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Toward sustainable crops:
integrating vegetative (non-seed)
lipid storage, carbon-nitrogen
dynamics, and redox regulation
Somrutai Winichayakul * and Nick Roberts

Resilient Agriculture, AgResearch Ltd., Palmerston North, New Zealand
The global challenges of climate change and rising energy demands necessitate

innovative agricultural solutions. One promising strategy is the transformation of

photosynthetic tissues into lipid-rich organs, providing energy-dense biomass

for biofuel production while enhancing carbon sequestration. However, these

metabolic shifts require substantial NADPH and ATP, reshaping cellular processes

such as the Calvin-Benson cycle, glycolysis, and oxidative pentose phosphate

pathways. This review explores the intricate metabolic and regulatory networks

underpinning lipid accumulation, with a focus on carbon/nitrogen partitioning,

redox regulation, and their implications for plant stress tolerance and

productivity. Furthermore, we highlight recent progress in field applications,

multi-omics integration, and emerging strategies to optimize lipid

accumulation in crops while mitigating trade-offs in biomass yield and

agronomic performance. Understanding these complex interactions will be

essential for developing sustainable, high-lipid crops that support bioenergy

production and climate-resilient agriculture.
KEYWORDS

C/N partitioning, non-seed lipid storage, redox regulation, sustainable agriculture,
bioenergy, abiotic stress
Highlights
• The review explores the intricate metabolic and regulatory networks underlying

lipid accumulation in non-seed tissues, emphasizing carbon/nitrogen partitioning,

redox regulate on, and their impact on plant stress tolerance and productivity.

• Key future research directions are outlined, including integrative multi-omics

approaches, environmental stress adaptation, carbon-nitrogen interactions, and

extensive field trials.

• The potential of alternative crop species and systems is discussed, highlighting

opportunities to broaden the applications of these technologies for sustainable

agriculture and bioenergy production.
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1 Introduction

The growing global demand for food, forage, and biofuels calls

for innovative strategies to enhance crop productivity. One

promising approach is increasing lipid biosynthesis in non-seed

tissues, offering a dual benefit: boosting the energy density of plant

biomass and reducing dependency on carbohydrate-dominated

metabolism (Heaton et al., 2008; Vanhercke et al., 2019).

Triacylglycerol (TAG) is an energy-dense carbon (C) sink, storing

over twice as much energy per gram as carbohydrates, making it

ideal for biofuel and feedstock production (Durrett et al., 2008; Xu

and Shanklin, 2016).

Bioenergy feedstocks offer a solution to climate adaptation and

sustainable energy challenges. Oils, being hydrophobic, help

maintain cellular integrity under drought or heat stress, thereby

enhancing the plant’s overall resilience (Lu et al., 2020; Perlikowski

et al., 2022). Additionally, increasing vegetative oil storage can boost

the plant’s C sink capacity, contributing to reduced net greenhouse

gas emissions when these crops are cultivated at scale (Paul and
Frontiers in Plant Science 02
Eastmond, 2020; Beechey-Gradwell et al., 2020). Moreover, leaf oil-

rich biomass can serve as a dual-purpose feedstock, supporting

biofuel production while simultaneously providing valuable co-

products, such as high-energy livestock feed (Winichayakul et al.,

2020; Beechey-Gradwell et al., 2022).

In this review, when referring to “high-lipid plants”, we

specifically mean vegetative oil storage plants—those that

accumulate significant amounts of lipids in their non-seed tissues,

such as leaves, stems, or roots. Unlike traditional oilseed crops,

which store lipids primarily in seeds, these high-lipid plants are

engineered to store oils in their vegetative tissues, making them a

novel and promising resource for various applications in bioenergy,

biofuels, and livestock feed. For examples, high-lipid perennial

ryegrass (Lolium perenne) has been engineered to enhance forage

energy efficiency, reducing reliance on expensive lipid supplements

(e.g., oilseeds, vegetable oils) while improving the nutritional quality

of animal-derived products (Bayat et al., 2018; Beechey-Gradwell

et al., 2022). Beyond forage applications, other high-biomass species

—such as tobacco (Nicotiana tabacum) and C4 sorghum (Sorghum
TABLE 1 Engineered high-lipid crops: Targets, modifications, and applications.

Species Tissue
modified

Baseline
lipid
content

Engineered
lipid content

Key
genetic
modifications

Primary
applications

Citations

Arabidopsis Root,
stem, leaf

TFA; < 2% DW
(root), 3-4%
DW (leaf)

TAG; up to 5-8% DW
(root, stem, leaf),
TFA; up to 11%
DW (leaf)

DGAT1 + Cys-
OLEOSIN;
adg1 + DGAT1 +
OLEOSIN + suc2 +
WRI1;
adg1 + pxa1;
adg1 + sdp1

Proof-of-concept for
vegetative lipid storage

Kelly et al., 2013; Winichayakul
et al., 2013; Zhai et al., 2017;
Vanhercke et al., 2019.

Duckweeds Frond TFA; up to 7%
under
nitrogen
limitation

TFA; 20-35% DW, TAG;
8.7% DW

WRI1 + OLEOSIN +
DGAT2 + 100
μM estradiol

Biofuels,
Aquafeed,
Bioremediation

Liang et al., 2022; Yang, 2022.

Maize
(corn)

Stover TFA; 1% DW,
TAG; 0.1%
DW (leaf)

TFA; 2% DW,
TAG; 0.15% DW

DGAT1 + OLEOSIN
+ WRI1

Biofuels, livestock
feed, bio-based plastic,
paper pulp

Alameldin et al., 2017

Potato Tuber TAG; <
0.1% DW

TAG; 3.3% DW DGAT1 +OLEOSIN
+ WRI1

Nutritional value for
human food and
industrial uses

Liu et al., 2016.

Perennial
ryegrass

Stem, leaf TFA; 2-3% DW
(stem), 3-
4.5% (leaf)

TFA; up to 4% DW
(stem), up to 8%
DW (leaf)

DGAT1 +
Cys-OLEOSIN

Forage energy
enhancement,
livestock nutrition

Beechey-Gradwell et al., 2020 &
2022, Winichayakul et al., 2020

Sorghum Seed, stem,
leaf

3-4% DW (seed),
< 2% DW (stem)

8-12% DW (seed), 5-6%
DW (stem)
TAG; up to 8.4%
DW (leaf)

LEC2 + WRI1;
fad2;
DGAT2 + OLEOSIN
+ WRI1

Biofuels (biodiesel,
SAF), dual-use
food/feed

Mullet et al., 2014; Vanhercke et al.,
2018; Park et al., 2025.

Sugarcane Stem, leaf TFA; 3-4 %
DW (leaf)

TAG; 0.9% DW (stem),
up to 4.4% DW (leaf)

adg1 + DGAT1-2 +
OLEOSIN + pxa1
+ WRI1

High biomass
crop, biodiesel

Zale et al., 2016;
Parajuli et al., 2020; Kannan
et al., 2022.

Tobacco Stem,
leaf,
whole plant

TFA; up to 5%
DW (leaf)

TAG; 7.4% DW (stem)
TFA; up to 17.7% DW
(leaf), TAG; up to 15.8%
DW (leaf)

DGAT1 + WRI1 +
sdp1; DGAT1 +
OLEOSIN + WRI1

Biodiesel,
biolubricants,
industrial oils

Vanhercke et al., 2014;
Zale et al., 2016; Vanhercke et al.,
2017;
Vanhercke et al., 2019.
adg1, ADP-glucose pyrophosphorylase 1; DGAT1 & 2, acyl-CoA diacylglycerol acyltransferase1 & 2; DW, dried weight; fad2, FA desaturase 2; LEC2, leafy cotyledon 2; pxa1, peroxisome
membrane-associated D-type ABC transporter protein; sdp1, sugar-dependent 1 lipase; suc2, sucrose transporter involved in phloem loading; TAG, triacylglycerol; TFA, total fatty acids; WRI1,
wrinkled 1.
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bicolor)—have been targeted for sustainable bioenergy production

due to their resilience under abiotic stresses (e.g., drought, heat) and

capacity for lipid engineering in grains, stems, and leaves (Mullet

et al., 2014; Vanhercke et al., 2018 & 2019). These modifications aim

to optimize lipid yields for industrial applications, including

biodiesel, biolubricants, and aviation fuels. Table 1 summarizes

the lipid content improvements, key genetic transformation events,

and target applications for these engineered crops, highlighting

their diverse roles in agriculture and bioeconomy.

