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branch network for maize variety
identification based on multi-
modal feature fusion
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Xiaozhu Zhou1, Helong Yu1, Chunguang Bi1* and Ming Zhao3*

1College of Information Technology, Jilin Agricultural University, Changchun, China, 2School of
Electronic Information Engineering, Changchun University of Science and Technology,
Changchun, China, 3Jilin Zhongnong Sunshine Data Co., Ltd, Changchun, China
Introduction: The accurate identification of maize varieties is of great

significance to modern agricultural management and breeding programs.

However, traditional maize seed classification methods mainly rely on single

modal data, which limits the accuracy and robustness of classification.

Additionally, existing multimodal methods face high computational complexity,

making it difficult to balance accuracy and efficiency.

Methods: Based on multi-modal data from 11 maize varieties, this paper presents

DualCMNet, a novel dual-branch deep learning framework that utilizes a one-

dimensional convolutional neural network (1D-CNN) for hyperspectral data

processing and a MobileNetV3 network for spatial feature extraction from

images. The framework introduces three key improvements: the HShuffleBlock

feature transformation module for feature dimension alignment and information

interaction; the Channel and Spatial Attention Mechanism (CBAM) to enhance

the expression of key features; and a lightweight gated fusion module that

dynamically adjusts feature weights through a single gate value. During

training, pre-trained 1D-CNN and MobileNetV3 models were used for network

initialization with a staged training strategy, first optimizing non-pre-trained

layers, then unfreezing pre-trained layers with differentiated learning rates for

fine-tuning.

Results: Through 5-fold cross-validation evaluation, the method achieved a

classification accuracy of 98.75% on the validation set, significantly

outperforming single-modal methods. The total model parameters are only

2.53M, achieving low computational overhead while ensuring high accuracy.
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Discussion: This lightweight design enables the model to be deployed in edge

computing devices, allowing for real-time identification in the field, thus meeting

the practical application requirements in agricultural Internet of Things and smart

agriculture scenarios. This study not only provides an accurate and efficient

solution for maize seed variety identification but also establishes a universal

framework that can be extended to variety classification tasks of other crops.
KEYWORDS

maize variety classification, dual-branch network, lightweight network, hyperspectral
and image data, multi-modal fusion
1 Introduction

Maize is one of the most significant food crops globally, and its

variety identification plays a crucial role in agricultural production

management, seed quality control, and breeding research

(Tyczewska et al., 2018). Accurate variety identification not only

helps protect intellectual property rights and regulate the seed

market but also provides scientific evidence for breeding

programs, thereby improving agricultural production efficiency

and ensuring food security (Erenstein et al., 2022). However, due

to the high morphological similarity among most maize varieties,

while traditional techniques such as high-performance liquid

chromatography, protein electrophoresis, and DNA molecular

markers demonstrate high identification accuracy (Barrias et al.,

2024; Li et al., 2024c; Moreno-Chamba et al., 2024), these methods

generally have significant limitations including being destructive,

time-consuming, operationally complex, and costly, making them

challenging to implement on a large scale in practical production.

Therefore, developing a rapid, accurate, and economical method for

maize variety identification holds substantial theoretical value and

practical significance.

In recent years, computer vision-based crop variety

identification methods have garnered significant attention due to

their advantages of being rapid, non-destructive, and cost-effective.

Deep learning technology has achieved remarkable progress in

image recognition. Feng et al. (2023) proposed a lightweight

wheat seedling variety identification model, MssiapNet, which

improved the MobileVit-XS network by incorporating scSE

attention mechanism and IAP module, achieving 96.85% accuracy

in identifying 29 varieties while maintaining model parameters at

29.70MB. Li et al. (2024a) developed an improved ResNet50-based

maize seed identification model that introduced ResStage structure

and efficient channel attention mechanism, achieving 91.23%

accuracy in classifying six varieties while reducing model

parameters by 40%. Yang et al. (2021) enhanced the VGG16

network structure by removing certain fully connected layers and

adding depth cascade and batch normalization layers, achieving
02
96.7% accuracy in identifying 12 peanut varieties, with the method

demonstrating good generalization performance in classifying

seven maize varieties at 90.1% accuracy. Simultaneously, spectral

technology has been widely applied in agricultural product quality

evaluation (Zhang et al., 2021; Qin et al., 2024; Yang et al., 2024),

composition content determination (Guo et al., 2023; Liang et al.,

2024; Yang et al., 2024), and variety identification (Dong et al., 2024;

Salehi et al., 2024; Bi et al., 2025). As a crucial identification tool,

spectral analysis provides rich physicochemical component

information of crop kernels, offering new technical pathways for

variety identification. Zhang et al. (2024) proposed a spectral band

selection method based on sparse band attention networks,

achieving 95.20% classification accuracy using 50 selected bands

on a hyperspectral dataset containing 20 maize varieties, showing a

1.35% improvement over full-band methods. Li et al. (2024b)

developed a jujube variety traceability method based on near-

infrared spectroscopy and one-dimensional CNN, achieving

classification accuracies of 93.50%, 94.33%, and 94.25% using

RBF, LSTM, and CNN respectively on a 4000-sample dataset,

with CNN performing best under small-sample conditions,

reaching 90.43% accuracy with 700 samples. Zhou et al. (2024)

proposed an improved DenseNet-based maize seed identification

method using near-infrared spectroscopy, enhancing DenseNet-121

through BCN, ACmix, and CBAM modules, achieving 99.33%

accuracy in classifying five varieties while reducing model

parameters to 0.97M. Yu et al. (2021) achieved 93.79% identification

accuracy for 18 hybrid okra seed varieties using HSI (948.17-

1649.20nm) combined with CNN technology. Wang and Song

(2023) utilized hyperspectral imaging technology combined with

deep learning methods to identify various sweet corn seeds,

achieving classification accuracy exceeding 95% in both training and

testing datasets. However, these unimodal methods still face

significant challenges when dealing with visually similar varieties:

image-based methods struggle to capture subtle differences between

varieties, particularly in morphologically similar new breeding

varieties, while spectral analysis, although providing rich

physicochemical information, is susceptible to environmental factors
frontiersin.org
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and spectral overlap issues. The inherent limitations of single-

modality methods have prompted researchers to explore more

comprehensive solutions.

Based on the complementarity of image features and spectral

information, multimodal data fusion methods show promising

application prospects. Wang et al. (2016) combined hyperspectral

data with image texture features and used least squares support

vector machines to classify different maize seed varieties, achieving

a classification accuracy of 88.89% based on two data fusion

methods. Li et al. (2023) combined morphological and

hyperspectral features using an improved one-dimensional CNN

model to predict cotton seed vigor, obtaining a correlation

coefficient of 0.9427 after fusing spectral and image features.

Gong et al. (2024) proposed a Chinese medicine classification

system based on spectral-image dual-modal fusion, combining

one-dimensional laser-induced breakdown spectroscopy and two-

dimensional image data, achieving 99.40% accuracy in classifying

nine varieties of Lycium barbarum, while reducing model

parameters to 2.95M. Tan et al. (2020) proposed a Dual-

Attention Time-Aware Gated Recurrent Unit (DATA-GRU),

which effectively addressed irregular sampling intervals and

missing values in medical time series data through time-aware

mechanisms and dual attention structures, achieving an AUC value

of 91.9% in predicting in-hospital mortality on the MIMIC-III

dataset. However, existing multimodal fusion methods still face the

following challenges: 1) Information loss due to feature dimension

mismatch, where existing methods often use simple feature

concatenation or average pooling for fusion, failing to fully utilize

complementary information from different modalities; 2) High

computational complexity, as many fusion architectures employ

complex attention mechanisms or multi-level feature fusion

strategies, resulting in excessive model parameters and

computational overhead, which hinders practical deployment; 3)

