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Integrated metabolomics and
metagenomics reveal plant-
microbe interactions driving
aroma differentiation in
flue-cured tobacco leaves
Yifan Jia1,2†, Jianwei Wang3†, Xiaojie Lin1,2, Taibo Liang3,
Huaxin Dai3, Baojian Wu3, Mengmeng Yang3, Yanling Zhang3*

and Ruifang Li1,2*

1Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of
Technology, Zhengzhou, Henan, China, 2College of Biological Engineering, Henan University of
Technology, Zhengzhou Henan, China, 3Key Laboratory of Eco-environment and Tobacco Leaf
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Zhengzhou, Henan, China
Current research on tobacco aroma predominantly focuses on single-omics

approaches. In this study, we conducted a comprehensive investigation of the

relationships between tobacco metabolite profiles, microbial communities, and

aroma characteristics. Untargetedmetabolomics andmetagenomic analyses were

performed on flue-cured upper tobacco leaves to compare light aromatic tobacco

(LAT) and strong aromatic tobacco (SAT). The results showed that sugarmetabolite

levels in LAT were significantly higher than those in SAT, whereas levels of specific

acids and amino acid metabolites in SAT exceeded those in LAT. Redundancy

analysis (RDA) and metabolomic correlation analyses indicated that the genera

Methylorubrum and Pseudomonas may promote sugar metabolite accumulation,

while Pseudokineococcus potentially regulates both sugar and acidmetabolites. In

contrast, Methylobacterium and Sphingomonas were associated with acid and

amino acid metabolism, with Methylobacterium additionally exhibiting inhibitory

effects on sugar metabolism. Metagenomic analysis revealed thatMethylorubrum,

Pseudomonas, and Pseudokineococcus were abundant in LAT, whereas

Methylobacterium and Sphingomonas dominated in SAT. Notably, the

bidirectional regulation of aromatic metabolites by microbial genera such as

Pseudokineococcus highlights the universality of plant-microbe interactions in

shaping metabolic networks—a mechanism potentially applicable to other crop

systems. These findings reveal conserved microbial functional traits (e.g.,

metabolic pathway modulation) that may drive plant phenotypic differentiation

beyond tobacco, offering insights into microbiome-mediated crop quality

improvement. The results provide theoretical guidance for tobacco aging and

aroma regulation and underscore the broader significance of microbial

community engineering in agriculture for manipulating plant metabolic outputs.
KEYWORDS

flue-cured tobacco, aroma, untargeted metabolomics, metagenomics, plant-
microbe interaction
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Introduction

Plant-microbe interactions play a fundamental role in shaping

plant metabolism, secondary metabolite biosynthesis, and overall

phenotypic quality across diverse species (Wang et al., 2022). These

interactions are driven by complex microbial communities, which

participate in biochemical transformations of plant-derived

substrates, modulate host metabolic pathways, and influence

organoleptic properties (Wang et al., 2022; Shi et al., 2024;

Vorholt, 2012). Such mechanisms are pivotal for ecological

adaptation and critical for determining the crops’ economic value,

as exemplified by tobacco (Nicotiana tabacum L.), one of the most

studied systems in this context.

Globally, the microbiome contributes to plant fitness through

nutrient metabolism (Vorholt, 2012), degradation of complex

polymers (e.g., cellulose, starch), and synthesis of volatile organic

compounds (VOCs) that define aroma profiles (Lindow and Brandl,

2003; Gong and Xin, 2021). For instance, microbial genera such as

Bacillus, Pseudomonas, and Aspergillus are ubiquitous across plant

species, where they catalyze the conversion of primary metabolites

(e.g., carbohydrates, amino acids) into aromatic precursors via

enzymatic activity and metabolic cross-talk with host tissues

(Durán et al., 2017). This process is central to the formation of

secondary metabolites in many crops, including tea (Li et al., 2018),

grapes (Bokulich et al., 2014), coffee (Zhang et al., 2019), aloe vera

(Chandel et al., 2025) and tobacco (Huang et al., 2022), where

microbial-driven Maillard reactions, protein degradation, and

carbohydrate metabolism directly impact sensory attributes (Berg

et al., 2014; Banožić et al., 2020).

In tobacco, the interplay between leaf surface microbiota and

host biochemistry is particularly evident (Shi et al., 2024). The

aroma characteristics of flue-cured tobacco are classified as light,

intermediate, or strong aromatic types shaped by microbial-

mediated degradation of macromolecules (e.g., proteins,

polysaccharides) and subsequent synthesis of flavor-enhancing

compounds such as pyrazines and phenolic derivatives.