Recent biotechnological advances have enabled the

introduction and optimization of TAG biosynthesis pathways in

these vegetative tissues, transforming them into efficient lipid-

accumulating organs. This process requires the coordinated

regulation of multiple biological processes, including chloroplastic

de novo fatty acid (FA) biosynthesis, TAG assembly in the

endoplasmic reticulum (ER), lipid droplet (LD) formation, and

cytoplasmic LD storage (reviewed in Vanhercke et al., 2019).

Additionally, significant progress has been made in redirecting C

flux away from starch and sucrose biosynthesis and toward oil

biosynthesis pathways (Table 1), further enhancing lipid yields

(Sanjaya et al., 2011; Zhai et al., 2017).

However, redirecting C flux to lipid biosynthesis demands

significant NADPH and ATP, affecting pathways like the Calvin-

Benson cycle, glycolysis, and the oxidative pentose phosphate

pathway (OxPPP) (Li-Beisson et al., 2013). Additionally, C and

nitrogen (N) partitioning are tightly interconnected, with N

assimilation playing a pivotal role in photosynthetic efficiency and

plant growth (Bloom et al., 1985; Nunes-Nesi et al., 2010). Redox

balance and C/N allocation regulate carbohydrate and lipid

production, influencing how plants respond to their environment

(Chaput et al., 2020).

This review examines the intricate metabolic and regulatory

networks governing vegetative lipid biosynthesis, focusing on the

interplay of C/N partitioning, energy metabolism, and redox

regulation. We discuss how these dynamics shape plant responses

to environmental conditions and highlight the potential of field

applications to address global food and energy demands.

Additionally, advancing integrative multi-omics approaches,

understanding the role of lipid accumulation in stress adaptation,

and conducting extensive field trials will be pivotal for scaling up

these technologies and validating their benefits in real-world

agricultural systems.
2 Coordination of carbon partitioning
in high-lipid plants

Efficient C partitioning is a cornerstone of plant productivity,

with far-reaching implications for agriculture, particularly in

enhancing crop yield, stress tolerance, and resource use efficiency.

In high-lipid plants, C partitioning is tightly regulated to balance

the demands of growth, storage, and stress responses. This section

explores the regulatory networks governing C flow in plants,

emphasizing triose phosphate/phosphate translocator (TPT),
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glycolysis, and lipid biosynthesis, and their roles in optimizing

vegetative lipid accumulation.
2.1 Triose phosphate transport and carbon
partitioning

Dihydroxyacetone phosphate and glyceraldehyde 3-phosphate,

key triose phosphate (TP) metabolites, play a crucial role in C

partitioning between starch, sucrose, and lipids (Figure 1). Under

high photosynthetic activity, increased TP levels coincide with

decreased inorganic phosphate (Pi) availability, as Pi is consumed

in ATP synthesis. TPT, an antiporter located at the inner

chloroplast membrane envelope, exchanges stromal TPs with

cytosolic Pi, facilitating the distribution of photosynthetic C from

chloroplasts to the cytosol (Fliege et al., 1978). When sink tissues

require fewer exported carbohydrates than the photosynthesis rate

generates, or when Pi and sucrose synthesis rates are limited, TPs

are temporarily stored as starch (Zeeman et al., 2002). Optimizing

TPT to enhance sucrose export while maintaining adequate starch

reserves could potentially boost biomass and improve stress

resilience (Schneider et al., 2002).

Interestingly, impaired TPT function does not impair growth

under normal conditions. However, overexpression of TPT and

cytosolic fructose-1,6-bisphosphatase activates sucrose-phosphate

synthase (SPS), accelerating sucrose synthesis and promoting

growth (Huber and Huber, 1992; Cho et al., 2012). In rice

mutants with reduced SPS activity (84% decrease), starch content

increased, but growth remained unaffected, suggesting that higher

SPS activity promotes more efficient TP export, limiting C

availability for starch synthesis (Hashida et al., 2016). RNA

interference-mediated downregulation of ADP-glucose

pyrophosphorylase, a key enzyme in starch biosynthesis, resulted

in a dramatic 16-fold increase in TAG and other lipid accumulation

in both wild-type and high-oil potato lines (Xu et al., 2019). This

metabolic shift was accompanied by substantial alterations in sugar

profiles and starch content across both tuber and leaf tissues, along

with significant changes in tuber starch properties. The study

demonstrates how redirecting C flux from starch synthesis toward

lipid biosynthesis can dramatically enhance oil accumulation in

vegetative tissues. These findings underscore the critical importance

of balancing starch and sucrose synthesis to maintain C availability

for lipid production, as these competing pathways both depend on

photoassimilates generated by the Calvin cycle (Sanjaya et al., 2011).
2.2 Glycolysis and lipid biosynthesis

Glycolysis is a fundamental metabolic pathway linking C

partitioning, providing substrates for FA biosynthesis via acetyl-

CoA carboxylase (ACCase) and the FA synthase (FAS) complex in

the chloroplasts (Figure 1, pink arrows). Cytosolic pyruvate, derived

from glycolysis, feeds into FA synthesis within plastids, where

plastidic pyruvate is converted to acetyl-CoA (Ac-CoA) by the
frontiersin.org
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pyruvate dehydrogenase complex (PDC). This tightly regulated

process ensures sufficient Ac-CoA for FA biosynthesis. Studies in

tobacco using ¹³CO2 labelling and metabolic flux analysis reveal that

starch and sucrose cycling support lipid biosynthesis demands (Chu

et al., 2022). In high-lipid ryegrass lines, lower shoot sugar levels

were associated with reduced fructan biosynthesis and upregulated

PDC transcripts (Winichayakul et al., 2022).

Feedback mechanisms further highlight the interconnectedness

of glycolysis and lipid biosynthesis. In high-lipid ryegrass,

upregulated hexokinase expression suggests enhanced glycolysis,

providing substrates for pyruvate and Ac-CoA production
Frontiers in Plant Science 04
(Winichayakul et al., 2022). Elevated hexose phosphate levels may

also fuel the OxPPP, the primary source of lipogenic NADPH, as

shown by ¹³C metabolic flux analysis in oleaginous yeast cells

(Zhang et al., 2016; Kamineni and Shaw, 2020) and biofuel-

relevant industrial fungi (Masi et al., 2021). The coordination

between glycolysis, the OxPPP, and lipid biosynthesis represents a

critical metabolic nexus in high-lipid plants, fundamentally

governed by ATP and NADPH requirements. Glycolytic flux

begins with glucose-6-phosphate (Glc-6P) from sucrose

breakdown, which enters both glycolysis and OxPPP, yielding

pyruvate (a precursor for plastidic Ac-CoA), ATP (energy for FA
FIGURE 1

Interplay between photosynthesis, carbon metabolism, lipid biosynthesis, and redox homeostasis in high-lipid plant cells. Upon illumination,
photosystem II (PSII) captures light energy, initiating the photolysis of water (H2O) and releasing oxygen (O2). Reactive oxygen species (ROS) are
generated by the chloroplast electron transport chain (ETC), producing 1/2O2 at PSII and O2