Lack of optimization design for crop features, where generic feature

fusion methods fail to fully consider the specificity of crop

variety identification.
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To address these challenges, this study proposes a novel dual-

branch deep learning framework called DualCMNet. The

framework incorporates three innovative designs: 1) A feature

transformation module based on HShuffleBlock, which achieves

feature dimension alignment and sufficient information interaction

through grouped linear transformation and channel shuffling,

effectively solving the dimension mismatch problem in

multimodal feature fusion; 2) A lightweight gated fusion

mechanism that dynamically adjusts feature weights using a

single gate value, significantly reducing computational complexity

while maintaining high performance; 3) An extensible spectral-

spatial feature fusion framework that is not only applicable to maize

variety identification but can also be extended to variety

identification tasks for other crops such as rice and wheat. While

improving crop variety identification accuracy, this study

significantly reduces the model’s computational complexity,

providing a feas ible technical solut ion for pract ica l

application scenarios.
2 Material and methods

2.1 Experimental materials

2.1.1 Sample preparation
The maize kernels examined in this investigation were sourced

from the Institute of Smart Agriculture, Jilin Agricultural

University. The study incorporated 11 distinct cultivars:

JiDan209, JiDan626, JiDan505, JiDan27, JiDan407, JiDan50,

JiDan83, JiDan953, JiDan436, LY9915, and ZhengDan958

(Figure 1). To facilitate computational analysis, these varieties

were sequentially coded numerically from 0 through 10 in the

order listed. The selected cultivars constitute the primary maize

varieties propagated throughout Jilin Province. Specifically,

varieties in the JiDan series exhibit remarkable environmental

adaptability and yield consistency, establishing them as
FIGURE 1

Maize kernel sample.
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predominant selections in Northeast China’s Spring Maize Region.

ZhengDan958 demonstrates versatile adaptability across the

Yellow-Huai-Hai Summer Maize Region, while LY9915 represents

a significant cultivar extensively promoted throughout

Northeastern regions. All kernel samples displayed yellow

coloration, with several varieties exhibiting subtle reddish

pigmentation on their surfaces. To maintain sample integrity and

homogeneity, a meticulous manual selection process eliminated

damaged, pest-affected, and foreign kernels, ensuring only fully

developed and intact specimens were retained. Each varietal group

comprised 1,000 individual kernels.

2.1.2 Data acquisition and pre-processing
This research employed a combination of RGB imaging and

hyperspectral measurements to collect maize kernel data. RGB

images were captured using a Canon EOS 1500D camera, with

the acquisition system shown in Figure 2A. To ensure consistency

in data collection conditions, a standardized acquisition platform

was constructed in the laboratory, comprising a black background

board, a vertically mounted camera, and two stable LED light

sources. During the acquisition process, kernels of each variety

were arranged in groups of 100 on the background board, with 10

groups of images captured per variety at a resolution of 6000×4000

pixels. The stable LED light sources and standardized acquisition

environment effectively minimized the interference of external light

sources on image quality.

Hyperspectral data were collected using a FieldSpec4 portable

spectroradiometer (ASD Inc., USA), with the measurement system

shown in Figure 2B. This device collected reflectance spectral data

within the 350–2500 nm spectral range, featuring a wavelength

accuracy of 0.5 nm and a repeatability precision of 0.1 nm. During

data collection, the probe was maintained at a fixed distance of

10 cm from the sample surface, with a 20 W halogen lamp serving

as the light source. To ensure data quality, the instrument was

calibrated using a standard white reference panel before each

measurement, with the averaging set to 10 measurements and an

integration time of 100ms. Reflectance data were collected at 2,151

wavelength points. For each variety, 150 kernels were randomly
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selected for spectral measurement, with the spectroradiometer

being recalibrated before each measurement to ensure data

consistency and accuracy. All measurements were conducted

under identical laboratory conditions, with strict environmental

control and standardized operational procedures ensuring the

reliability and reproducibility of the spectral data.

The raw RGB images were first converted to grayscale and

denoised using Gaussian filtering. Subsequently, Otsu’s method was

applied to obtain binary threshold images, followed by

morphological opening operations to remove residual noise.

Background regions were then identified through dilation

operations, while foreground regions were recognized using

distance transformation. The unknown regions were determined

through subtraction operations. Furthermore, the watershed

algorithm was employed for image segmentation of the

foreground regions, and a boundary tracking algorithm was used

to extract the contours of individual maize kernels. Finally, 100

maize kernels from each image were segmented into individual

kernel images to facilitate subsequent feature extraction and

analysis. As shown in Figures 3A-D.

For hyperspectral data, surface scatter reflection from samples

may cause data variations among identical sample types, increasing

noise and affecting model accuracy. Therefore, Savitzky-Golay (SG)

smoothing technique is employed. This method reduces noise by

fitting polynomials within a sliding window, thereby enhancing the

signal-to-noise ratio while preserving spectral details, thus

improving data correlation and model discrimination precision.

Preprocessed data are more suitable for feature extraction and

model training. The average spectral curves after preprocessing

are shown in Figure 3E, demonstrating unique spectral

characteristics of 11 maize varieties within the 350–2500 nm

wavelength range. The overall trend of spectral curves for all

varieties appears similar, with distinct peaks near 863 nm, 1105

nm, 1295 nm, 1680 nm, and 2015 nm, and notable valleys near 980

nm, 1175 nm, 1450 nm, 1780 nm, and 1915 nm. However,

significant differences exist in reflection intensity at specific

wavebands. These differences are primarily distributed across the

following key regions: Visible light region (350–780 nm): Primarily
FIGURE 2

Real images and schematic diagram of maize kernel acquisition: (A) image data; (B) hyperspectral data.
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associated with grain pigment characteristics, with 450–550 nm

reflecting carotenoid content and 550–680 nm reflecting

chlorophyll residues, directly influencing grain color properties.

Near-infrared region (780–1100 nm): The absorption valley at 970–

980 nm corresponds to O-H bond absorption in water molecules,

while 1000–1100 nm relates to C-H bond vibrations in

carbohydrates, reflecting grain moisture content and starch

properties. Short-wave infrared region (1100–2500 nm):

Encompasses multiple key characteristic wavebands, with 1210–

1230 nm reflecting lipid C-H bond properties, 1450–1480 nm

corresponding to water-related O-H bond absorption, 1500–1570

nm manifesting protein N-H bond characteristics, 2100–2200 nm

characterizing starch C-O-H bond absorption, and 2300–2350 nm

associated with lipid C-H bonds.

The positional and intensity differences of these characteristic

peaks and valleys reflect structural variations in major biochemical

components such as proteins, lipids, and carbohydrates among

different maize varieties, providing spectral evidence for variety

identification. The spectral differences between varieties are most

significant in the 1400–1600 nm and 2000–2300 nm intervals,

containing absorption characteristics of multiple functional

groups (C-H, N-H, and O-H), constituting critical wavelength

regions for deep learning models to identify varieties.
2.2 Network architecture

2.2.1 Overall structure
The proposed DualCMNet adopts a dual-branch parallel

architecture to process hyperspectral data and RGB image data

separately. As shown in Figure 4, the network comprises four key

modules: a dual-branch feature extraction network, an

HShuffleBlock feature transformation module, a Convolutional

Block Attention Module (CBAM), and a lightweight gated fusion

module. Specifically, the dual-branch feature extraction network
Frontiers in Plant Science 05
employs a one-dimensional convolutional network (1D-CNN) and

MobileNetV3 to process spectral and spatial data, respectively. The

HShuffleBlock achieves feature dimension alignment and

information interaction through grouped linear transformation

and channel shuffling. The CBAM enhances the representation of

discriminative features through channel and spatial attention,

thereby improving the model’s ability to recognize subtle

differences between varieties. The lightweight gated fusion module

dynamically regulates the feature fusion process through adaptive

weights. This modular design achieves efficient spectral-spatial

feature fusion while maintaining low computational complexity.