Carbohydrates, phenols, amino acids, organic acids, alcohols, and

alkaloids, which are the precursors of tobacco aroma, are the main

metabolic compounds (Liu et al., 2022), and carbohydrates are also

one of the most important precursors of the tobacco aroma. Study

have shown that sugars act as aroma enhancers in the smoke during

combustion, producing acids that neutralize the harsh aromas in

the smoke, reduce the astringent taste during inhalation, and

enhance the overall aromas (Yin et al., 2019). Similar mechanisms

have been observed in other aromatic plant, like coffee (Zhao et al.,

2024; Wang et al., 2019), where microbial communities regulate the
Abbreviations: ACE, abundance-based coverage estimator; ANOSIM, analysis of

similarities; BSTFA, bis(trimethylsilyl)trifluoroacetamide; GC-MS, gas

chromatography-mass spectrometry; KEGG, kyoto encyclopedia of genes and

genomes; LAT, light aromatic tobacco; LDA, linear discriminant analysis; LEfSe,

linear discriminant analysis effect size; PCs, principal components; PLS-DA,

partial least squares discriminant analysis; RDA, redundancy analysis; SAT,

strong aromatic tobacco; TCA, tricarboxylic acid cycle; VIP, variable

importance in projection.
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balance of key metabolites (e.g., sugars, organic acids)

(Vandenkoornhuyse et al., 2015), ultimately determining product

quality. However, the universal principles governing these plant-

microbe interactions remain poorly characterized, particularly

regarding how the taxonomic and functional diversity of

microbiota coordinates with host metabolic networks to drive

species-specific phenotypes.

Advancements in multi-omics technologies, including

untargeted metabolomics and metagenomics, now empower

systematic dissection of these interactions (Diwan et al., 2022).

For example, gas chromatography-mass spectrometry (GC-MS)-

based metabolomics can reveal conserved metabolic pathways (e.g.,

carbohydrate degradation, phenylpropanoid biosynthesis)

influenced by microbial activity, while microbiome profiling tools

(e.g., MetaPhlAn4) elucidate taxonomic shifts linked to functional

outcomes. By integrating these approaches, researchers can identify

cross-species microbial markers (e.g., Bacillus subtilis) that enhance

aromatic compound synthesis or mitigate the accumulation of

irritants (e.g., ammonia) through nitrogen metabolism regulation

(Huang et al., 2022). Such insights transcend individual crops and

offer a framework for optimizing microbial consortia in agriculture,

fermentation, and post-harvest processing.

This study employs tobacco as a model system to investigate the

mechanisms underlying plant-microbe interactions. Using

untargeted metabolomics (GC-MS) (Patti et al., 2012),

microbiome annotation (MetaPhlAn4) (Segata et al., 2012;

Blanco-Mıǵuez et al., 2023), and multivariate analyses, we explore

how microbial communities modulate metabolic profiles across

different aroma types of flue-cured tobacco, by linking microbial

diversity to differential metabolic pathways (Hou et al., 2024).

In this study, we postulate that tobacco aroma is caused by

tobacco metabolism and microbial regulation, driving distinct

tobacco aroma types. We aim to uncover the conserved principles

applicable to broader plant systems, thereby advancing strategies for

microbial-driven quality enhancement in crops.

Materials and methods

Materials

After collecting from the production area, the fresh upper tobacco

leaves were immediately sent to the tobacco curing barn. The flue-

cured tobacco leaf samples were collected from the cured tobaccos

using aseptic fresh-keeping bags, and sent to laboratory for further

research. The four strong aromatic tobacco (SAT) samples were

collected from the production areas in Henan province and Hunan

province, China. An equal amount of light aromatic tobacco (LAT)

samples was collected from the production areas in Sichuan province

and Yunnan province, China. Two production areas in each

province. One sample from one production area. The detailed

information of the samples is described in Table 1. The samples

were stored at -20°C and returned to room temperature 24 hours

before metabolomics and metagenomics experiments. For

metabolomics analysis, three replicates for each sample. For

metagenomics analysis, one library was performed without replicates.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1588888
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2025.1588888
Metabolite extraction and derivatization

Referring to the reported method (Liu et al., 2020), the tobacco

leaf samples were ground into powder after removing the stems. 20

mg of the tobacco leaf powder was added into 1.5 mL of

isopropanol-acetonitrile-water (3:3:2, v/v/v), and sonicated in an

ice bath for one hour. After centrifugation at 14,000 rpm for 10 min,

500 mL of the supernatant was transferred into a 1.5 mL injection

bottle for vacuum drying. Then 100 mL of 20 mg/mL methoxamine

pyridine solution was added and incubated at 37°C, 200 rpm for 90

min. then, 100 mL of N,O-Bis(trimethylsilyl)trifluoroacetamide

(BSTFA) was added and incubated at 60°C, 200 rpm for 60 min.

The metabolite analysis was performed after the samples were

cooled to room temperature.
GC-MS untargeted metabolomics and
metabolic data preprocessing

Metabolomic analysis was performed on an Agilent 5975C

instrument (Agilent, USA). Metabolite was separated on a DB-5

MS capillary column (0.25 mm, 0.25 mm × 30 m). The temperature

of the injection port was maintained at 300°C. The helium carrier

gas flow rate was kept constant at 1.2 mL/min, the injection volume

was 1 mL, and the split ratio was 30:1. The mass spectrometer

operated in electron impact (EI) mode, and the energy was 70 eV.

The detector voltage was kept at 1.2 kV.

