspective approach, we aimed to decipher the biological relevance

of this protein.

We have demonstrated the intriguing phylogeny of OsAPSE,

which is based on the presence of a ricin-B-like domain (De

Coninck et al., 2024b). The presence of this lectin domain is only

observed in a subset of GH27 sequences from Viridiplantae and

distinguishes APSE homologues from other GH27 members. A

subdivision as suggested by the CUPP database would therefore be

appropriate (Barrett et al., 2020). Likewise, the GH27 domain of

OsAPSE and other APSE homologues is structurally different

compared to regular GH27 domains, with RMSD values > 5Å.

We also provided insights into the biochemical characteristics

and putative biological function of OsAPSE. Although we did not

succeed in obtaining soluble recombinant OsAPSE or its

subdomains in bacterial or yeast cells, we were successful in the

production of small quantities of the OsAPSE GH27 domain using a

cell-free system. The produced proteins showed clear AGAL and
FIGURE 10

Working hypothesis for OsAPSE involvement in cell wall metabolism during rice seed germination. OsAPSE displays AGAL and ARAP activity, acting
on the pectin-AGP O-glycan network, thereby affecting non-covalent interactions and impacting cell wall flexibility required for cell growth and
expansion. AGP O-glycan structure and representation of the primary cell wall are based on existing theoretical models (Carpita and Gibeaut, 1993;
Odonmazig et al., 1994; Ponder and Richards, 1997; Perez, 2003; Caffall and Mohnen, 2009; Goetz et al., 2016; Seifert, 2020; Strasser et al., 2021;
Tan et al., 2023). This diagram was created using BioRender.com.
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ARAP activity, with optimal activity at pH = 8 and 25°C. Although

the optimum pH differed from the typical apoplastic pH (5.5-6), we

assume this is attributable to enzyme dormancy and activation

upon cell wall alkalinization, typically associated with regulation of

cell wall loosening and expansion (Geilfus et al., 2017). We

calculated the Michaelis constant for pNP-a-D-Galp as substrate,

i.e. KM = 0.67 mM, in line with observations from other plant GH27

enzymes. To our knowledge this study is the first to report

enzymatic parameters for plant GH27 enzymes produced by a

CFPS platform. Highest GH27 activity was present for melibiose,

galactomannan and raffinose, while lower activities were obtained

for verbascose, glycosylated arabinogalactan proteins and

arabinogalactan. The activities observed for natural substrates

were somewhat unexpected, as higher activities were obtained for

substrates that will never make contact with OsAPSE at the cell

surface. Melibiose does not occur in rice and galactomannan and

raffinose are only present in low quantities in specific cells (f.i.

endosperm cells, vascular tissue) (Ren et al., 2007; Van den Ende,

2013; Li et al., 2018; Elango et al., 2022). A similar observation for

AtAPSE was made in the past (Imaizumi et al., 2017).

Subcellular localization analyses in planta suggest the

localization of OsAPSE-EGFP at the cell surface but needs

confirmation in future experiments. Co-localization studies with

organelle reporters for the ER, Golgi apparatus and plasma

membrane could be considered, in combination with plasmolysis

assays, to pinpoint the exact subcellular localization of OsAPSE

(Serna, 2005; Stellmach et al., 2022).

Transcriptomics analyses in WT rice revealed that OsAPSE

transcript levels double during the germination process, indicating

the need for GH27 activity during seed germination. The germination

rate of rice is negatively affected when OsAPSE transcript levels are

decreased or increased. Interestingly, the agronomical traits including

mature seeds per panicle, the setting rate, the panicle mass and average

seed mass were usually lower compared to WT plants. The

importance of OsAPSE for the rice seed germination process is

mainly explained by its proposed dual enzymatic activity along the

continuous pectin–AGPO-glycan network (Tan et al., 2023). Based on

the observed AGAL and ARAP activity and the ability of OsAPSE to

cleave off b-L-Arap and a-D-Galp moieties from cell wall structures,

we hypothesize that OsAPSE displays dual activities on b-L-Arap and
a-D-Galp moieties along the continuous pectin-AGP O-glycan

network at the cell surface, while the ricin-B-like domain might

enhance substrate binding. The activity of OsAPSE likely affects

non-covalent interactions between the pectin fraction and AGP O-

glycans, either in muro or anchored in the plasma membrane (Ellis

et al., 2010; Nibbering et al., 2020). As a result, altered non-covalent

interactions would allow increased or decreased attraction between

AGP O-glycans and pectin, thereby enhancing cell wall loosening and

relaxation, which is a key driver in cellular expansion and growth

(Cosgrove, 2024). Seed germination is par excellence a fast-paced

developmental process, characterized by rapid cellular growth, and

therefore a strong need for rapid cell wall metabolism (Wolny et al.,

2018). Rapid and developmentally controlled AGP turnover, mediated

by CAZymes, has been described in germinating rice seeds (Lu et al.,

2001; Yuan et al., 2008). We have shown that the absence or excess of
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OsAPSE transcripts leads to aberrant germination phenotypes.

Shortage of OsAPSE transcripts may lead to persisting a-D-Galp
and b-L-Arap residues and therefore also more persisting non-

covalent interactions between AGP O-glycans and pectin, resulting

in reduced cell wall flexibility, while increased OsAPSE transcripts

could result in excessive detachment. We therefore believe that

OsAPSE may be a key enzyme in enabling cell wall relaxation

through regulating non-covalent interactions between pectin and

AGP O-glycans during the rice seed germination process Future

experiments will be required to further investigate the involvement

of OsAPSE in seed germination. For instance, effects of defective

arabinosyl- and galactosyltransferase activity during seed development

and germination should be explored. The role of several GTs in AGP

processing have been elucidated in Arabidopsis, but remain elusive in

rice (Silva et al., 2020; Strasser et al., 2021). Furthermore, we

recommend future research to focus on the enzymatic properties of

AGP O-glycan active enzymes. For instance, the characterization of

AGP O-glycans and the activity of OsAPSE on AGP O-glycans can be

investigated, combined with HPAEC-PAD for quantification and

NMR and MS/MS for determining the saccharide composition and

glycosidic linkages (Tan et al., 2024). It should be emphasized that the

function of OsAPSE may not be exclusively connected to seed

germination, as AGP O-glycans are involved in a plethora of

physiological processes (Ellis et al., 2010; Mareri et al., 2019; Strasser

et al., 2021) including growth and development (Hromadová et al.,

2021; Lamport et al., 2021), cell differentiation (Borassi et al., 2020),

cellular communication (Lopez-Hernandez et al., 2020; Teh et al.,

2022), reproduction (Kaur et al., 2022) and signaling of biotic (Kikuchi

et al., 2022) and abiotic (Pfeifer et al., 2020) stresses.
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