2.2.2 Double branch feature extraction
The feature extraction module adopts a dual-branch architecture,

with dedicated feature extraction networks designed for hyperspectral

data and RGB images respectively. The spectral branch employs 1D-

CNN to process 2151-dimensional hyperspectral data. As shown in

Figure 5, the network comprises three consecutive convolution blocks

with channel dimensions of 16, 32, and 64, respectively. Each

convolution block consists of one-dimensional convolution, batch

normalization, ReLU activation function, and max-pooling layer, with

the first convolution block additionally incorporating a Dropout layer.

This progressive feature extraction strategy enables the network to

effectively capture spectral features from local to global scales. The

flattened features are ultimately mapped through two fully connected

layers and a Dropout layer.

The spatial branch employs MobileNetV3-Small as the feature

extraction network (Howard et al., 2019). The Small version, rather

than the Large version, was selected primarily due to its lower

computational overhead and memory footprint, taking into

consideration the resource constraints in practical deployment

scenarios. As illustrated in Figure 6 and Table 1, the network

extracts initial features through a 3×3 convolutional layer, followed

by eleven inverted residual blocks that progressively construct feature

representations. To enhance feature discriminative capability, the
FIGURE 3

The preprocessed data: (A) Image data, original image; (B) binarized image; (C) mask image; (D) segmented image; (E) average hyperspectral curves
of 11 maize varieties.
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network incorporates SE attention mechanisms at specific layers and

flexibly configures Hardswish/ReLU activation functions. Finally, a

1024-dimensional feature vector is output through adaptive average

pooling and fully connected layers.
Frontiers in Plant Science 06
2.2.3 Feature transformation module
To achieve efficient fusion of multi-modal features, this study

designs a feature transformation module HShuffleBlock based on

ShuffleBlock (Ma et al., 2018). Through grouped linear

transformation and channel shuffling operations, this module

effectively reduces computational complexity while maintaining

feature expressiveness. The basic structure of the feature

transformation module is shown in Figure 7.

The module consists of two main components: grouped linear

transformation and channel shuffling. The grouped linear

transformation first divides the input feature X ∈ Rd into g groups

(g=8 in this study), with each group undergoing independent feature

transformation. For the i   th group feature Xi, the transformation

process is shown in Equation 1.

Xtransformed
i = WiXi + bi (1)

whereWi is the weight matrix of group i and bi is the bias term.

This grouped transformation strategy reduces the computational

complexity from O(d1d2) to O d1d2
g

� �
, where d1 and d2 represent

the input and output dimensions, respectively.

The channel shuffling operation achieves inter-group

information exchange through feature channel reordering. Given

the transformed feature Y ∈ Rd0 , the channel shuffling process is

shown in Equation 2.

Yreshaped = reshape Y , batch, g , d
0
g

� �� �

Yshuffled = transpose(Yreshaped , (0, 2, 1))

Youtput = reshape Yshuffled , batch, d0ð Þ� �
(2)

To enhance feature expressiveness, the module adopts a two-

stage structure, with its overall transformation process is shown in

Equation 3.

Fmid = sðBNðShuffleBlock1(X)ÞÞ
Fout = sðBNðShuffleBlock2(Fmid)ÞÞ

(3)

where s denotes the ReLU activation function and BN

represents batch normalization. The first ShuffleBlock maps

features to a 512-dimensional intermediate feature space, while

the second maps features further to a 384-dimensional common

feature space, as shown in Equation 4.
FIGURE 4

Overall architecture diagram.
FIGURE 5

1D-CNN structure.
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X ∈ Rd →
ShuffleBlock1R512 →

ShuffleBlock2R384 (4)

After processing through the feature transformation module,

both spectral features Fs and Fr are mapped to a feature space of

identical dimensionality, as shown in Equation 5.

Ftransformed
s , Ftransformed

r ∈ R384 (5)

The design of the feature transformation module effectively

addresses the dimensional mismatch problem in multi-modal

feature fusion while significantly reducing computational

overhead, thereby providing a solid foundation for subsequent

attention enhancement and feature fusion.

2.2.4 Attention-enhancing mechanisms
In this study, Convolutional Block Attention Module

(CBAM) attention mechanism (Woo et al., 2018) s used to

enhance feature expression. In the proposed network, CBAM
Frontiers in Plant Science 07
acts on the transformed spectral and spatial features

respectively, and enhances the discriminative ability of the

features through the series-connected channel and spatial

attention modules.

The channel attention module extracts channel statistics

through parallel adaptive average pooling and maximum pooling

operations As shown in Figure 8. For input feature F ∈ RC�H�W ,

the average and maximum values along the channel dimension are

calculated as shown in Equation 6.

Zavg = AvgPool(F) ∈ RC

Zmax = MaxPool(F) ∈ RC
(6)

These features undergo nonlinear transformation through a

shared-weight multilayer perceptron as shown in Equation 7.

MLP(Z) = W2 · ReLU(W1 · Z) (7)
FIGURE 6

MobileNetV3-Small Structure diagram.
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where W1 ∈ RC
r�C and W2 ∈ RC�C

r are the learnable weight

matrices and r is the downscaling ratio. The channel attention

weights are computed by the following, as shown in Equation 8.

Mc(F) = s MLP(Zavg) + MLP(Zmax)
� �

(8)

where s is the sigmoid activation function.

The spatial attention module focuses on the spatial distribution

of features As shown in Figure 9. Initially, average pooling and

maximum pooling are performed along the channel dimension,

followed by concatenation and processing through a 7×7

convolutional layer to generate spatial attention weights, as shown

in Equation 9.

Savg = AvgPoolspatial(F) ∈ RH�W

Smax = MaxPoolspatial(F) ∈ RH�W

Ms(F) = s Conv7�7(½Savg; Smax�)
� �

(9)

where ½Savg; Smax� represents the concatenation operation, and s
is the sigmoid activation function.

The sequential application of channel and spatial attention

proceeds as follows, as shown in Equation 10.

F1 = Mc(F)⊗ F

Fout = Ms(F1)⊗ F1
(10)

where ⊗ denotes element-by-element multiplication. For

spectral features, channel attention emphasizes the contribution

of important wavelength bands; for spatial features, spatial attention

highlights critical regions of grain morphology.
FIGURE 7

HShuffleBlock basic structure.
TABLE 1 MobileNetV3-Small Architecture.

Input Size Operation Elevated Dimension Output Channel SE Activation Function Padding

224 × 224 × 3 Conv2d, 3 × 3 – 16 – H-Swish 2

112 × 112 × 16 Bottleneck, 3 × 3 16 16 ✓ Relu6 2

56 × 56 × 16 Bottleneck, 3 × 3 72 24 – Relu6 2

28 × 28 × 24 Bottleneck, 3 × 3 88 24 – Relu6 1

28 × 28 × 24 Bottleneck, 5 × 5 96 40 ✓ H-Swish 2

14 × 14 × 40 Bottleneck, 5 × 5 240 40 ✓ H-Swish 1

14 × 14 × 40 Bottleneck, 5 × 5 240 40 ✓ H-Swish 1

14 × 14 × 40 Bottleneck, 5 × 5 120 48 ✓ H-Swish 1

14 × 14 × 48 Bottleneck, 5 × 5 144 48 ✓ H-Swish 1

14 × 14 × 48 Bottleneck, 5 × 5 288 96 ✓ H-Swish 2

7 × 7 × 96 Bottleneck, 5 × 5 576 96 ✓ H-Swish 1

7 × 7 × 96 Bottleneck, 5 × 5 576 96 ✓ H-Swish 1

7 × 7 × 96 Conv2d, 1 × 1 – 576 ✓ H-Swish 1

7 × 7 × 576 Pool, 7 × 7 – – – – 1

1 × 1 × 576 Fc, 1 × 1 – 1024 – H-Swish 1

1 × 1 × 1024 Fc, 1 × 1 – k – – 1
fr
√ indicates the module is included in the network architecture, while blank cells indicate the module is not used.
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2.2.5 Feature fusion strategy
To effectively integrate the complementary information of

spectral and spatial features, this study designed a lightweight

gated fusion module. This module dynamically adjusts the

contribution of different modal features by learning adaptive

gating values while balancing computational efficiency and fusion

performance (Arevalo et al., 2017). The structure of the gated fusion

module is shown in Figure 10.