The MATLAB high-resolution mass spectrometry data analysis

toolkit was used to perform baseline correction, peak extraction,

annotation, and alignment of the collected metabolic data. Relative

quantification of metabolites was performed using area normalization.
Statistical analysis of metabolomics data

Metabolites were characterized and identified referring to the

MS spectral database library (NIST v2.3, https://chemdata.nist.gov/

dokuwiki/doku.php?id=chemdata:nist17). Data processing and

graphing were performed using Prism. Partial least squares

discriminant analysis (PLS-DA) was performed on the data using
Frontiers in Plant Science 03
R language (v4.4, https://cloud.r-project.org/) (Xia and Sun, 2022).

PLS-DA reduces the dimensionality of the data and performs

discriminant analysis on regression results with specific

discriminative thresholds by combining a regression model.

The R2 coefficient quantifies the proportion of variance in the

data that the model explains. A higher R2 value indicates a better fit

between the model and the data. Q2 is an indicator of the predictive

ability of a model. A higher Q2 value indicates better predictive

performance, and R2 should be greater than Q2 (Blaise et al., 2021).

Metabolites were ranked according to the contribution of each

component (Variable Importance in Projection, VIP) to the PLS-

DA model. VIP>1 was used as the threshold. Metabolites that

reached the threshold were considered differential metabolites.

MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) analyzed the

kyoto encyclopedia of genes and genomes (KEGG) pathway

enrichment of differentially expressed metabolites. A significance

threshold of P ≤ 0.05 was used to obtain the results of significantly

enriched metabolic pathways, and final illustrations were refined

using Adobe Illustrator (Pang et al., 2024).
Genomic library construction, sequence
and data preprocessing

Shotgun metagenomics sequencing method was performed by

Novogene Co. Ltd (Beijing, China). The total genomic DNA from

tobacco leaf samples was extracted using the Magnetic Plant

Genomic DNA Kit (Tiangen, China) following the manufacturer’s

instructions. All operations of DNA extraction were carried out in a

sterile environment. The genomic DNA purity and integrity were

checked by 1% agarose gel electrophoresis. The genomic DNA was

randomly sheared into short fragments of approximately 350 bp.

The DNA fragments were subjected to end-repaired, A-tail and

further ligated with Illumina adapters. The quantitative real-time

polymerase chain reaction method was then used to quantify the

effective concentration of the library (>3 nM) to ensure its quality.

The quantified library was pooled and sequenced on Illumina

Novaseq6000 (Illumina, USA), producing 2 × 150 bp paired-end

reads. Metagenomic data were quality-controlled and trimmed for

adaptors using fastp (https://github.com/OpenGene/fastp).
TABLE 1 Samples’ given names and their detailed information.

Sample names Cultivar Aromatic type Tobacco production area Province

YNCY Yun87 light aroma Yao’an County, Chuxiong City Yunnan

YNCZ Yun87 light aroma Ziwu Town, Yao’an County, Chuxiong City Yunnan

SCLX Yun87 light aroma Xinyun Town, Liangshan Yi Autonomous Prefecture Sichuan

SCLH Yun87 light aroma Huidong County
Liangshan Yi Autonomous Prefecture

Sichuan

HeNLL Zhongyan100 strong aroma Lingying County, Luohe City Henan

HeNXY Zhongyan100 strong aroma Yulin Town, Xuchang City Henan

HuNYN Yun87 strong aroma Ningyuan County, Yongzhou City, Hunan

HuNYD Yun87 strong aroma Daoxian County, Yongzhou City Hunan
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Considering the possibility of host contamination in samples,

Bowtie2 software (http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml) filter out reads that may come from host origin.

Taxonomic profiling of the filtered sequence data was performed

using MetaPhlAn4 (Blanco-Mıǵuez et al., 2023).
Statistical analysis of metagenomic

The alpha diversity indices, including ACE, Chao1, Shannon,

and Simpson, were calculated by Mothur (https://mothur.org/wiki/

calculators/). Alpha diversity is mainly used to study the diversity of

microbial communities in a sample and is evaluated using a series of

alpha diversity indices to obtain microbial information such as

microbial species richness and diversity. R was used for ANOSIM

(Analysis of similarities), beta diversity, and RDA analysis.

ANOSIM is a non-parametric test method based on permutation

and rank sum tests. The obtained R-value represents the

relationship of the intergroup and intragroup differences. In this

study, the ANOSIM on the genus level was performed. Beta

diversity is used to describe the inter habitats variation in

biological communities. RDA analysis (Redundancy analysis) is

an environmental factor-constrained PCA analysis mainly used to

explore the relationship between community species composition

and environmental variables. This study used genus-level

microorganisms as environmental factors to explore the

relationship between metabolites and microbial communities.