-· at PSI. PSI also facilitates ATP synthesis and generates
NADPH via ferredoxin (FDX)-NADP reductase. These products fuel the Calvin cycle, where CO2 is fixed by ribulose-1,6-bisphosphate carboxylase/
oxygenase (RUBISCO) to form 3-phosphoglyceric acid (3-PGA). Using ATP and NADPH, 3-PGA is reduced to glyceraldehyde-3-phosphate (G3P) and
dihydroxyacetone phosphate (DHAP), collectively termed triose phosphates (TPs). During photorespiration, when O2 levels are high and CO2 levels
are low, RUBISCO produces 2-phosphoglycolate (2PG) in coupling with the release of inorganic phosphate (Pi). This is transported to peroxisomes,
where its metabolism by glycolate oxidase (GO) generates H2O2. When carbon metabolism favours sugar and starch synthesis, two G3P molecules
form six-carbon fructose-6-phosphate (frc-6P) and glucose-6-phosphate (glc-6P) with total 18 ATP and 12 NADPH consumption for starch
synthesis in the chloroplasts or TPs may be transported to the cytosol via the TP/phosphate translocator (TPT) and converted to sucrose by sucrose
phosphate synthase (SPS) with an exchange to the cytosol Pi. Starch synthesized during the day is degraded at night into sucrose for energy needs.
In high-lipid plants, carbon flux may shift toward lipid biosynthesis. G3P undergoes glycolysis, producing pyruvate, which is converted to acetyl-CoA
(Ac-CoA) by the pyruvate dehydrogenase complex (PDC). Ac-CoA is carboxylated to malonyl-CoA by acetyl-CoA carboxylase (ACCase), the first step
in fatty acid (FA) synthesis. This process requires NADPH, and the resulting FAs follow multiple pathways: FAs undergo multiple pathways: (1)
Membrane Lipid Synthesis: FAs are incorporated into monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). (2) b-Oxidation in
Mitochondria: FAs are activated to FA-CoA and transported via the carnitine shuttle for oxidation, yielding Ac-CoA, NADH, and FADH2. Ac-CoA
enters the TCA cycle, while NADH and FADH2 fuel the mitochondrial ETC. (3) Glycerolipid Assembly: FA-CoA derivatives participate in forming
phosphatidic acid (PA), phosphatidylcholine (PC), diacylglycerol (DAG), and triacylglycerol (TAG), involving Ac-CoA: diacylglycerol acyltransferase 1
(DGAT1) and phosphatidylcholine: diacylglycerol acyltransferase 1 (PDAT1) activities. TAG turnover is dynamic, with sugar-dependent lipase (SDP1)
mediating its degradation. (4) b-Oxidation in Peroxisomes: This process regenerates Ac-CoA and releases ROS, which, if exceeding catalase capacity,
may contribute to oxidative stress. Sucrose breakdown by sucrose synthase (SUSY) produces UDP-glucose and fructose, fuelling glycolysis to
generate pyruvate, ATP, and NADH. A portion of glucose and fructose enters the oxidative pentose phosphate pathway (OxPPP) to supply NADPH
for FA biosynthesis and redox balance. Pyruvate also enters the TCA cycle, generating intermediates like malate and citrate. Malate may be exported
between mitochondria and cytosol through the malate-aspartate shuttle, balancing redox states via NADH transfer. Arrows may indicate reactions
involving more than one step. Thick arrows indicate pathways favoured in high-lipid plants, highlighting metabolic flexibility and integration.
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elongation), and NADH (fed into the mitochondrial electron

transport chain (ETC)), with key regulatory points including

hexokinase activation in high-lipid ryegrass (Winichayakul et al.,

2022) and plastidic PDC upregulation (Chu et al., 2022).

Meanwhile, the OxPPP plays a dual role as the primary NADPH

generator (producing four molecules per Glc-6P) and maintains

redox balance during lipid synthesis, supplying NADPH (Figure 1,

Li-Beisson et al., 2013). This intricate interplay ensures efficient C

allocation and energy provision for lipid biosynthesis.
2.3 Malate and pyruvate reactions in high-
lipid plants

Cytosolic pyruvate supports mitochondrial tricarboxylic acid

cycle activity, producing C4 compounds like malate (Figure 1).

Malate facilitates the transfer of reducing equivalents between the

cytosol and mitochondria via the malate-aspartate shuttle and can

be exported to the chloroplast through the “malate valve” (Selinski

and Scheibe, 2019). NADP-malic enzyme (NADP-ME) activity,

through malate decarboxylation, maintains metabolic flexibility and

redox balance by producing pyruvate and NADPH (Figure 2).
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Recent studies demonstrate that NADP-ME activity not only

supplies NADPH for lipid biosynthesis but also mitigates

oxidative stress by regenerating NADP+, essential for sustaining

photosynthetic electron flow (Chu et al., 2022; Winichayakul et al.,

2025). This is particularly relevant in high-lipid plant leaves, where

manipulation of NADP-ME activity in tobacco and Arabidopsis

increased leaf lipid content by up to 30%, demonstrating its

potential as a target for metabolic engineering (Wheeler et al.,

2005; Chu et al., 2022). In these studies, ¹³CO2 metabolic flux

modelling and acyl-acyl carrier protein analysis confirmed that

starch production, sucrose cycling, and NADP-ME contribute

significantly to lipid synthesis. Enzyme activity assays further

support this role. Additionally, NADP-ME activity helps maintain

redox balance by regenerating NADP+, which is essential for

sustaining photosynthetic electron flow and preventing ROS

overproduction (Figure 2). Additionally, fluxes to Ac-CoA and

FA production increased independently of lipid pool size data

and without the need to impose constraints on lipid fluxes. These

findings highlight the plant’s inherent capacity to establish a

uniquely developmentally regulated carbon sink. Thus,

manipulating NADP-ME activity could serve as a promising

target for future efforts aimed at engineering high-lipid crops.
FIGURE 2

Role of NADP-malic enzyme and the SOD-AsA-GSH cycle in redox balance. Malate exported from the mitochondria to the cytosol is subsequently
transported into chloroplasts, where it undergoes decarboxylation by NADP-malic enzyme (NADP-ME). This reaction generates NADPH, pyruvate,
and CO2. NADPH plays a vital role in biosynthetic processes, such as the production of fatty acids, flavonoids, and lignin, while pyruvate can be
transported back to the mitochondria for further metabolic functions as shown in Figure 1. NADPH also directly supports the ascorbate (AsA)-
glutathione (GSH) cycle, which is crucial for detoxifying reactive oxygen species (ROS) and maintaining redox homeostasis. In this cycle,
monodehydroascorbate (MDHA) is reduced to AsA by MDHA reductase (MDHAR) using NADPH as the reducing power. AsA, through the action of
ascorbate peroxidase (APX), scavenges ROS and is subsequently oxidized to form MDHA and dehydroascorbate (DHA). DHA is then rapidly reduced
back to MDHA by DHA reductase (DHAR) or to AsA by ascorbate reductase (AsAR), both utilizing NADPH as an electron donor. Furthermore,
glutathione (GSH) plays a role in ROS detoxification by glutathione peroxidase (GPX), which converts GSH to its oxidized form, GSSG. Glutathione
reductase (GR) then regenerates GSH from GSSG using NADPH. GSH can also directly reduce MDHA to AsA, highlighting its integral role in the AsA-
GSH cycle. Photochemically generated ROS, such as superoxide (O2

-·), is converted to hydrogen peroxide (H2O2) by superoxide dismutase (SOD).
The resulting H2O2 is either reduced to water (H2O) via the AsA-GSH cycle or decomposed by catalase (CAT).
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2.4 Regulatory role of WRINKLED1 and
related factors