The gated network adopts a simplified two-layer perceptron

structure with an input dimension of 2×384 (concatenated bimodal

features), a middle layer dimension of 48, and an output dimension of 1.

In order to improve training stability and generalization capability, ReLU

activation function and dropout layer (dropout rate 0.2) are inserted

between the two fully connected layers. The gated network design follows

the “narrow-wide” lightweight principle, and significantly reducing the

number of parameters by decreasing the middle layer dimension.

The fusion strategy considers both multiplicative interaction

and additive combination of features, which can be mathematically

expressed as shown in Equation 11.

g = s MLP ½Fspectral, Fspatial�
� �� �

Ffused = g · Fspectral � Fspatial
� �

+ 1 − gð Þ · Fspectral + Fspatial
� � (11)

where g represents the fusion weight output by the gating

network, ranging from [0,1]; s denotes the sigmoid activation

function; ½·, ·� represents the feature concatenation operation;
Frontiers in Plant Science 09
Fspectral and Fspatial represent the spectral and spatial features after

feature transformation and attention enhancement, respectively.

The fusion strategy captures the nonlinear correlation between

modalities through the multiplicative interaction term, which helps to

discover the composite features for maize seed variety discrimination,

and at the same time utilizes the additive combination term to retain

the independent information of each modality, preventing the

effective features from being lost in the fusion process. The

adaptive gating mechanism can dynamically adjust the weights of

the two fusion modes according to the characteristics of the input

data to improve the adaptability and robustness of the model.

Compared with simple feature splicing or weighted averaging

methods, this fusion strategy can better integrate discriminative

information in the spectral and spatial domains.
2.3 Physicochemical and morphological
characteristics of maize varieties

Morphological characteristics and physiological properties

serve as crucial identifiers for maize varieties and form the

foundation for multimodal data fusion. This study conducted a

systematic analysis of grain morphological features and

physicochemical properties reflected by spectral response across

11 maize varieties, providing support for a deeper understanding of

the recognition mechanism in the proposed DualCMNet model.
FIGURE 9

Spatial Attention.
FIGURE 8

Channel attention.
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2.3.1 Analysis of grain morphological
characteristics

Grain morphological characteristics are visually observable

physical properties, primarily manifested in aspects such as size,

shape, and color. Table 2 presents the main morphological

characteristics of the 11 maize varieties used in this study.

Based on morphological characteristic analysis, these varieties

can be categorized into two main types: (1) Dent maize, including

JiDan436, JiDan505, JiDan407, JiDan953, and LY9915,

characterized by larger length-to-width ratios and more elongated
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elliptical shapes; (2) Semi-dent maize, including JiDan50, JiDan83,

JiDan209, JiDan27, JiDan626, and ZD958, exhibiting greater

variation in length-to-width ratios. Notably, JiDan27 and

JiDan209 demonstrated the lowest length-to-width ratios (both

1.17), presenting a more rounded appearance, while JiDan50,

despite being classified as semi-dent, exhibited a length-to-width

ratio (1.60) higher than all dent varieties, displaying a uniquely

slender morphology. Regarding color characteristics, most varieties

appeared yellow, whereas JiDan505 and LY9915 presented orange

coloration, providing important visual cues for image-based
FIGURE 10

Lightweight gating mechanism.
TABLE 2 Main morphological characteristics of 11 maize varieties.

Variety Average Length (mm) Average Width (mm) Thousand-grain Weight (g) Color Type

JiDan436 11.8 ± 0.6 8.0 ± 0.4 367 Yellow dent

JiDan50 12.0 ± 0.6 7.5 ± 0.4 300 Yellow Semi-dent

JiDan505 12.3 ± 0.6 8.3 ± 0.4 330 Orange Dent

JiDan83 11.0 ± 0.5 8.8 ± 0.4 364 Yellow Semi-dent

JiDan209 10.5 ± 0.5 9.0 ± 0.4 380 Yellow Semi-dent

JiDan407 11.5 ± 0.6 8.2 ± 0.4 370 Yellow Dent

JiDan27 10.8 ± 0.5 9.2 ± 0.4 400 Yellow Semi-dent

JiDan626 11.2 ± 0.5 8.6 ± 0.4 416 Yellow Semi-dent

JiDan953 11.0 ± 0.5 8.8 ± 0.4 372 Yellow Dent

ZD958 10.2 ± 0.5 8.0 ± 0.4 345 Yellow Semi-dent

LY9915 12.2 ± 0.6 8.5 ± 0.4 385 Orange Dent
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identification. Additionally, significant differences were observed in

thousand-kernel weight, ranging from the lowest value in JiDan50

(300g) to the highest in JiDan626 (416g); this physical property,

closely related to kernel volume and density, serves as a

supplementary feature for varietal identification.

2.3.2 Spectral characteristics and
physicochemical properties

Hyperspectral data reflects the internal physicochemical

composition of grains, including the relative content of

components such as starch, protein, and fat. In this study, the

differences in crude protein content among maize varieties ranged

from 8.46% (JiDan27) to 10.92% (JiDan83), crude fat content varied

from 3.23% (JiDan407) to 4.99% (LY9915), and crude starch

content ranged from 68.50% (JiDan209) to 77.33% (JiDan953).

These variations in component content constitute the primary

cause of spectral differences.

Comparing the data in Table 3 with the spectral curves in

Figure 3E, it is evident that varieties with similar physicochemical

component contents typical ly exhibit similar spectral

characteristics. For instance, JiDan953 and JiDan407 have

comparable crude starch contents (77.33% and 76.60%

respectively), and their spectral features in the near-infrared

region are relatively similar. Conversely, JiDan209, with a

significantly lower crude starch content (68.50%) than other

varieties, displays notable differences in spectral characteristics in

the corresponding bands. Furthermore, systematic differences in

physicochemical composition exist between dent and semi-dent

varieties. Comparison of data in Tables 2, 3 indicates that dent

varieties (such as JiDan436, JiDan407, and JiDan953) typically

contain higher crude starch content, averaging 76.77%, while

semi-dent varieties (such as JiDan83, JiDan50, and JiDan209)

have an average crude starch content of 71.57%. This systematic

difference is also reflected in their spectral characteristics.
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2.4 Experimental design

2.4.1 Data segmentation and training strategies
This study employs a two-stage training strategy, comprising

pretraining and fusion network training phases. During the

pretraining phase, two subnetworks are trained separately using

the data collected as described in Section 2.1.2. The spectral branch

utilizes one-dimensional convolutional neural networks for feature

extraction based on the collected hyperspectral data, while the

spatial branch adopts the MobileNetV3-Small architecture for

feature learning from RGB images. Both branches are trained for

200 epochs until convergence. In the fusion network training phase,

a category-matching data fusion strategy is designed to address the

sample alignment issue between the two modalities. Initially,

hyperspectral data is organized by variety categories to establish

category-feature mapping relationships. For each RGB image

sample, a feature vector is randomly selected from the

hyperspectral feature set of the same category for matching,

forming paired training samples. This category-based random

matching strategy ensures category consistency between different

moda l i t i e s whi l e enhanc ing da ta d iver s i t y through

random selection.

Five-fold cross-validation is employed to evaluate model

performance. Based on stratified sampling principles, the

StratifiedKFold method is used to divide the paired dataset into 5

subsets, ensuring consistent variety sample proportions in each

subset. In each fold validation, four subsets (800 pairs per variety,

totaling 8,800 paired samples) are randomly selected as the training

set, while the remaining subset (200 pairs per variety, totaling 2,200

paired samples) serves as the validation set. RGB images undergo

standard preprocessing, with random cropping and random

horizontal flipping applied to the training set, and center

cropping to the validation set, followed by normalization.

Hyperspectral data maintains its original feature vector form to

ensure the integrity of spectral information.