Galaxy 2.0 (http://galaxy.biobakery.org/) was used for LEfSe

analysis to screen biomarkers with significant differences between

groups, detecting the different species of the subgroups using the

rank sum test and downscaling and evaluating the effect size of the

different species or functions using LDA (Linear Discriminant
Frontiers in Plant Science 04
Analysis). The SPSS (v29.0, https://www.ibm.com/spss) software

for correlation analysis was used to calculate coefficients and

significance, with the R for visualization. Correlation analysis is

the process of analyzing two or more correlated variables to

measure the closeness of the correlation between two variables.
Results

Metabolite composition in flue-cured
tobacco leaves

A total of 74 small metabolites were identified (with a matching

score >700 in the NIST database). Based on their structural and

chemical characteristics, these metabolites were classified into four

categories: 28 sugars, 7 alcohols, 7 amino acids, and 28 acids

(Figure 1A). The relative contents of tobacco metabolites in the

flue-cured upper tobacco leaves are shown in Table 2. A bar chart of

the relative contents of the different aromatic types is shown in

Figure 1B. The relative contents of sugars in all samples were the

highest, while the relative contents of acids were much lower than

those of sugars. The relative contents of sugar compounds in SAT

samples were significantly lower than those in LAT samples. The

relative contents of amino acids and acids in SAT samples were

higher than those in LAT but not significant. The relative contents

of alcohols showed no significant differences between SAT and LAT

samples. The results demonstrated that sugars, acids, and amino

acids may be the main effectors on the aromas of the flue-cured

tobacco. Sugars are positively correlated with light aromas of

tobacco. They are negatively correlated with strong tobacco

aromas, while the effects of acids and amino acids on tobacco

aromas were inversely related to sugars.
FIGURE 1

Untargeted metabolomics data of tobacco from GC-MS. (A) Metabolic molecule (Bar plot) and their proportion (Pie plot). (B) The relative contents of
metabolites in different aromatic flue-cured tobacco. *P<0.05, ns, no significance. SAT, strong aromatic tobacco; LAT, light aromatic tobacco.
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Bioinformatics characteristics of
metabolites in different aroma types of
flue-cured tobacco leaves

Multivariate analysis of metabolic profiles was conducted

through PLS-DA to characterize aromatic differentiation in flue-

cured tobacco leaves (Figure 2A). In the PLS-DA analysis, the first

two principal components (PCs) explained 40.8% of the total

variance, with PC1 and PC2 explaining 21.3% and 19.5%,

respectively. The samples were clearly separated in the score plot.

The R2 and Q2 values in PLS-DA were 0.99 and 0.96, respectively,

indicating the model has a high stability and predictive ability. The

results of the score plot exhibited a good separation between LAT

and SAT.

The metabolites’ relative importance value (VIP) with the

projection variable greater than 1 as the threshold for differential

metabolites, a total of 26 characteristic biomarkers were found

(Figure 2B). After classifying, sugar metabolites were still the most

numerous, indicating that sugar, as the main differential

metabolites, play an important role in the metabolic regulation of

the tobacco aromatic type (Figure 2C). Subsequently, the heat map

of the characteristic metabolites is shown in Figure 3D. All the

differential metabolites abundance can be divided into two

categories (Figure 2D), group I and group II, according to their

different types. In group I, the relative contents of most sugar

metabolites, such as Sucrose, Fructose, Maltose, were higher in the

LAT samples. In comparison, the relative contents of most acids

and amino acids metabolites, such as L-Phenylalanine, L-5-

Oxoproline, Hydracrylic acid, and Xylonic acid, in group II were

higher in the SAT samples. Among them, the contents of sugar

metabolites, such as 3a-Mannobiose and Maltose, in the LAT

subgroup were higher than those in the SAT subgroup, indicating

that sugar metabolites are important LAT biomarkers. In contrast,

amino acids, such as L-5-Oxoproline and L-Phenylalanine, as well

as acids metabolites, such as Hydracrylic acid and Xylonic acid,

have high contents in the SAT subgroup, indicating that amino

acids and acids metabolites may be SAT biomarkers. Notably, the

total amino acid content in SAT samples from HuNYD and

HuNYN was notably lower than that from HeNLL and HeNXY.

Despite this regional variation, L-phenylalanine, a key aromatic

precursor, showed elevated levels in three out of four SAT samples

compared to their LAT counterparts. The exception was HuNYD,

where L-phenylalanine content was marginally lower in SAT,
Frontiers in Plant Science 05
possibly due to site-specific environmental stressors. These

findings suggest that L-phenylalanine accumulation in SAT is not

universally consistent across regions but may still contribute to

aroma profiles when upregulated.
Metabolic pathway of flue-cured tobacco
leaves

In order to gain an in-depth understanding of the differences in

the metabolic networks between the SAT and LAT samples, the

metabolic pathways of all differential metabolites were analyzed using

MetaboAnalyst 5.0, and 12 differential metabolites were involved in

17 metabolic pathways (Table 3). The metabolic pathways with a p-

value less than 0.05 were selected as differential ones; 10 differential

metabolites were enriched in 4 differential metabolic pathways. The

metabolic pathways in Figure 3 showed the overall situation of the

differential metabolites in the tobacco leaf samples. Four metabolic

pathways (glycolysis, sugar metabolism, acid metabolism, amino acid

metabolism, and tricarboxylic acid cycle (TCA) were extracted and

connected according to the KEGG pathway database. Most of the

differential metabolites were concentrated in the pathways related to

sugar metabolism. In the SAT samples, the relative contents of

differential metabolite related to amino acid metabolism were

significantly higher than those in the LAT. In comparison, the

relative contents of most sugar metabolites, such as sucrose,

fructose, and maltose in the LAT samples were significantly higher

than those in the SAT.
Microbial community alpha diversity of
flue-cured tobacco leaves

After cleaning the reads of the tobacco leaf sample, species

annotation was performed using MetaPhlAn; 68 microbial species

were detected in the LAT and SAT samples. The ACE, Chao1,

Shannon, and Simpson indices reflect the number of communities,

species abundance, species diversity, and species evenness in the

sample (Zhang et al., 2022). The a diversity index is shown in

Supplementary Table S1. The ACE index, Chao1, Shannon, and

Simpson indices of SAT were higher than those of LAT, indicating

that the SAT leaves contain more microbial species than those of

LAT, and the microbial composition was even.
TABLE 2 Relative content of metabolites in different tobacco samples.