Transcription factors such as WRINKLED1 (WRI1) directly

stimulate the expression of key enzymes in both the glycolytic and

lipid biosynthesis pathways. WRI1 upregulates glycolytic enzymes to

supply substrates for lipid production, with overexpression enhancing

TAG accumulation and FA turnover (Sanjaya et al., 2011; Kuczynski

et al., 2022). Recent discovered targets of WRI1 include enzymes in

glycolysis and the pentose phosphate pathway, such as plastidic isoforms

of fructokinase 3 and phosphoglucose isomerase 1 (Kuczynski et al.,

2022). However, in combined with WRI1 expression, blocking starch

synthesis or FA turnover negatively impacts FA accumulation (Fan et al.,

2017). KIN10 is a catalytic subunit of the sucrose non-fermented 1

related-kinase 1 (SnRK1) complex, a central regulator of energy

homeostasis in plants. Notably, WRI1 stability is modulated by

trehalose-6-phosphate (T6P), which inhibited KIN10-mediated

phosphorylation of WRI1, enhancing FA biosynthesis (Zhai et al.,

2018). Synergistic interactions between WRI1 and TAG-synthesizing

enzymes like Ac-CoA: diacylglycerol acyltransferase 1 (DGAT1) and

phosphatidylcholine: diacylglycerol acyltransferase 1 (PDAT1) (Figure 1)

have been leveraged to engineer oil-rich vegetative tissues and seeds

(reviewed in Vanhercke et al., 2019). WRI1 synergizes with DGAT1 and

PDAT1 by co-upregulating glycolytic genes (e.g., plastidic fructokinase)

while DGAT1 channels fatty acids into TAG, avoiding cytotoxic free FA

accumulation (Vanhercke et al., 2019). For example, co-expression of

WRI1 and DGAT1 in tobacco increased leaf TAG by 15-fold compared

to WRI1 alone (Zhou et al., 2020).
2.5 Impacts of carbon sink manipulation

Diverting C allocation from sugars to lipids impacts various

metabolic pathways and subsequent growth, with outcomes

depending on the species and lipid storage extent. In some plants,

enhanced lipid storage improves water-use efficiency (WUE),

photosynthetic N-use efficiency (NUE), and stress tolerance

without growth penalties, although these improvements may not

lead to more robust plants (Vanhercke et al., 2014; Beechey-

Gradwell et al., 2018 & 2020). These benefits may arise from lipid

C sinks mitigating photosynthetic feedback inhibition (Paul and

Eastmond, 2020), with T6P and SnRK1 signaling pathways playing

a crucial role in balancing sink limitation (Nunes et al., 2013).

Elevated T6P levels signal sufficient sucrose availability, inhibiting

SnRK1 activity and reducing photosynthetic C fixation to prevent

overload (Tsai and Gazzarrini, 2014). In contrast, low energy levels

activate SnRK1 to conserve resources, suppressing anabolic

processes like photosynthesis (Baena-González and Lunn, 2020).

Altered T6P/SnRK1 signaling complexes have been observed in

high-lipid ryegrass, supporting this hypothesis (Winichayakul et al.,

2022). Like high-lipid ryegrass, other high-lipid plants (Alameldin

et al., 2017; Vanhercke et al., 2019; Kannan et al., 2022; Luo et al.,

2022; Cao et al., 2023; Morales et al., 2024) exemplify the potential

of manipulating C sinks to enhance agricultural energy density.

However, excessive lipid biosynthesis may divert resources from

essential processes such as membrane lipid and cell wall synthesis or
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protein production, potentially imposing growth penalties (Kelly

et al., 2013; Beechey-Gradwell et al., 2020; Mitchell et al., 2020).

Independent of N availability, increased lipid content in non-

photosynthetic tissues influences plant growth through multiple

mechanisms. Lipids serve as energy-dense C reserves, providing

ATP and C skeletons via b-oxidation during germination or stress

recovery, supporting metabolic demands (Yang and Benning, 2018;

Yang et al., 2022). In storage organs (e.g., seeds), high lipid content

is adaptive and may not hinder growth if C supply is sufficient

(Baud and Lepiniec, 2010). Lipids also play critical roles in

membrane integrity and stress resilience; increased unsaturated

FAs, for example, enhance membrane fluidity, sustaining cellular

processes under abiotic stress (Dutta et al., 2025). Additionally,

lipid-derived signaling molecules (e.g., jasmonates) modulate

growth-defense trade-offs, potentially prioritizing stress responses

over rapid growth (Wang et al., 2021). The overall impact on

growth depends on C partitioning—non-photosynthetic tissues

with high lipid content may act as strong C sinks, either

supporting later growth phases (e.g., perennials) or limiting

immediate structural growth if lipid synthesis outweighs

carbohydrate allocation (Troncoso-Ponce et al., 2011; Schwender

et al., 2015). Additionally, tobacco with >15% leaf TAG shows

stunted growth due to resource competition with cell wall

biosynthesis (Zhou et al., 2020). However, ryegrass engineered for

moderate lipid accumulation (up to 6.5% DW) maintains biomass

yield, suggesting species-specific adaptations further shape this

relationship (Beechey-Gradwell et al., 2022; Theodoulou and

Eastmond, 2012). Thus, the balance between lipid storage and

growth hinges on C allocation strategies, tissue type, and

environmental conditions, with trade-offs often observed in

vegetative tissues but benefits in storage or stress-adapted organs

(Cai and Shanklin, 2022).

To mitigate these trade-offs in vegetative tissues, strategies that

integrate transcription factors and metabolic feedback and signaling

controls are essential. For examples, engineering plants to enhance the

expression of metabolite and regulatory proteins such as T6P, SnRK1,

and TPT could optimize C partitioning, particularly when

photosynthetic C supply is limited (Nunes et al., 2013; Tsai and

Gazzarrini, 2014; Baena-González and Lunn, 2020). In addition,

comparative studies using lipidomics, metabolic flux analyses, and

multi-omics integration can reveal metabolic flexibility and subsequent

regulatory differences and evaluate plant performance under different

stresses across a range of high-lipid species (Peng et al., 2023; Liu et al.,

2024). These approaches, coupled with field trial data and computational

models, could offer insights into predicting plant productivity across

diverse climatic conditions, informing field applications.
3 Nitrogen partitioning in high-lipid
crops: a key aspect of sustainable
crop improvement

N partitioning in high-lipid crops is critical for achieving high

yields and sustainability goals. Optimizing photosynthetic NUE and

understanding the interplay between N metabolism and lipid
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biosynthesis can reduce reliance on synthetic fertilizers, mitigate

environmental impacts, and enhance economic viability. This

section explores the role of N partitioning in photosynthetic

efficiency, lipid biosynthesis, and stress responses, with a focus on

how N availability and form influence plant performance.
3.1 Nitrogen demand in high-lipid crops

Leaf N levels are essential for maintaining photosynthetic

efficiency, providing C precursors and energy, particularly during

vegetative growth and under stress (Mengesha, 2021).

Redistributing N toward vegetative lipid storage tissues may alter

sink strength, affecting resource allocation between source and sink

organs. For example, in high-lipid ryegrass, increased C allocation

to vegetative oil enhances N uptake for growth and energy

requirements, particularly under non-limiting N conditions

(Beechey-Gradwell et al., 2018). This suggests that high-lipid

crops may achieve higher photosynthetic NUE by optimizing N

allocation between photosynthesis and lipid biosynthesis.

Assessing the dynamic C/N ratio and Rubisco’s maximum

carboxylation capacity can help evaluate plant responses to N

limitation (Cooney et al., 2021). Under N-deficient conditions,

lipid accumulation often increases at the expense of growth, as

seen in microalgae (Mata et al., 2010; Breuer et al., 2012). This

trade-off highlights the need to balance N availability with lipid

production to avoid growth penalties. For instance, in Arabidopsis,

phospholipase De promotes growth and N signaling under severe N

deprivation by increasing phosphatidic acid (PA) content, linking

lipid metabolism to N stress responses (Hong et al., 2009).
3.2 Nitrogen partitioning in lipid storage
vegetative tissues

Approximately 75% of leaf N is allocated to photosynthesis

machinery, including Rubisco carboxylation (NRubisco),

bioenergetics (electron transport and ATP synthesis, NE), and

light-harvesting pigment-protein complexes (NP) (Hikosaka and

Terashima, 1995). N is also distributed in leaves in other forms

(No), such as soluble components (NO3
-, NH4

+, amino acids) and

insoluble components (e.g., cell walls, membranes, and other

structures) (Feng et al., 2009; Wei et al., 2022). Small changes in

photosynthetic N allocation can significantly affect carboxylation

efficiency and photosynthetic NUE (Feng et al., 2009; Onoda et al.,

2017). For example, in high-lipid ryegrass, increased N allocation to

NE at the expense of NO was observed under NO3
- treatment,

without compromising NRubisco or NP (Cooney et al., 2021). This

optimal N allocation correlated with higher photosynthetic NUE,

suggesting that high-lipid plants can adaptively balance nutrient

allocation to achieve functional efficiency.