The model training adopts a hierarchical optimization strategy

with a batch size of 32. An Adam optimizer is employed with a base

learning rate of 1×10^-3 and a weight decay coefficient of 1×10^-4.

During the 14th epochs, the pretrained feature extraction layers are

frozen, with the learning rate for pretrained layers set to 0.1 times

the base learning rate. After the 15th epoch, all layers are unfrozen,

with the learning rate for pretrained layers adjusted to 0.05 times

the base learning rate, and the fusion layer learning rate reduced to

0.1 times the base learning rate. The training process continues for

50 epochs using a cross-entropy loss function. Model performance

is evaluated on the validation set after each epoch, and the model

parameters with the highest validation accuracy are saved.
2.4.2 Evaluation indicators
This research employs multiple metrics to evaluate model

performance, including Accuracy, Precision, Recall, F1 score,

Parameters, FLOPs, and Confusion Matrix. For a dataset D with

n samples, these metrics are calculated as follows:
TABLE 3 Physicochemical indicators of 11 maize varieties.

Variety
Crude Protein
Content (%)

Crude Fat
Content (%)

Crude Starch
Content (%)

JiDan436 10.65 3.57 76.39

JiDan50 9.51 4.31 72.6

JiDan505 9.59 4.7 73.27

JiDan83 10.92 3.66 73.62

JiDan209 10.02 4.55 68.5

JiDan407 10.03 3.23 76.6

JiDan27 8.46 4.06 75.23

JiDan626 8.66 3.99 75.62

JiDan953 8.81 3.67 77.33

ZD958 8.47 3.92 73.42

LY9915 10.58 4.99 73.3
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Accuracy = o
n
i=1I(yi = ŷ i)

n

where yi represents the true label of the i th sample, ŷ i denotes

the predicted label of the i th  sample, and I( · ) is an indicator

function that returns 1 when yi = ŷ i and 0 otherwise.

Precision and Recall are defined as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

where TP(True Positive) represents the number of samples

correctly predicted as positive, FP(False Positive) indicates the

number of samples incorrectly predicted as positive, and FN

(False Negative) denotes the number of samples incorrectly

predicted as negative.

The F1 score is calculated as:

F1 = 2� Precision� Recall
Precision + Recall

The Confusion Matrix M ∈ Rc�c represents the model’s

prediction performance in multi-classification tasks, where Mij

indicates the number of samples from class i that are predicted as

class j. Additionally, FLOPs and parameter count are used to

evaluate the model ’s computational complexity. FLOPs

represents the total number of floating-point operations

executed during one forward inference process, measuring the

model’s computational complexity. The parameter count refers

to the sum of all trainable parameters in the model, including

those in convolutional layers, fully connected layers, and other

components, which measures the model ’s storage and

computational overhead.
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3 Results

3.1 Baseline experiment results and
comparison

3.1.1 Comparison of single-modal performance
To evaluate the performance characteristics of deep learning

architectures on unimodal data, this study conducted comparative

experiments on typical convolutional neural networks for RGB

image classification tasks. As shown in Figure 11, the experimental

results demonstrate that ResNet34 (He et al., 2016) achieved

optimal classification performance of 94.54% through its deep

residual learning mechanism, albeit with a relatively large

parameter scale. Considering this research aims to develop

lightweight solutions applicable to practical agricultural scenarios,

the MobileNetV3 series, which employs depth-wise separable

convolutions and SE attention mechanisms, showed remarkable

performance. Specifically, the Large version achieved 94.00%

accuracy through hard swish search with only 4.22M parameters,

while the Small version further reduces parameters to 1.53M

through channel compression, requiring only 0.06 GFLOPs of

computational resources while maintaining 92.00% classification

accuracy. This exhibits an excellent performance-to-efficiency ratio

suitable for resource-constrained agricultural deployment

environments. Although DenseNet121 (Huang et al., 2017), based

on dense connection structures, achieves 93.50% classification

accuracy, its parameter size of 7.13M and computational

requirements of 2.73 GFLOPs are significantly higher compared

to MobileNetV3-Small, making it difficult to meet lightweight

deployment requirements. Notably, although ShuffleNet (Zhang
FIGURE 11

RGB image classification performance.
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et al., 2018) adopted a lightweight design based on channel

shuffling, its accuracy was significantly lower than other models,

indicating that excessive lightweighting may compromise feature

extraction capabilities. EfficientNetV2 (Tan and Le, 2021), which

employs compound scaling strategies, achieved only 89.32%

classification accuracy at a larger model scale, demonstrating

higher computational costs but lower classification performance

compared to the MobileNetV3 series. Among classical

architectures, AlexNet (Krizhevsky et al., 2012) with ReLU

activation and GoogleNet (Szegedy et al., 2015) based on

Inception modules achieved 91.74% and 92.09% accuracy

respectively, but their parameter efficiency showed notable gaps

compared to modern architectures.

Meanwhile, this study constructed one-dimensional

convolutional neural networks of varying depths to evaluate the

impact of network architecture on hyperspectral data classification

(Figure 12). For each network structure, full-spectrum (350–2500

nm, 2151 wavelength points) spectral data were used as input. The

experimental results demonstrated that a three-layer convolutional

structure achieved optimal classification performance by

progressively increasing feature channels and incorporating batch

normalization, max-pooling downsampling, and ReLU activation

functions in each convolutional block. This architecture achieved a

classification accuracy of 92.42% while requiring only 0.28M

parameters and 5.75M FLOPs computational cost. Although

CNN-2 employed a larger initial channel number, its

classification performance was limited by network depth. When

further increasing the network depth to four and five layers, despite

attempting to enhance network expressiveness through deeper

feature mapping, model performance decreased rather than

improved: CNN-4 and CNN-5 achieved accuracies of 90.61% and

91.52%, respectively, while model complexity increased
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significantly. CNN-5’s parameter count and computational cost

were 3.75 times and 1.77 times that of CNN-3, respectively. These

experimental results indicate that for hyperspectral data

classification tasks, the three-layer convolutional structure

achieved an optimal balance between model expressiveness and

computational efficiency.

3.1.2 Comparison of multimodal fusion methods
Based on single-modal experimental analysis results, this study

selected MobileNetV3-Small (accuracy 92.00%, parameter count

1.53M) and CNN-3 (accuracy 92.42%, parameter count 0.28M),

which demonstrated optimal performance and lightweight

structures, to construct the spatial feature extraction branch and

spectral feature extraction branches, respectively. The effectiveness

of different feature fusion strategies was systematically evaluated.

Figure 13 compares the performance metrics of four different fusion

methods on the validation set. The experimental results

demonstrate that the basic feature concatenation strategy

achieved a classification accuracy of 96.83%, validating the

effectiveness of spatial-spectral feature fusion. The residual

Hadamard product fusion further improved the accuracy to

97.23%. The cross-attention fusion mechanism, through adaptive

feature weight modulation, enhanced the classification accuracy to

97.53%. The fusion strategy proposed in this paper first employs

HShuffleBlock for feature transformation to align dual-modal

feature dimensions, then utilizes a lightweight gating network to

dynamically modulate feature importance, and incorporates CBAM

attention mechanism to enhance feature representation. This

approach achieved optimal performance across all evaluation

metrics, with a classification accuracy of 98.75%, precision of

98.82%, recall of 98.75%, and F1-score of 98.74%, representing a

1.92% improvement over the baseline feature concatenation
FIGURE 12

Hyperspectral classification performance.
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method. Quantitative analysis indicates that the proposed fusion

strategy can more effectively utilize the complementary information

from dual-modal data, significantly enhancing the model’s

classification performance.
3.2 Ablation experiment analysis

To systematically evaluate the effectiveness of key modules in

the proposed model, this study conducted ablation experiments to

assess the impact of the HShuffleBlock feature transformation

module, CBAM attention mechanism, and lightweight gated

fusion module on model performance. Table 4 presents the

experimental results for different module combinations.