Metabolite
type

HeNLL HeNXY HuNYD HuNYN SCLX SCLH YNCZ YNCY

Amino acids 0.035 0.038 0.017 0.02 0.02 0.02 0.028 0.022

Acids 0.099 0.101 0.132 0.174 0.140 0.123 0.127 0.059

Alcohols 0.008 0.01 0.01 0.01 0.009 0.011 0.008 0.009

Sugars 0.328 0.34 0.261 0.27 0.349 0.354 0.356 0.4

Others 0.004 0.003 0.004 0.004 0.004 0.002 0.002 0.002
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Microbial community beta diversity of flue-
cured tobacco leaves

Beta diversity is used as a measure of the variation in species

diversity. The principal coordinates analysis (PCoA) of the Bray-

Curtis distance on the species level is shown in Supplementary Figure

S1A. The SAT and LAT samples were significantly separated, and the

two principal coordinate axes, PCo1 and PCo2, explain 63.08% of the

total variance. The differences in microbial communities between

SAT and LAT samples were apparent. Hierarchical clustering divided

the flue-cured tobacco leaves from different production areas into two

branches (Supplementary Figure S1B). One branch contained all

tobacco leaf samples from Henan and Hunan provinces, which are

SAT leaf samples. The other branch contained tobacco leaf samples

from Sichuan and Yunnan which are LAT leaf samples. It is worth

noting that only one species, Aspergillus_flavus, was found in the

species annotation of the SCLH, an LAT leaf sample in MetaPhlAn,

indicating that Aspergillus_flavus may be the abundant species

among the microorganisms on the surface of the tobacco leaves

from Liangshan Yi Autonomous Prefecture in Huidong County,

Sichuan Province.
Frontiers in Plant Science 06
Characteristics of microbial communities
of flue-cured tobacco leaves

The Anosim result at the genus level is shown in Supplementary

Figure S2A, where R>0 and p<0.05, demonstrating significantly

greater inter-group variation compared to intra-group differences.

Significant differences existed in the aromatic types and relative

abundances of microbial genera between SAT and LAT.

The distribution of the microbial composition at the phylum level

of SAT and LAT samples was shown in Supplementary Figure S2B.

Five bacterial phyla and one fungal phylum were detected at the

phylum level. Five bacterial phyla were Proteobacteria,

Actinobacteria, Bacteroidetes, Firmicutes, and Deinococcus_thermus;

one fungal phylum was Ascomycota. Among them, Proteobacteria,

Actinobacteria, and Bacteroidetes were the main abundant taxa in the

SAT samples (relative abundance > 1%), while in the LAT samples,

Proteobacteria was the abundant bacterial phylum and Ascomycota

was the abundant fungal phylum. Proteobacteria was the abundant t

bacterial phylum in both types of aromatic tobacco leaves, with a

relative abundance of 95% and 72% of the total microbial community

in the SAT and LAT samples, respectively. In contrast, the relative
FIGURE 2

Multivariate analysis of the aromatic flue-cured tobacco leaf metabolites. (A) PLS-DA score plot, ellipses represent 95% confidence intervals for each
group. (B) Dot plot of metabolites with variable importance in projection (VIP) scores >1.0 in the PLS-DA model. (C) Metabolite composition, bar plot
showing the number of the metabolite molecules, pie plot displaying the proportion of metabolites. (D) Heat map of differential metabolites relative
content in tobacco leaves with different flavors (Euclidean distance). SAT, strong aromatic tobacco; LAT, light aromatic tobacco.
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abundance of the fungal phylum Ascomycota in the LAT leaves

(27.37%) was higher than that in the SAT samples (0.29%). The

relative abundance of the bacterial phylum Actinobacteria in the SAT

samples (2.7%) was higher than that in the LAT samples (0.005%).

At the genus level (Supplementary Figure S2C), ten bacterial genera

and one fungal genus (relative abundance >1%) were identified.

Among them, Pseudomonas, Sphingomonas, Methylobacterium,

Methylorubrum, Aureimonas, Enterobacter, Pseudokineococcus,

Spirosoma, Pantoea, and Afipia were the main abundant bacterial

genera. Aspergillus was the main abundant fungal genus. The

composition and relative abundance of the main bacterial and fungal

genera differed. The relative abundance of Sphingomonas (57.5%) in

the SAT group was significantly higher than that in the LAT group

(23%), the relative abundance of Aspergillus (27.4%), Pseudomonas

(36.1%), andMethylorubrum (9.7%) in the LAT group was higher than

that in the SAT group (0.3%, 9.2%, and 2.5%). Methylobacterium
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(23.5%), Aureimonas (1.2%), Spirosoma (1.2%), and Pseudokineococcus

(1.9%) were only found in the SAT group. In comparison, the genus

Pantoea (1.1%) was only found in the LAT group.