In high-lipid ryegrass, elevated leaf NO3
- under NO3

- supply

suggests limited NO3
- ammonification or extensive nitrification of

NH4
+ in shoots, potentially mitigating oxidative stress from FA

biosynthesis. Elevated shoot NO3
- has also been noted in other
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species as a local and systemic signal, regulating genome-wide gene

expression and phytohormone signaling pathways through Ca²+

mediation (Alvarez et al., 2012).
3.3 Nitrogen form: the balance between
growth and lipid biosynthesis

The form of N availability (NH4
+ vs. NO3

-) significantly

influences growth, lipid accumulation, and N partitioning.

Elevated atmospheric CO2 levels can inhibit NO3
- assimilation in

C3 plants and algae, potentially reducing NO3
- use efficiency in

future climates (Bloom, 2015 & 2020). However, this relationship is

complex and remains a subject of debate. Andrews et al. (2019)

discuss the variability of this response, noting that inhibition of N

assimilation under elevated CO2 is not universal and depends on

species-specific traits and N sources. While NH4
+, is theoretically

preferred due to its lower energy cost for assimilation, it can be toxic

at high concentrations, necessitating strategies to improve NH4
+ use

efficiency (Di, 2023; Xiao et al., 2023).

In high-lipid ryegrass, shoot dry weight and FA content

increased across N supply ranges, with no difference in response

to N form at the T0 stage (Beechey-Gradwell et al., 2018). However,

at the T2 stage, plants exhibited higher shoot growth rates under

NH4
+ than NO3

- at 20 mM concentrations, possibly due to

genotypic background or non-limiting N conditions. In

oleaginous fungi, NH4
+ boosts lipid production due to its lower

energy cost, redirecting resources toward FA synthesis (Wang et al.,

2024b). Conversely, NO3
- prolongs N uptake by stimulating

cytokinin production, delaying leaf senescence and maintaining

root N uptake activity (Heuermann et al., 2021).

Crop-specific responses to N forms vary. For examples,

Camelina prefers NO3
- as its N source, which has been associated

with increased seed oil content and improved drought tolerance,

while specific lipid percentages may vary depending on

environmental conditions and cultivation practices (Li-Beisson

et al., 2013). Duckweed responds optimally to NH4
+ over NO3

-,

with up to a 35% increase in TAG content and strong adaptation to

NH4
+ -rich wastewater environments (Tian et al., 2021; Liang et al.,

2022). These findings highlight the importance of optimizing N

fertilization strategies to balance lipid yield, growth, and N

agronomic efficiency.
3.4 Interactions with other nutrients

N partitioning in high-lipid crops is often intertwined with

interactions with other nutrients, such as sulfur (S) and phosphorus

(P). Sulphur regulates N metabolism and lipid biosynthesis, with S

deficiency leading to reduced protein synthesis and altered lipid

composition (Anjum et al., 2012). Similarly, synergistic effects of N

and P enhance lipid production and crop resilience, as seen in

microalgae and oilseed crops (Huang et al., 2019). For example, in

rapeseed, combined N and P application increased lipid content by

20% compared to N application alone, highlighting the importance
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of integrated nutrient management for optimizing lipid

biosynthesis (Peng et al., 2023).
4 Redox regulation in the
photosynthetic tissues and its
influence in non-seed lipid storage

The shift from conventional lipid storage in seeds to vegetative

tissues requires a deeper understanding of the interplay between

redox potential and metabolic regulation. Redox regulation is

central to managing cellular energy and oxidative stress,

particularly in photosynthetic tissues where light-driven electron

transport generates ROS. This section explores the mechanisms of

redox regulation, its impact on lipid biosynthesis, and its role in

plant stress responses, with a focus on non-seed lipid storage.
4.1 Redox homeostasis in photosynthesis

During photosynthesis, ROS are produced at multiple sites

(Figure 1). PSII generates singlet oxygen through the excitation of

chlorophyll. PSI produces superoxide radicals (O2
-·) via the Mehler

reaction. Photorespiration generates hydrogen peroxide (H2O2) in

peroxisomes through glycolate oxidase activity.

These ROS molecules act as signaling intermediates,

modulating metabolic pathways and stress responses. Under

optimal conditions, ROS production is balanced by antioxidant

systems, maintaining redox homeostasis. However, excessive ROS

accumulation can damage lipids, proteins, and DNA, impairing

cellular function (Apel and Hirt, 2004).
4.2 Redox regulation of lipid biosynthesis

The chloroplast ETC supplies much of the reducing power, with

ferredoxin (Fdx) playing a key role in transferring electrons to NADP+,

formingNADPH (Shikanai, 2007). This NADPH is utilized by ACCase

and the FAS complex for FA biosynthesis (Li-Beisson et al., 2013).

Redox regulation also influences FA desaturation, a critical step

in lipid biosynthesis. FA desaturases require Fdx as an electron

donor, linking redox status to membrane fluidity and stress

tolerance (Shanklin and Cahoon, 1998).
4.3 ROS scavenging and lipid protection

To mitigate ROS-induced damage, plants employ a suite of

antioxidant systems, including the superoxide dismutase-ascorbate-

glutathione (SOD-AsA-GSH) cycle (Foyer-Halliwell-Asada pathway).

This cycle involves (Figure 2): SOD converts O2
-· to H2O2; ascorbate

peroxidase reduces H2O2 to water using AsA as an electron donor;

monodehydroascorbate reductase and dehydroascorbate reductase

regenerate AsA from its oxidized forms; and glutathione reductase
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maintains GSH levels, essential for ROS scavenging and redox

signaling (Polle, 2001).

In high-lipid plants, ROS scavenging is particularly important

due to the increased metabolic activity associated with lipid

biosynthesis. For example, in high-lipid ryegrass, elevated SOD

activity and AsA levels, alongside reduced expression of cytosolic L-

AsA oxidase and APX, reflect the need to regulate ROS and

conserve reducing equivalents for FA biosynthesis (Winichayakul

et al., 2022). These adaptations help maintain redox balance while

supporting lipid accumulation.
4.4 Redox regulation of TAG turnover

Leaf TAG is used as a short-term storage intermediate of

thylakoid lipid during ongoing membrane turnover, remodeling,

and senescence (Slocombe et al., 2009; James et al., 2010). TAG

turnover in leaves is dynamic, particularly during vegetative growth

and senescence, with rates of ~1.2 mol% per minute in Arabidopsis

under 22°C conditions (Bao et al., 2000; Troncoso-Ponce et al.,

2013). TAG recycling during high energy demand can increase b-
oxidation activity in peroxisomes, potentially elevating ROS

production (Figure 1; Yu et al., 2019). In Arabidopsis, SDP1

lipase-mediated TAG degradation supplies C for dark survival

(Fan et al., 2017), while lipid peroxidation products (e.g.,

jasmonates) regulate senescence timing (Yu et al., 2020a).