Initially, the baseline model (without any enhancement modules)

achieved a classification accuracy of 96.83%, validating the fundamental

effectiveness of multimodal fusion. Building upon this, the independent

introduction of the HShuffleBlock feature transformation module

improved the model accuracy to 97.16% while significantly reducing

model parameters (from 11.02M to 2.44M), confirming its advantages

in feature alignment and model lightweighting.

The standalone implementation of the CBAM attention

mechanism increased accuracy to 97.33%, demonstrating its

effectiveness in enhancing feature representation. Meanwhile, the

independent adoption of the gated fusion module improved

accuracy to 97.50%, indicating the positive impact of adaptive

feature fusion strategies.

Further analysis revealed that the combination of HShuffleBlock

and CBAM achieved an accuracy of 98.04%, while the

HShuffleBlock and gated fusion combination reached 97.91%

accuracy. The CBAM and gated fusion combination attained
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98.57% accuracy. These results indicate synergistic effects between

di ff e rent modules , which complementar i l y enhance

model performance.

Ultimately, the complete model incorporating all three modules

achieved optimal performance across all evaluation metrics, with a

classification accuracy of 98.75 ± 0.09% and precision of 98.82 ±

0.11%, while maintaining low computational complexity (2.53M

parameters, 75.40M FLOPs). Compared to the baseline model, it

demonstrated a 1.92% improvement in accuracy while reducing

parameters by 77.04%, validating the advantages of the proposed

method in both performance and efficiency.

Notably, the HShuffleBlock module significantly reduced model

parameters and computational cost while maintaining or improving

performance, which has important implications for practical

applications. The experimental results demonstrate that the

synergistic effect of the three key modules not only enhanced

model performance but also maintained high computational

efficiency, providing an effective and feasible solution for crop

classification tasks.
3.3 Comparative analysis of attention
mechanisms

To systematically evaluate the applicability of different attention

mechanisms within the proposed model framework, this study

compared mainstream attention mechanisms—SE (Squeeze-and-

Excitation), ECA (Efficient Channel Attention), CBAM

(Convolutional Block Attention Module), and CA (Coordinate

Attention)—while maintaining consistent HShuffleBlock and

GatedFusion modules. Table 5 presents performance comparison
TABLE 5 Performance Comparison of Different Attention Mechanisms.

Attention mechanism ACC (%) Pre (%) Rec (%) F1 (%) Params (M) FLOPs (M)

SE 97.65 ± 0.28 97.73 ± 0.25 97.65 ± 0.28 97.64 ± 0.28 2.47 73.84

ECA 97.42 ± 0.32 97.51 ± 0.29 97.42 ± 0.32 97.40 ± 0.33 2.45 73.26

CBAM 98.75 ± 0.09 98.82 ± 0.11 98.75 ± 0.09 98.74 ± 0.10 2.53 75.4

CA 98.23 ± 0.22 98.32 ± 0.19 98.23 ± 0.22 98.22 ± 0.23 2.58 77.16
TABLE 4 Ablation experiment.

HShuffleBlock CBAM GatedFusion ACC (%) Pre (%) Rec (%) F1 (%) Params (M) FLOPs (M)

96.83 ± 0.43 97.07 ± 0.36 96.83 ± 0.43 96.78 ± 0.46 11.02 65.36

√ 97.16 ± 0.42 97.29 ± 0.37 97.16 ± 0.42 97.15 ± 0.43 2.44 63.45

√ 97.33 ± 0.15 97.40 ± 0.14 97.33 ± 0.15 97.33 ± 0.15 11.12 70.12

√ 97.50 ± 0.20 97.60 ± 0.17 97.50 ± 0.20 97.49 ± 0.20 11.08 72.89

√ √ 98.57 ± 0.26 98.65 ± 0.24 98.57 ± 0.26 98.56 ± 0.27 11.34 76.68

√ √ 97.91 ± 0.38 98.03 ± 0.32 97.91 ± 0.38 97.90 ± 0.39 2.46 72.93

√ √ 98.04 ± 0.43 98.15 ± 0.38 98.04 ± 0.43 98.02 ± 0.43 2.49 69.82

√ √ √ 98.75 ± 0.09 98.82 ± 0.11 98.75 ± 0.09 98.74 ± 0.10 2.53 75.40
√ indicates the module is included in the network architecture, while blank cells indicate the module is not used.
The bold values indicate the best performance achieved across all experimental configurations.
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results when different attention mechanisms are combined with

other key modules.

The experimental results demonstrate that different attention

mechanisms exhibit notable performance variations. SE, as a classical

channel attention method, achieved an accuracy of 97.65 ± 0.28%,

which is 1.1 percentage points lower than CBAM. Although ECA

features a more lightweight design, it showed the weakest

performance in this task with an accuracy of 97.42 ± 0.32%. CA

achieved an accuracy of 98.23 ± 0.22%, ranking second after CBAM.

These performance differences can be attributed to the structural

characteristics of each attention mechanism: SE and ECA focus solely

on the importance of features in the channel dimension and cannot

capture discriminative information in the spatial domain, which

presents significant limitations when processing grain images with

complex spatial structures. CA achieves good position sensitivity

through coordinate decoupling, but its complex structure results in

higher computational overhead (77.16M FLOPs).

CBAM demonstrated a clear advantage within this research

framework, which is closely related to its design features. CBAM’s

cascaded channel-spatial attention design forms a complementary

advantage with the HShuffleBlock feature transformation module.

After feature dimension alignment, discriminative features are

significantly enhanced through CBAM ’s dual attention

processing. In terms of feature processing mechanisms, CBAM

captures global information in the channel dimension through

parallel average pooling and maximum pooling paths, while

CBAM’s 7×7 convolution spatial attention mechanism provides

sufficient receptive field to effectively capture key regional features

of grain morphology.
3.4 Parameter sensitivity analysis

In order to systematically assess the stability and generalization

ability of the model, this study conducts an in-depth sensitivity

analysis on three key training parameters: batch size, learning rate

and feature dimension.

3.4.1 Impact of batch size
Batch size is one of the crucial hyperparameters affecting model

training effectiveness. Through comparative experiments within the

range of [16, 128] (Table 6), optimal model performance was

achieved with a batch size of 32. This phenomenon can be

explained from an optimization theory perspective: excessively

small batch sizes lead to high variance in gradient estimation,
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resulting in unstable training processes. Conversely, while larger

batch sizes provide more accurate gradient estimates, they reduce

the model’s sensitivity to training data, affecting its generalization

performance. Furthermore, considering the characteristics of crop

spectral-image data, a batch size of 32 maintains sufficient

randomness while ensuring reasonable training efficiency, making

it the optimal choice for practical applications.

3.4.2 Impact of learning rates
As a core parameter of the optimizer, learning rate directly

influences model convergence performance. This study employed a

hierarchical learning rate strategy, conducting detailed tests within

the range of [0.0001, 0.01]. As shown in Table 7, a base learning rate

of 0.001 achieved optimal performance. Specifically, the pre-trained

feature extraction branch utilized 0.1 times the base learning rate,

while the newly added fusion module used the base learning rate.

This strategy maintained the stability of pre-trained weights while

allowing the fusion module to rapidly adapt to specific tasks. When

the learning rate was reduced to 0.0001, model convergence was

slow and performance was limited. When increased to 0.01, model

performance declined significantly, indicating that excessive

learning rates disrupt the effective features captured by the pre-

trained model, hindering stable training.

3.4.3 Effects of characterization dimensions
Feature dimension is a crucial factor determining model

expressiveness and computational efficiency. This study analyzed

the impact of common feature space dimensions within the range of

[128, 512]. As shown in Table 8, a dimension of 384 achieved

optimal balance between performance and efficiency. While smaller

feature dimensions offered lower computational complexity, they

limited the model’s expressive capacity, leading to performance
TABLE 8 Impact of feature dimensions on model performance.

Feature
Dim

Accuracy
(%)

Parameters
(M)

FLOPs
(M)

128 96.80 ± 0.19 2.1 65.2

256 97.90 ± 0.15 2.3 70.1

384 98.75 ± 0.09 2.53 75.4

512 98.20 ± 0.13 2.8 82.3
TABLE 6 Effect of batch size on model performance.