Supplementary Figure S2D shows the LEfSE analysis of the LAT

samples and SAT samples at the genus level. Three bacterial genera

were identified as differential abundant species between the two

tobacco groups based on the threshold of greater than 4 in LDA

score and less than 0.05 in P value.

Overall, the two types of aromatic samples showed species

differences and microbial communities’ abundance at the phylum

and genus levels. Combined with the results of the LEfSe analysis,

the differences in microbial communities between the two types of

aromatic samples were mainly reflected in the differences in the

abundance of Methylobacterium, Pseudokineococcus, and

Quadrisphaera, which may potentially influence tobacco

aroma development.
FIGURE 3

Metabolome analysis of differential metabolites in light and strong aromatic tobacco leaves. (A) Overview of metabolic pathways. (B) Metabolic
pathway map of the differential metabolites. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. In (A), the bubbles represent the metabolic pathways, and
the color of the bubbles (from yellow to red) indicates the significant level of the metabolites in the data.
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Association of abundant microorganisms
and metabolites of flue-cured tobacco
leaves

Redundancy analysis (RDA) of the influence of the abundant

microbial genera on metabolites showed that the first two axes

RDA1 and RDA2 collectively explained 98.51% of the variation in

the relationship between metabolites and microorganisms of the

samples, with RDA1 contributing 86.14% and RDA2 12.37%

(Figure 4A), indicating that RDA1 is the main dimension that

distinguishes the relationship between metabolites and microbial

communities in LAT and SAT samples. In the statistical validation

identified, the effects of the microbial generaMethylobacterium and

Methylorubrum on metabolites were significant, with p-values of

0.003 and 0.035, respectively, indicating that they are key genera in

the microbial community that regulate the metabolites distribution

and cause differences in the aromas of tobacco. Sugar metabolites
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associated with light aromas showed positive correlations with

Methylorubrum (RDA1=-0.691) and Pseudomonas (RDA1=-

0.375) but negative correlations with Methylobacterium (RDA1 =

0.733). Conversely, acid metabolites associated with strong aromas,

were positively correlated with the genera Methylobacterium and

Aureimonas (RDA1 = 0.733 and 0.619) and negatively correlated

with the genera Methylorubrum and Pseudomonas (RDA1 = -0.691

and -0.375). In addition, amino acids, which are also important for

tobacco to form strong aromas, were positively correlated with the

genus Sphingomonas (RDA2 = -0.736) and negatively correlated

with the genera Aureimonas (RDA2 = 0.228).

The distribution of the metabolites and the superior microbial

genus (relative abundance >1%) showed that the genus

Methylobacterium was closely related to strong aromas, indicating

that acids and amino acids dominate its metabolic characteristics;

the genus Methylorubrum and Pseudomonas were closely related to

light aromas, indicating that sugars dominated its metabolic
TABLE 3 Metabolic pathways of differential metabolites in tobacco leaves.

Pathway Name Total Expected Hits Raw p Impact Hit Metabolites

Galactose metabolism 27 0.22286 5 1.18E-06 0.49222 Sucrose

Melibiose

D-Galactose

D-Fructose

Galactinol

Starch and sucrose metabolism 18 0.14857 4 8.03E-06 0.12786 Sucrose

Maltose

Cellobiose

D-Fructose

Alanine, aspartate and glutamate metabolism 28 0.23111 2 0.021069 0.08894 4-Aminobutanoic acid

2-Butenedioic acid

Phenylalanine, tyrosine and
tryptophan biosynthesis

4 0.033016 1 0.03264 0.5 L-Phenylalanine

Phenylalanine metabolism 8 0.066032 1 0.064294 0.35714 L-Phenylalanine

Arginine biosynthesis 14 0.11556 1 0.10999 0 2-Butenedioic acid

Butanoate metabolism 15 0.12381 1 0.1174 0.03175 4-Aminobutanoic acid

Pentose and glucuronate interconversions 19 0.15683 1 0.14648 0 Arabinitol

Tricarboxylic acid cycle (TCA) 20 0.16508 1 0.15361 0.02981 2-Butenedioic acid

Fructose and mannose metabolism 20 0.16508 1 0.15361 0.09765 D-Fructose

beta-Alanine metabolism 21 0.17333 1 0.16069 0 Hydracrylic acid

Propanoate metabolism 22 0.18159 1 0.16771 0 Hydracrylic acid

Pyruvate metabolism 23 0.18984 1 0.17468 0 Hydracrylic acid

Glutathione metabolism 28 0.23111 1 0.20871 0.00709 Hydracrylic acid

Arginine and proline metabolism 36 0.29714 1 0.26048 0.04767 Hydracrylic acid

Amino sugar and nucleotide sugar metabolism 42 0.34667 1 0.29724 0 Hydracrylic acid

Tyrosine metabolism 42 0.34667 1 0.29724 0.02463 Hydracrylic acid
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characteristics. This result suggested that the selective regulation of

metabolites by different abundant genera in the microbial

community may influence the aromatic types.