Protecting the TAG b-oxidation may improve vegetative oil yield

and reduce ROS-induced damage. Strategies include: engineering

cysteine oleosin to enhance TAG-associated protein cross-linking,

stabilizing lipid droplets (Winichayakul et al., 2013); RNAi

suppression of SDP1 to reduce TAG lipase activity, minimizing

TAG turnover (Kelly et al., 2013; Fan et al., 2014), and disrupting

CGI-58 and PXA1 to inhibit peroxisomal TAG breakdown,

reducing ROS production (Park et al., 2013).
5 Environmental impacts and field
evaluation

High-lipid crops offer transformative potential for sustainable

agriculture and bioenergy production. However, their successful

deployment depends on adaptability to diverse environmental

conditions, efficient agronomic management, and minimal ecological

trade-offs. This section reviews the performance of high-lipid crops

under key abiotic stresses—temperature, light, and water availability—

and discusses their ecological and agronomic implications.
5.1 Temperature effects on lipid synthesis

Temperature fluctuations significantly influence lipid synthesis

and plant performance (Table 2). Cooler temperatures promote

polyunsaturated FA synthesis, such as increased 18:3 at the expense

of 18:2, maintaining plasma membrane fluidity (Zheng et al., 2011).
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However, chilling temperatures can impair photosynthesis and

induce oxidative damage, particularly in warm-climate species

(Allen and Ort, 2001).

Recent advances in cold acclimation research have identified

strategies to enhance cold resilience. For example, plasmamembrane-

localized proteins reduce lipid peroxidation and ROS generation in

cold-resilient crops (Juurakko et al., 2021). Antifreeze proteins from

perennial ryegrass, featuring leucine-rich repeat domains and a b-
helical carboxyl ice-binding domain, improve freeze protection

(Lauersen et al., 2011). Symbiotic relationships with plant-

associated microbiomes also promote growth and reduce lipid

peroxidation under cold stress (Zhu et al., 2010; Osman et al., 2013).

In contrast, warm climates stimulate faster growth and

heightened metabolic activity, enhancing the biosynthesis of

specific lipids like TAGs (Mueller et al . , 2017). TAG

accumulation in vegetative tissues may help plants cope with

abiotic stress through lipase-mediated lipid remodeling (Lu et al.,

2020). However, high leaf-oil Arabidopsis lines exhibit increased

susceptibility to heat stress (Yurchenko et al., 2018), highlighting

the complexity of lipid metabolism under thermal stress.

Extreme heat impairs membrane stability and lipid

functionality through oxidative stress and lipid peroxidation

(Shiva et al., 2020). Field trials of high-lipid cool-season perennial

ryegrass in Missouri, USA, revealed a decline in foliar FA

accumulation under summer conditions (Beechey-Gradwell et al.,

2022), potentially linked to rapid TAG turnover to support heat-

induced stomatal opening (Korte et al., 2023). These findings

underscore the need for multi-site validation of high-lipid

technologies and exploration of their application in warm-climate

forage species, which often produce heat-shock proteins and lipid

antioxidants to mitigate heat-induced damage (Oksala et al., 2014;

Rahman et al., 2022).
5.2 Light impacts on lipid biosynthesis

Light is a critical regulator of lipid biosynthesis, particularly in

photosynthetic tissues where C and energy derived from

photosynthesis play a central role (Fan et al., 2017; Lu et al.,

2020). Seasonal variations in light intensity, day length, and

spectral composition significantly influence lipid metabolism. Low

light intensity, shorter day lengths, and a higher proportion of red

and infrared light in winter can limit photosynthesis and growth.

Conversely, high light intensity, longer day lengths, and a higher

proportion of blue and ultraviolet wavelengths in summer support

robust photosynthesis but may induce stress under excessive light.

Yu et al. (2020a) demonstrated how plants fine-tune FA and

glycerolipid biosynthesis in response to long-term changes in light

conditions (Table 2). Arabidopsis mutants defective in glycerolipid

biosynthesis (tdg1) exhibited altered growth patterns and impaired

thylakoid membrane remodeling under high light. Excess light

stress can lead to ROS production, with phospholipids and

galactolipids degraded to provide substrates for TAG synthesis as

a protective mechanism (Olzmann and Carvalho, 2019; Obaseki

et al., 2024). TAG accumulation in chloroplast-associated lipid

droplets may prevent lipotoxicity from oxidative damage to FAs.
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Low-light conditions reduce ROS-mediated FA breakdown,

allowing greater accumulation of free FAs in leaf tissues. However,

low light can disrupt the balance between photosynthate production

and utilization. Plastidic ACCase is regulated at transcriptional and

posttranslational levels, underscoring its role in plant acclimation to

changing irradiance (Miller et al., 2017; Yu et al., 2020a). WRI1, a key

transcriptional regulator of lipid biosynthesis, integrates

environmental signals and developmental cues to synchronize FA

production with plant energy status (Kuczynski et al., 2022; Han

et al., 2025). Transcriptomic analyses further reveal the

interconnected regulation of genes involved in C metabolism, sugar

signaling, mitochondrial respiration, and redox potential, all of which

influence lipid metabolism under low light conditions (Winichayakul

et al., 2022).
5.3 Water availability impact on lipid
biosynthesis

Water stress, whether from drought, salinity, or flooding,

significantly alters lipid composition and biosynthesis. While

moderate water stress can trigger adaptive lipid responses, severe

or prolonged stress typically suppresses overall lipid production,

impairing growth, seed development, and stress tolerance.

Water deficit induces ROS production, leading to lipid

peroxidation (Table 2). This triggers signaling pathways that

modulate lipid biosynthesis (Sharma et al., 2023). Water scarcity

limits the availability of energy and NADPH required for FA

biosynthesis in plastids, reducing overall lipid production. In

Arabidopsis, total leaf lipid content decreased progressively under

drought, although plants exhibited cellular adaptations, such as

increased galactolipid ratios and FA unsaturation (Gigon et al.,

2004). While key enzymes like ACCase and FAS are often

downregulated under drought, phospholipase De activity increases,

generating phosphatidic acid, which participates in osmotic stress

responses and cellular signaling (Wang, 2005; Sharma et al., 2023).

Recent studies highlight the role of altered FA composition in

drought acclimation. For example, Yin et al. (2024) reported that high

18:3 levels contributed to drought tolerance in maize, while 16:2 and

16:3 were more critical for drought recovery. Beechey-Gradwell et al.

(2018) found that high-lipid perennial ryegrass exhibited greater

regrowth and 16% higher WUE under limited water supply

compared to controls. These findings suggest that high vegetative-

lipid technology may enhance drought tolerance, although further

field testing is needed to confirm these effects (Blum, 2005).

Salinity stress similarly disrupts water uptake and generally

leads to reduced transpiration due to stomatal closure, leading to

osmotic stress and enhanced photorespiration (Munns, 2005).

Photorespiration generates significant ROS, which can damage

lipids and other cellular components (Apel and Hirt, 2004). The

balance between ROS production and scavenging enzyme activity

determines whether signaling or damage occurs (Zhang et al.,

2014). For instance, increased production of ascorbate peroxidase

and glutathione reductase protects plants from oxidative stress

under drought and salinity (Table 2, Ratnayaka et al., 2003; Chaki

et al., 2020; Qamer et al., 2021).
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TABLE 2 Lipid metabolism in response to abiotic stresses in plants.

Stress
type

Effect on
C/N
partitioning

Impact on
lipid
biosynthesis

Key lipid
classes
involved

Enzymes/pathways
affected

Impact on
plant response

Citations

Heat Increased
respiration raises
C consumption.
N may shift to
protein synthesis
and stress-
related
metabolites.

C is allocated to
protective lipids,
leading to
TAG accumulation.

Saturated
galactolipids,
phospholipids
(PC,
PE), TAG.

FA catabolism aids efficient
stomatal opening via Ca²+-
dependent calmodulin-
binding kinase.

Lipid composition changes
maintain membrane fluidity,
TAGs accumulate as energy
reserves, and heat shock proteins
are upregulated.

Oksala et al., 2014;
Mueller et al., 2017;
Yurchenko et al.,
2018; Lu et al., 2020;
Shiva et al., 2020;
Rahman et al., 2022.

Cold Reduced
metabolic rate
leads to C
accumulation as
sugars and lipids.
N is redirected to
stress-related
amino acids.