Batch Size Accuracy (%) Parameters (M) FLOPs (M)

16 97.20 ± 0.15 2.53 75.4

32 98.75 ± 0.09 2.53 75.4

64 98.10 ± 0.12 2.53 75.4

128 97.50 ± 0.18 2.53 75.4
TABLE 7 Effect of learning rate on model performance.

Learning
Rate

Accuracy
(%)

Parameters
(M)

FLOPs
(M)

0.0001 96.90 ± 0.21 2.53 75.4

0.001 98.75 ± 0.09 2.53 75.4

0.05 97.80 ± 0.14 2.53 75.4

0.01 95.50 ± 0.25 2.53 75.4
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degradation. Conversely, excessive dimensions not only increased

computational overhead but potentially introduced redundant

information, risking overfitting. Notably, experiments revealed a

significant correlation between feature dimension and gated fusion

module performance, with the 384-dimension configuration

prov id ing adequate ye t non-redundant in format ion

representation space for attention mechanisms and feature fusion.

Through detailed parameter sensitivity analysis, we determined

the optimal model configuration for practical applications: batch

size of 32, base learning rate of 0.0001, and feature dimension of

384. This configuration not only demonstrates performance

advantages but also maintains favorable computational efficiency.

The experimental results further indicate that the proposed model

maintains stable performance across a wide range of parameters,

exhibiting robust characteristics that hold significant practical

implications for crop classification task deployment.
3.5 Analysis of improvement effects

To comprehensively evaluate the effectiveness of the proposed

improvement strategies, this section presents a comparative analysis

focusing on model convergence performance and classification

results. Figure 14 illustrates the performance trends on the

validation set before and after improvements, while Figure 15

provides detailed confusion matrix comparison results.

In terms of model convergence characteristics, the improved

model achieved significant enhancement in both convergence speed

and final performance. As shown in Figure 14A, during the initial

training phase (1–10 epochs), both versions demonstrated rapid

learning capabilities, with validation accuracy quickly rising above

95%. However, the improved model exhibited stronger feature

extraction capabilities, achieving a validation accuracy of 98.2%
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by epoch 20, an increase of nearly 2 percentage points compared to

the pre-improvement version. This enhancement primarily stems

from the introduction of the HShuffleBlock, which strengthens

feature representation through grouped linear transformations
FIGURE 13

Performance comparison of multimodal fusion methods.
FIGURE 14

Comparison of loss values and validation accuracy before and after
improvement (A) validation loss (B) validation accuracy.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1588901
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bi et al. 10.3389/fpls.2025.1588901
and channel reorganization. The comparison of loss values

(Figure 14B) reveals that the improved model’s validation loss

converged to 0.063, while the pre-improvement model fluctuated

between 0.080 and 0.085, validating the effectiveness of the CBAM

attention mechanism in suppressing noise features and highlighting

discriminative features.

Regarding classification performance, the improvement

strategies significantly enhanced the model’s variety recognition

capabilities. In the pre-improvement model (Figure 15A), notable

confusion occurred between JD50 and JD209, as well as between

JD626 and JD83, due to high similarities in their spectral and

morphological features. In the improved model (Figure 15B), the

introduction of the gated fusion module achieved adaptive weight

allocation for different modal features, significantly enhancing the

model’s ability to distinguish similar varieties. For instance,

although JD50 still had 20 misclassified samples, the confusion

pattern became more concentrated, indicating better capture of

subtle discriminative features. Notably, six varieties including

JD505 and JD27 achieved 100% recognition accuracy, confirming

the effectiveness of the proposed multimodal feature fusion strategy

in integrating spectral and spatial information.

Furthermore, the improved model’s high stability and

generalization capability result from the synergistic effect of

multiple modules: HShuffleBlock enhanced feature expression

through feature reorganization, the CBAM mechanism achieved

adaptive feature weighting, and the gated fusion module ensured

optimal integration of multimodal information. This multi-level

feature enhancement and fusion strategy effectively addressed the

common feature similarity issues in crop variety recognition.

The experimental results demonstrate that the proposed

improvement strategies not only achieved significant

enhancement in quantitative metrics but, more importantly,

mechanistically strengthened the model’s perception and
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representation capabilities for crop features, providing a reliable

technical solution for precise crop variety recognition.
3.6 Correlation between
morphophysiological characteristics and
model performance

In single-modality experiments, RGB image classification

demonstrated higher recognition accuracy for varieties with

significant morphological differences. Distinct morphological

variations exist among different maize varieties. The orange

appearance of JiDan505 and LY9915 forms a stark contrast with

other yellow varieties, providing significant features for image

recognition. Similarly, the morphological differences between the

elongated elliptical shape of JiDan50 and the round appearance of

JiDan209 contribute to the model’s ability to differentiate between

them. However, variety pairs with similar morphological features

still present recognition challenges. JiDan27 and JiDan209 exhibit

high similarities in shape and color. These similarities limit the

accuracy of single-modality RGB image recognition.

Spectral data analysis indicates that differences in

physicochemical composition among varieties can be manifested

through spectral characteristics. As shown in Figure 3E, the spectral

curves of various varieties display notable differences, particularly in

the visible light and near-infrared regions. These differences are

closely related to the physicochemical composition characteristics

displayed in Table 3. For instance, JiDan953 (77.33%) and JiDan407

(76.60%), which have the highest crude starch content, exhibit

characteristic spectral responses in the near-infrared region; the

spectral differences between JiDan83 with the highest crude protein

content (10.92%) and JiDan27 (8.46%) and ZD958 (8.47%) with the

lowest crude protein content provide important evidence for
FIGURE 15

Comparison of Confusion Matrices (A) Before improvement (B) After improvement.
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spectral-based identification. Similarly, LY9915 with the highest

crude fat content (4.99%) exhibits distinctly different reflectance

characteristics in specific bands compared to JiDan407 with the

lowest content (3.23%).

Combined analysis of morphological and physicochemical

characteristics suggests that variety pairs with similar morphology

but significant differences in physicochemical composition best

demonstrate the advantages of multimodal fusion. For example,

misclassification cases between JiDan626 and JiDan83 decreased

from 6 to 3 instances; these two varieties have similar morphology

but significant differences in protein content (8.66% vs. 10.92%).

JiDan209 (aspect ratio 1.17) and JiDan50 (aspect ratio 1.60) show

obvious differences in shape but also differ in physicochemical

indicators (crude starch content of 68.50% and 72.60%,

respectively). Similarly, while ZD958 and JiDan27 have similar

crude protein content (8.47% and 8.46%, respectively), their

morphological features differ significantly (aspect ratios of 1.28

and 1.17, respectively), which also aids the model in accurate

differentiation. The fusion model successfully improved

recognition accuracy by comprehensively considering these

multidimensional features.

Changes in the confusion matrix reflect three advantageous

scenarios of multimodal fusion: (1) For varieties with unique

morphological features, such as the orange-colored JiDan505, the

fusion model enhances the weight of morphological information;

(2) For varieties with specific physicochemical compositions, such

as the high-protein JiDan83, the model more effectively utilizes

spectral features; (3) For variety pairs that are morphologically

similar but physicochemically different, or physicochemically

similar but morphologically different, the fusion strategy

significantly improves recognition accuracy by balancing the

contribution of both types of features.