From the analysis results, the genus Methylobacterium and

Methylorubrum are the core genus in regulating the LAT and SAT

metabolites, and their contribution to the metabolism of acids, amino

acids, and sugars are particularly significant. The association analysis

between abundant microorganisms and metabolites is shown in

Figure 4B. Combined with the RDA analysis results, the microbial

genus Methylobacterium was significantly positively correlated with

the acid metabolites Xylonic acid and Tartaric acid and also

significantly negatively correlated with most of the sugar

metabolites, such as Sucrose, Maltose, and D-Fructose. The results

indicated that Methylobacterium may play an important role in the

overall metabolic regulation of the sample by promoting acid

metabolism and inhibiting the accumulation of sugar metabolites,

resulting in a strong aroma of tobacco.

The genus Sphingomonas is significantly positively correlated

with the acid metabolite 4-Aminobutanoic acid, as well as the amino

acid metabolites L-Phenylalanine, L-Glutamic acid, and L-5-

Oxoproline, negatively correlated with the sugar metabolite D-
Frontiers in Plant Science 09
Fructose. The results indicated that the genus Sphingomonas plays

a facilitating role in amino acid and acid metabolism while inhibiting

some sugar metabolism and resulting in a strong tobacco aroma.

The genus Pseudokineococcus was significantly positively

correlated with the sugar and acid metabolites D-Galactose, b-D-
Lactose and 4-Aminobutanoic acid, also significantly negatively

correlated with D-(-)-Fructofuranose and Hydracrylic acid,

indicating that the genus Pseudokineococcus plays an important

role in the formation of the metabolites related to tobacco aroma.

From the results of species abundance at the genus level

(Supplementary Figure S2C), Pseudokineococcus existed more in

LAT than in SAT, illustrating that it may play an important role in

sugar metabolism and results in a light aroma of tobacco.

In summary, the complex regulation between abundant

microbial genera and metabolites was clarified through

redundancy analysis (RDA) and correlation analysis. The genus

Methylobacterium played a key role in promoting acid metabolism

and inhibiting sugar metabolism, highlighting its central position in

distinguishing the metabolic characteristics of tobacco. The genera

Methylorubrum and Pseudomonas were mainly involved in the

sugar metabolic pathway, promoting the accumulation of sugar
FIGURE 4

Metabolites and microorganisms of the flue-cured tobacco leaves. (A) RDA analysis, the angle between two variables less than 90° indicates a
positive correlation, otherwise a negative correlation. (B) Correlation analysis between microorganisms at the genus level and metabolites.
*P<0.05, **P<0.001.
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metabolites in the LAT sample, while the main function of the

genus Sphingomonas was promoting the amino acid and some acid

metabolic pathways, which benefit strong aromas formation. In

addition, the bidirectional regulation of sugars and acid metabolites

by the genus Pseudokineococcus further reflects its important role in

the metabolic network. These results revealed that different

abundant microbial genera jointly drive the metabolic differences

between the two types of aromatic tobacco samples by selectively

regulating the distribution of metabolites.
Discussion

This study revealed significant differences and the association of

the metabolite composition and microbial communities of the flue-

cured tobacco leaves of the light aroma and strong aroma by

combining analysis of untargeted metabolomics and metagenomics

results. The results showed that tobacco leaves with different aromas

exhibited significant differences in metabolites distribution and were

regulated by specific abundant microbial genera. Importantly, the

findings align with broader principles of plant-microbe interactions

observed across plant species, offering insights into evolutionary

conserved mechanisms and functional modularity in microbial

communities (de Vries et al., 2020; Frantzeskakis et al., 2020;

Mesny et al., 2023).

The composition and content of the metabolites in tobacco are

highly consistent with the sensory characteristics of tobacco aroma

(Zhang et al., 2024). The high content of sugar metabolites gives the

tobacco a soft aroma by flavoring and reducing the pungent taste. In

contrast, the rich acids and amino acids enhance the depth and

complexity of the tobacco aromas by participating in the Maillard

reaction and other chemical reactions (Geng et al., 2023). In the

present study, the metabolite analysis showed that sugar and acid

metabolites were the main contributors to tobacco aromas,

manifesting the metabolic differences between LAT and SAT

samples. The LAT sample significantly contained higher levels of

sugar metabolites (e.g., sucrose, maltose) than the SAT sample,

consistent with the findings of Jing et al (Jing et al., 2024).

Conversely, the SAT samples contained higher acid metabolites

(e.g., xylonic acid, tartaric acid) and amino acid metabolites (e.g.,

L-5-Oxoproline, L-Glutamic acid). However, in the study by Tie et al

(Tie et al., 2024), LAT tobacco leaves had a higher content of amino

acids, which contradicts our conclusion. This discrepancy may arise

from differences in tobacco varieties or cultivation practices. Notably,

such context-dependent metabolic variations are also observed in

Arabidopsis-microbiome studies, where host genotype and

environmental factors significantly reshaped microbial functional

outputs (Beck et al., 2022; Gonçalves et al., 2023). However, unlike

the simplified model system of Arabidopsis, tobacco’s complex

secondary metabolism and agricultural management introduce

additional layers of microbial community regulation.