Unsaturated FA
accumulate to
maintain
membrane rigidity
but also trigger
lipid peroxidation.

Unsaturated
FA, and PC,
DGDG.

Cold-responsive genes are
activated, leading to an
increase in desaturases
like FAD2.

Unsaturated FAs enhance
membrane stability. 18:3, a
precursor for JA synthesis,
regulates cold tolerance gene
expression via MeJA.

Allen and Ort, 2001;
Zheng et al., 2011;
Laura et al., 2018;
Wang et al., 2020;
Jurrakko et al., 2021.

High light Increased C flux
out of
chloroplasts.
Oxidative stress
disrupts N
metabolism,
shifting C toward
stress mitigation.

Guard cell TAG
provides ATP for
stomatal opening
and supports ER
lipid synthesis.

Phospholipids
(PC, PE),
TAG,
and
antioxidants.

TAG recycling activates lipid
peroxidation, lipoxygenases,
and FA desaturation, altering
phytohormone dynamics.

Lipid biosynthesis supports
membrane protection, energy
storage, and cellular integrity
under excess light, while
antioxidant
production increases.

Fan et al., 2017;
Olzmann and
Carvalho, 2019; Lu
et al., 2020; Yu et al.,
2020a; Obaseki
et al., 2024.

Low light Reduced CO2

fixation causes C
limitation. N is
reallocated to
essential
metabolic
function.

Limited C reduces
lipid biosynthesis,
but essential
phospholipids
remain. Lower
stress increases FA
in leaves.

Phospholipids
(PC, PE),
galactolipids,
Free FA.

Enzymes in FA synthesis and
C allocation, such as plastidic
ACCase, WRI1, LEC2, and
sugar signaling genes,
are downregulated.

Lipid production for membrane
growth is reduced, with altered
composition to conserve energy.

Miller et al., 2017; Yu
et al., 2020a;
Kuczynski et al., 2022;
Winichayakul et al.,
2022; Han et al., 2025.

Drought C is redirected
from sugars to
lipid storage.
Amino acid and
protein
biosynthesis
decline due to
limited N.

TAGs increase as
energy reserves,
while FA
composition shifts
to minimize
water loss.

TAG,
galactolipids,
phospholipids,
and
sphingolipids
increase, with
a rise in
unsaturated
FAs.

DGAT and desaturases are
upregulated for lipid
production, while ACCase and
FAS are downregulated, and
phospholipase D is
upregulated. ROS production is
induced, leading to
lipid peroxidation.

Lipid accumulation mitigates
dehydration and osmotic stress,
providing energy under water
stress. Membrane permeability is
reduced, enhancing stress
tolerance. APX and GR levels
increase to protect plants.

Ratnayaka et al., 2003;
Gigon et al., 2004;
Wang, 2005; Zhang
et al., 2014; Beechey-
Gradwell et al., 2018;
Sharma et al., 2023;
Yin et al., 2024.

Salt N is redirected to
stress metabolites
like proline, while
excess C supports
lipid synthesis.

N limitation
increases lipid
accumulation,
mainly as TAGs
storing excess C.

Phospholipids
(PC, PE),
TAG, and
betaine lipids.

Enzymes in N metabolism
(e.g., nitrate reductase) and
lipid biosynthesis (e.g.,
phospholipase D) are altered,
with increased levels of ABA
and JA.

Stomata close, impacting plant
growth. Lipid accumulation
supports membrane stability and
stress tolerance, while TAG
energy reserves buffer against
osmotic imbalance.

Apel and Hirt, 2004;
Munns, 2005; Zhang
et al., 2014; Yu
et al., 2020b.

Oxidative
Stress

C is shifted to
protective
metabolites (e.g.
antioxidants) and
N to stress-
response proteins.

C and N are
redirected to
protect against
lipid peroxidation,
increasing
phospholipid
synthesis and
altering
FA composition.

Phospholipids
(PC, PE),
galactolipids,
TAGs,
and
antioxidants.

Lipid oxidation pathways are
activated, with enzymes like
lipoxygenase and
phospholipase A2 preventing
oxidative damage.

Lipid rearrangements protect
membranes from ROS-induced
damage, while increased
antioxidants mitigate oxidative
stress. Oxidized proteins are
degraded via autophagy.

Ratnayaka et al., 2003;
Chaki et al., 2020;
Qamer et al., 2021.
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ACCase, acetyl-CoA carboxylase; APX, ascorbate peroxidase; DGAT, acyl-CoA diacylglycerol acyltransferase; DGDG, digalactosyl diacylglycerol; ER, endoplasmic reticulum; FA, fatty acid;
FAD2, FA desaturase 2; GR, glutathione reductase; JA, jasmonate; LEC2, leafy cotyledon 2; MeJA, methyljasmonate; PC, phosphatidylcholine; PE, phosphatidylethanolamine; ROS, reactive
oxygen species; TAG, triacylglycerol; WRI1, wrinkled 1.
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5.4 Crop selection and field evaluation

The development and deployment of high-lipid crops require a

dual focus on crop selection and field evaluation. Crop selection

depends on the intended application, with ongoing debate about the

impact of using food crops as biofuel feedstocks (Singh et al., 2023).

Agricultural residues and non-food feedstocks like algae and

duckweed offer competitive alternatives (Ullmann and Grimm,

2021; Yang, 2022). Algae and duckweeds exhibit high lipid

content under controlled conditions, but their performance in

open pond systems or natural aquatic environments requires

validation to ensure consistent yields (Wang et al., 2024a).

Table 3 summarizes key findings from laboratory to agricultural

and bioenergy applications, including performance metrics for

scaling cultivation.

High-lipid crops must demonstrate adaptability to a wide range

of environmental conditions, including variations in temperature,

light, water availability, and soil quality. For example, perennial

ryegrass has shown promise in cool climates but exhibits reduced

lipid accumulation under summer heat, highlighting the need for

climate-specific optimization (Beechey-Gradwell et al., 2022).

Camelina have demonstrated resilience to drought and marginal

soils, making them suitable for cultivation in water-limited regions

(Usher et al., 2015 & 2017; Han et al., 2020). Tobacco, traditionally

grown for nicotine production, has emerged as a promising high-

lipid crop due to its rapid growth and adaptability to diverse

climates including drought and high salinity, making it a robust

option for cultivation in challenging environments (Zhou et al.,

2020). Field trials have shown that tobacco can accumulate

significant lipid content, reaching up to 15-20% DW in its leaves

and stems, particularly under stress conditions, making it a viable

candidate for bioenergy production (Vanhercke et al., 2019).

However, at these levels of vegetative lipid accumulation, tobacco

typically experiences severe growth penalties, limiting its potential

for commercialization.

Several genetic and biotechnological strategies have been

explored to enhance vegetative oil production in crops such as

maize, sorghum, and sugarcane, due to their adaptability to diverse

environmental conditions, including drought and high

temperatures (Table 3) (Dida, 2024). Maize engineered for

increased lipid content in seeds and vegetative tissues often shows

reduced grain yield (Moose and Below, 2009; Alameldin et al., 2017;

Li et al., 2023). The ‘push, pull, protect’ (3P) GM strategy (Xu and

Shanklin, 2016) achieved TAG concentrations of up to 8.4% DW in

sorghum leaves, though trait stability and growth effects in

subsequent generations were not assessed due to multiple T-DNA

insertions (Vanhercke et al., 2018). Recently, Park et al. (2025)

reported successful field trials of sorghum engineered for high

vegetative oil content, achieving 5.5% DW in leaves and 3.5%

DW in stems without growth penalties. This approach combined

the 3P strategy with medium-chain FA generation, contrasting with

growth inhibition observed in engineered sugarcane and

energycane (Matsuoka et al., 2014; Zale et al., 2016; Parajuli et al.,

2020; Luo et al., 2022; Cao et al., 2023). Notably, engineered
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sorghum lines exhibited higher DGAT1 expression than WRI1,

suggesting sufficient DGAT1 activity to enhance FA biosynthesis

flux through the ER glycerolipid pathway. Imbalances between

WRI1 induction and DGAT activity can lead to toxic free FA

accumulation, a key bottleneck in high-lipid crop development

(Yang et al., 2015; Parajuli et al., 2020; Kannan et al., 2022).