This multimodal fusion strategy based on morphophysiological

characteristics is key to the 98.75% high recognition accuracy

achieved by the model proposed in this study. Through an in-

depth understanding of the differences in morphological and

physicochemical characteristics among maize varieties,

DualCMNet not only provides an efficient and reliable method

for precise identification of maize varieties but also offers a

referenceable technical framework for variety recognition tasks of

other crops.
4 Discussion

The proposed dual-branch deep learning framework has

achieved significant results in maize variety identification. The

experimental results reveal the inherent mechanisms of

multimodal feature fusion and its impact on recognition

performance. In single-modality experiments, the RGB image-

based MobileNetV3 and hyperspectral data-based one-

dimensional convolutional network achieved accuracy rates of

92.00% and 92.42%, respectively, reflecting the complementary

nature of these two modalities in variety identification. RGB
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images primarily capture the morphological characteristics of

kernels (such as size, shape, and texture), while hyperspectral data

records the physicochemical properties, particularly the molecular

vibration and chemical composition information contained within

2,151 spectral bands. This complementarity aligns with the

multimodal information theory proposed by Liu et al. (2023),

which suggests that information carried by different modalities

exhibits partially overlapping and partially complementary

characteristics. Through appropriate fusion strategies, information

gain can be maximized, ultimately improving classification accuracy

to 98.75%.

During the feature fusion process, each module’s design played

a unique role. The HShuffleBlock significantly enhanced feature

fusion through grouped linear transformation and channel

shuffling, improving accuracy from 96.83% to 97.16%. This

improvement primarily stems from the channel shuffling

mechanism, which strengthened information interaction between

different features. The design was inspired by ShuffleNet proposed

by Ma et al. (2018) and research on grouped convolutions by Zhang

et al. (2018); however, this study optimized their application for

multimodal fusion scenarios. Experimental results demonstrate that

this structure performs effectively in crop variety identification

tasks, maintaining feature expression capability while significantly

reducing the number of parameters. Experimental results regarding

feature dimensionality indicate that a 384-dimensional feature

space achieves optimal balance by providing sufficient capacity for

multi-scale feature expression while avoiding redundancy from

excessive dimensionality. The introduction of the CBAM module

further improved accuracy, where channel attention learned

dependencies between feature channels, adaptively emphasizing

more discriminative band features, enabling precise differentiation

between varieties with similar spectra (such as JD50 and JD209).

Spatial attention enhanced local morphological feature expression,

achieving fine-grained feature capture. According to Woo et al.

(2018), attention mechanisms operating across both channel and

spatial dimensions are complementary, jointly enhancing feature

discriminability. In the specific context of crop identification, this

dual attention mechanism proves particularly effective, as different

grain varieties typically exhibit subtle differences in specific spatial

regions and specific spectral bands. Building upon this, the

lightweight gating fusion mechanism designed in this study

reduced feature dimensionality to 1/8 of the original and

employed a simplified two-layer perceptron structure. This

mechanism learns a single gate value to dynamically adjust the

proportion of multiplicative interaction and additive combination,

ensuring adaptive feature fusion while significantly reducing

computational overhead. Ablation experiments verified the

effectiveness of this design, as removing the gating mechanism

decreased model performance by 1.25 percentage points, indicating

the crucial role of lightweight gated fusion in balancing

computational efficiency and model expressiveness. Research by

Zadeh et al. (2018) indicates that multiplicative interaction can

capture non-linear correlations between modalities, while additive

combination better preserves the independent information of each
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modality. The gating mechanism in this study dynamically balances

these two operations, enabling the model to adaptively select the

optimal fusion method according to the characteristics of the

input data.

The staged training strategy proved particularly effective, with

accuracy improving by 2.1% after the 14th epoch. This strategy

preserved general visual feature extraction capabilities by freezing

pre-trained layers in the initial stage, then allowed model

optimization through differentiated learning rates (0.01× for pre-

trained layers, 0.1× for fusion layers) while maintaining basic

features and optimizing task-specific feature expression. Smaller

batch sizes provided more frequent parameter updates, facilitating

the model’s exploration of optimal feature combinations, explaining

why larger batches led to performance degradation. These findings

suggest that model performance improvements result from the

synergistic effects of feature extraction, attention mechanisms,

lightweight gated fusion, and training strategies.

From an application perspective, this study contributes by

providing a solution that balances accuracy and efficiency. With

the development of smart agriculture, seed identification systems

need to operate on resource-constrained devices such as portable

analyzers or edge computing equipment. Agricultural field

applications impose strict limitations on model size and energy

consumption to accommodate the computational capabilities and

power constraints of embedded devices (Chenglong et al., 2022).

The framework proposed in this study has only 2.53M parameters,

largely meeting lightweight requirements and making the model

more suitable for deployment on resource-constrained embedded

devices while maintaining high recognition accuracy. Furthermore,

sensitivity analysis of the model to different batch sizes and learning

rates indicates that the framework exhibits good stability when

parameters change, which is crucial for practical deployment.

The proposed method has certain limitations. Regarding

environmental adaptability, since the experimental data collection

was conducted under standardized conditions, the model’s

performance under complex lighting and background conditions

remains to be verified. To address this limitation, future research

could incorporate data augmentation techniques to simulate

samples under varying lighting and background conditions, or

implement adversarial training strategies to enhance model

adaptability to environmental changes. Furthermore, constructing

large-scale datasets comprising samples collected under diverse

environmental conditions represents an effective approach to

improving model generalization. Regarding computational

resources, despite achieving a relatively low parameter count

(2.53M) compared to existing methods, the 75.40M FLOPs still

presents optimization opportunities and may restrict model

deployment on edge devices. Solutions can be developed in two

directions: on one hand, band selection algorithms could be applied

to retain only the most contributory spectral bands for variety

identification, thereby reducing input dimensionality; on the other

hand, more efficient network architectures could be explored, such

as introducing lightweight convolution operations or employing

model compression techniques to further decrease computational
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complexity. Although the current feature fusion mechanism

significantly enhances model performance, there remains scope

for improvement in distinguishing highly similar varieties (e.g.,

JiDan50 and JiDan209). This is primarily because the differences in

spectral and morphological features between these varieties are

extremely subtle, and existing attention mechanisms may

inadequately capture these minute variations. Potential

improvements could include developing adaptive weight

allocation mechanisms for key spectral bands or introducing

multi-scale feature analysis methods to enhance perception of

subtle differences. Notably, the dual-branch architecture proposed

in this study demonstrates good scalability, and this framework

based on spectral-spatial feature fusion could be extended to other

crop variety identification tasks, such as rice and wheat. This is

because different crop varieties similarly possess unique spectral

and morphological characteristics, and the feature reorganization,

attention enhancement, and lightweight gated fusion strategies

designed in this research can effectively capture and integrate

these features. Addressing these issues, future research could

focus on: 1) Feature selection based on spectral information

content to reduce feature redundancy; 2) Refinement of feature

weight allocation mechanisms to enhance model sensitivity to

subtle varietal differences; 3) Optimization of gate structure

design to further improve computational efficiency. These

optimization directions hold significant importance for enhancing

the practicality of crop variety identification technology.
5 Conclusion

This study presents a novel dual-branch deep learning

framework, DualCMNet, which achieves 98.75% accuracy in

identifying 11 maize varieties by integrating hyperspectral data

with RGB image information. The research demonstrates that

multimodal data fusion effectively extracts both physicochemical

properties and morphological features of maize kernels, providing

an accurate and reliable solution for crop variety identification.

The framework incorporates three key modules: feature

recombination, attention enhancement, and lightweight gated

fusion, enabling effective integration of spectral-spatial features.

The HShuffleBlock achieves efficient feature recombination through

grouped linear transformation and channel shuffling, promoting

thorough feature fusion and enhancing the model’s feature

extraction capabilities. The CBAM attention mechanism

significantly improves the model’s perception of key features,

enabling precise discrimination between varieties with similar

spectral and morphological characteristics. The lightweight gated

fusion module dynamically adjusts feature weights through learning

a single gate value, achieving optimal balance between

computational efficiency and fusion performance.

Furthermore, the adopted staged training strategy effectively

balances the retention of pre-trained knowledge and the learning of

new task features through differentiated learning rates. Compared

to unimodal approaches, the proposed multimodal fusion
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framework demonstrates significant improvements across key

metrics, validating its technical advantages in crop variety

identification tasks.

In conclusion, this research not only provides an efficient and

accurate solution for maize variety identification but also presents

new perspectives for the application of computer vision technology

in agriculture.
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