Microorganisms indirectly affect tobacco leaves’ aroma by

modulating metabolites’ types and contents. Sphingomonas

degrades dimeric lignin compounds into flavor precursors, while
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Methylobacterium utilizes methanol to drive one-carbon metabolism.

Pseudomonas participates in nicotine degradation, redirecting

intermediates into the TCA cycle. These functional roles reflect the

“core-accessory” framework of microbial metabolic networks, where

core functions (e.g., carbon/nitrogen cycling) are conserved across

plant species, while accessory functions (e.g., specialized aroma

synthesis) are niche-specific (Mazurie et al., 2010; Roume et al.,

2015; Ramon and Stelling, 2023). For instance, Methylobacterium’s

methanol metabolism is a core trait in both tobacco and Arabidopsis

phyllosphere communities, but its contribution to aroma formation is

uniquely amplified in tobacco due to host-specific secondary

metabolism (Zhang et al., 2020; Zheng et al., 2024). Evolutionarily,

such conservation suggests that plant-microbe co-adaptation in

agricultural systems builds upon ancient symbiotic mechanisms

repurposed for crop-specific traits (de Vries et al., 2020).

The identification of Quadrisphaera as a differentially abundant

taxon in the LEfSe analysis despite its low relative abundance (0.12%)

highlights the interplay between statistical significance and biological

relevance in microbiome studies. The possible explanations are listed

as below: (1) LEfSe identifies taxa with significant differences in

relative abundance between groups by combining non-parametric

tests with effect size estimation (LDA score). In this study,

Quadrisphaera was exclusively detected in SAT group but absent in

LAT group, leading to statistically significant differences (P < 0.05)

even at low abundance. LEfSe’s non-parametric approach is sensitive

to such categorical differences, especially when taxa are uniquely

associated with a group. (2) Microbial communities often include rare

taxa that contribute disproportionately to functional processes.

Although Quadrisphaera’s abundance was low, its metabolic

activity (e.g., niche-specific enzymatic functions) or interactions

with other microbes could amplify its ecological impact. For

instance, Quadrisphaera might participate in pathways influencing

secondary metabolite synthesis or niche competition, indirectly

shaping aroma differentiation. Anyway, the biological significance

of Quadrisphaera in this context requires further validation (e.g.,

strain isolation, functional assays). However, its identification aligns

with emerging evidence that rare taxa can serve as biomarkers in

plant-microbe systems. Future studies with larger sample sizes and

metatranscriptomics could clarify its role.

Cross-species comparisons further highlight conserved metabolic

pathways shaped by microbial activity. For example, phenylpropanoid

biosynthesis-a pathway critical for aroma in tobacco, tea, and grapes—

is similarly modulated by microbial hydroxylation and methylation

enzymes in diverse plants (Zhao et al., 2020, 2023; Wang et al., 2023).

In our study, the enrichment of sugar degradation pathways in LAT

tobacco mirrors microbial-driven carbohydrate metabolism in maize

rhizosphere communities, underscoring a universal strategy for

balancing carbon allocation and secondary metabolite synthesis

(Thoenen et al., 2023). These parallels emphasize and also support

our hypothesis that microbial functional redundancy and metabolic

flexibility are key drivers of plant phenotypic diversity.

Although amplicon sequencing (e.g., 16S/ITS rRNA gene

sequencing) is widely recognized as a cost-effective and standardized

approach for taxonomic profiling, in this research, shotgun
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metagenomic sequencing was selected over amplicon sequencing to (i)

avoid PCR amplification biases, and (ii) integrate taxonomic data with

metabolomic profiles for holistic plant-microbe interaction modeling.
Conclusion and prospects

On the flue-cured tobacco leaves with a light aromatic smell, the

abundant genera Methylorubrum and Pseudomonas promote sugar

metabolism, while the genus Pseudokineococcus exhibits a bidirectional

regulation of aromatic metabolites. While on the flue-cured tobacco

leaves with a strong aromatic smell, the abundant genera

Methylobacterium and Sphingomonas promote the metabolism of

acids and amino acids. Meanwhile, the genus Methylobacterium

inhibits sugar metabolism. This study provides a theoretical basis for

improving tobacco leaf quality throughmetabolomic andmetagenomic

analysis. However, a limitation of this study is the absence of direct

functional annotation of microbial genes (e.g., KEGG pathways).

Future work combining metatranscriptomics or MAG-based

approaches with controlled experiments (e.g., gnotobiotic systems)

will validate the hypothesized roles of taxa like Methylobacterium in

sugar/acid metabolism. Meanwhile, evolutionary perspectives (e.g.,

phylogenetic conservation of microbial traits) and multi-omics

modeling should also be integrated in the future research to dissect

how core-accessory microbial functions coevolve with host metabolic

networks. Additionally, exploring the molecular mechanisms of

microbial-metabolite interactions in tobacco could inform

microbiome engineering strategies applicable to other crops, such as

enhancing stress tolerance or flavor profiles through targeted

microbial consortia.
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