C4 perennial species such as Miscanthus spp., switchgrass, and

prairie cordgrass are also gaining recognition as bioenergy

feedstocks in cool climates. These crops benefit from the

abundance of arable land in the Northern Hemisphere and the

growing demand for biofuels (Sage et al., 2011 & 2015). These

grasses hold potential for lipid engineering at the expense of

polysaccharides (Eudes et al., 2023). Breeding efforts must

prioritize cold-tolerant traits to ensure robust growth in cooler

climates (Sage et al., 2015). For instance, pyruvate phosphate

dikinase, a key enzyme in C4 photosynthesis, exhibits higher

protein content and activity in Miscanthus x giganteus under

cooler conditions, enhancing photosynthetic capacity (Wang

et al., 2008; Heaton et al., 2010). Transgenic maize overexpressing

this enzyme showed improved photosynthetic rates at low

temperatures, highlighting its potential for expanding bioenergy

crop suitability (Thomashow et al., 2001).
6 Summary and future directions

Integrating TAG storage into non-seed tissues holds great promise

for enhancing crop energy density. The degree of vegetative TAG

accumulation varies across species, influenced by the biotechnological

approach employed. While some plants experience growth penalties,

others exhibit enhanced growth at different lipid accumulation levels.

Although improved photosynthetic efficiency in high-lipid plants is

thought to result from mitigating feedback inhibition through the

dynamic redirection of carbohydrate flux, this metabolic shift is far

more complex, involving changes in carbon and nitrogen partitioning,

as well as redox homeostasis, affecting plant responses to diverse

environmental conditions.

To fully realize the agricultural potential of lipid biosynthesis in

crop biomass, several key research directions should be prioritized:
1. Integrative multi-omics approaches

This integrative approach could identify novel targets

for enhancing crop resilience and productivity in diverse

field conditions.

2. Environmental stress adaptation

Investigating how lipid accumulation influences stress

signaling and energy metabolism will be crucial for

developing cultivars with improved tolerance to

environmental stresses.

3. Carbon-nitrogen interactions

Understanding the interplay betweenC andNmetabolism,

particularly how N availability affects lipid biosynthesis and

redox balance, will inform breeding strategies aimed at

optimizing NUE while maintaining high lipid yields.
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4. Field trials and real-world applications

Conducting extensive field trials under varying

environmental conditions is essential for validating the

benefits observed in controlled settings. These trials will

refine cultivation practices and assess the feasibility of

scaling up lipid biosynthesis technologies for large-scale

agricultural deployment.
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5. Alternative crop species and systems

Expanding research to include other crop species, such as

C4 plants, duckweeds, and microalgae, could broaden the

applications of these technologies. Duckweed and microalgae,

for examples, have demonstrated promising lipid accumulation

under stress conditions, making them potential candidates for

biofuel production and carbon sequestration.
TABLE 3 Field performance and evaluation of bioenergy crops, algae, and duckweeds.

Crop
species

Location Key findings Performance metrics Citations

Algae Arizona USA Feasibility of large-scale lipid
production in open
pond systems.

Lipid yields of 20-30% DW; affected by light, temperature, and nutrients. Ullmann and
Grimm, 2021;
Wang et al., 2024a.

Camelina Hertfordshire,
UK; Manitoba,
Canada;
University of
Nebraska, USA

Stable traits under low-
input conditions.

Overexpressing EPA/DHA pathways boosts n-3 LC-PUFAs, significantly
altering seed fatty acid composition and mildly affecting seed
TAG profile.

Usher et al., 2015 &
2017; Han et al.,
2020 & 2022.

Duckweeds Global
aquatic system

Rapid growth, high lipid content;
thrives in nutrient-rich
wastewater. GE advances boost
TAG production and
growth rates.

Lipid content: 20-35% DW (optimal conditions); biomass doubles in 1–2
days. ~8.7% DW TAG in GE Lemna japonica; resilient to high salinity
and heavy metals.

Liang et al., 2022;
Yang, 2022.

Energycane Florida,
Louisiana USA

High biomass and sugar content;
lipid engineering potential in
stems. Adapts well to drier,
cooler climates.

Biomass yields: 30–50 Mg/ha; stem lipid content: 1-3% DW. GE
energycane achieved TAG ~3.85% leaf DW, TFA ~8.4% DW, and stem
TAG ~1.14% DW.

Luo et al., 2022;
Cao et al., 2023.

Maize
(corn)

Midwest USA High-lipid varieties for
bioenergy; dual-use potential
(food and fuel).

Grain lipid: 4-6% DW; biomass yields: 10–15 Mg/ha. A transgenic event
increased leaf oil by 79%. High-oil maize breeding showed consistent
low grain yields.

Moose and Below,
2009; Alameldin
et al., 2017; Li
et al., 2023.

Miscanthus Illinois
USA, Europe

High biomass yields, low input
needs; lipid engineering potential
at the expense of polysaccharides
and lignin.

Biomass yields: 20–40 Mg/ha; current lipid content: 1-3% DW in stems
and leaves.

Wang et al., 2008;
Heaton et al., 2010.

Perennial
ryegrass
(Lolium)

New Zealand,
Missouri USA

As a mini-sward, 16% higher
WUE and improve regrowth
under drought.

Biomass yields: 1–4 Mg/ha; leaf TFA: 5-5.8% DW, with GE increase of
1-1.2 kJ/g DW. Engineered ryegrass showed reduced FA accumulation in
summer heat.

Beechey-Gradwell
et al., 2018 & 2022;
Alckmin
et al., 2022.

Sorghum Texas, Kansas,
Eastern Nebraska,
California USA

High biomass, drought-tolerant;
potential for leaf
lipid accumulation.

Biomass yields: 15–25 Mg/ha; TFA: 3-5% DW in vegetative tissues. GE
sorghum achieved 6.9% DW TFA, 4.6% DW TAG, with TAG in top
events at 5.5% DW in leaves and 3.5% DW in stems. GE sorghum
produced 1.2% DW 4-HBA but saw a 15% biomass reduction.

Mullet et al., 2014;
Vanhercke et al.,
2018; Lin et al.,
2022; Park
et al., 2025.

Sugarcane Brazil, India, USA High biomass yields; potential
for lipid accumulation in stems
and leaves.

Biomass yields: 60–100 Mg/ha; lipid content: 1-3% DW in vegetative
tissues. GE sugarcane achieved 8% DW TAG and 13% DW TFA in
leaves, and 4.3% DW TAG in stems.

Matsuoka et al.,
2014; Zale et al.,
2016; Parajuli
et al., 2020.

Switchgrass
(Panicum)

Great Plains,
California USA

High biomass, drought-tolerant;
potential for leaf
lipid accumulation.

Biomass yields: 10–20 Mg/ha; lipid content: 2-4% DW in vegetative
tissues. GE switchgrass reduced recalcitrance, increasing biomass
and saccharification.

Sage et al., 2011 &
2015; Eudes
et al., 2023.

Tobacco USA,
Europe, Australia

High lipid content in leaves and
stems; adaptable to diverse
climates and stress conditions.

Lipid content: 15-20% DW in engineered varieties; rapid growth with
high biomass yields.

Vanhercke et al.,
2019; Zhou et al.,
2020; Chu
et al., 2022.
EPA, eicosopentanoic acid; DHA, docosohexanoic acid; GE, genetic engineering; 4-HBA, 4-hydroxybenzoic acid; LC-PUFA, long-chain polyunsaturate fatty acid; TFA, total fatty acid.
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By addressing these key areas, future research can bridge the

gap between laboratory breakthroughs and field implementation,

paving the way for sustainable agricultural innovations that meet

global food and energy demands.
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