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Introduction: Vascular bundles play a vital role in the growth, development, and

yield formation of rice. Accurate measurement of their structure and distribution is

essential for improving rice breeding and cultivation strategies. However, the

detection of small vascular bundles from cross-sectional images is challenging due

to their tiny size and the noisy background typically present in microscopy images.

Methods: To address these challenges, we propose Rice-SVBDete, a specialized

deep learning-based detection algorithm for small vascular bundles in rice stem

cross-sections. Our approach enhances the YOLOv8 architecture by

incorporating three key innovations: Dynamic Snake-shaped Convolution

(DSConv) in the Backbone network to adaptively capture intricate structural

details of small targets. A Multi-scale Feature Fusion (MFF) mechanism,

combining features from the Backbone, Feature Pyramid Network (FPN), and

Path Aggregation Network (PAN), to better handle objects at multiple scales. A

new Powerful Intersection over Union (PIoU) loss function that emphasizes

spatial consistency and positional accuracy, replacing the standard CIoU loss.

Results: Experimental evaluations show that Rice-SVBDete achieves a precision

of 0.789, recall of 0.771, and mean Average Precision (mAP@.5) of 0.728 at an IoU

threshold of 0.50. Compared to the baseline YOLOv8, Rice-SVBDete improves

precision by 0.179, recall by 0.201, and mAP@.5 by 0.227, demonstrating its

effectiveness in small object detection.

Discussion: These results highlight Rice-SVBDete's potential for accurately

identifying small vascular bundles in complex backgrounds, providing a

valuable tool for rice anatomical analysis and supporting advancements in

precision agriculture and plant science research.
KEYWORDS

rice vascular bundles, small object detection, deformable convolution, deep
learning, YOLO
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1 Introduction

Vascular bundles play a vital role in water conduction, the

transport of inorganic salts and organic nutrients, and mechanical

support within plants. In rice stems, parameters such as the

number, area, ratio, and distribution of large and small vascular

bundles are critical intrinsic structural factors that influence the

physicochemical properties and functional characteristics of the

stem Li et al. (2024a). Anatomical analysis of stem features provides

deeper insights into key biological traits, including the processes of

stem growth and development, environmental adaptability, and

stress resistance Bapat et al. (2023). Deciphering the genetic basis of

structural traits in crop stems and identifying related gene resources

are of great significance for the genetic improvement of crop

lodging resistance and yield traits.

Object detection is a critical application in the traditional field

of computer vision, where methods based on Convolutional Neural

Networks (CNNs) have achieved remarkable progress and

breakthroughs in recent years Wu et al. (2020); Zou et al. (2023).

With the rapid development and widespread adoption of

information technology, leveraging advanced artificial intelligence

techniques for efficient and accurate automated detection of rice

stem cross-sectional parameters plays a crucial role in tasks such as

crop breeding, precision agricultural management, and pest and

disease diagnosis. However, detecting small vascular bundles

presents unique and challenging characteristics, such as highly

variable morphology, dense arrangement, indistinct edges, and

low contrast. These, combined with the inherent challenges of

small object detection, such as small size, low resolution, and

vulnerability to noise, make the detection of small vascular

bundles in rice stem’s cross-sections a particularly demanding task.

The rapid development of deep learning technologies has

offered new solutions for small object detection. Currently,

mainstream object detection algorithms are primarily divided into

region proposal-based two stage detection algorithms and

regression-based one-stage detection algorithms. Two-stage

detection algorithms Girshick et al. (2014); Ren et al. (2016)

extract candidate regions and features through CNNs before

performing classification and boundary regression for fine-

grained object detection. While these methods achieve high

detection accuracy, they also result in lower efficiency and a

higher false positive rate. In contrast, one-stage detection

algorithms Liu et al. (2016); Ross and Dollár (2017); Hussain

(2023) bypass the generation of proposal boxes and directly

extract features within the network to predict object classification

and location. Compared to two-stage detection algorithms, one-

stage methods are faster. Among them, the You Only Look Once

(YOLO) series algorithms Hussain (2023); Wang et al. (2024);

Khanam and Hussain (2024) strike a better balance between

detection accuracy and computational cost. However, despite the

significant achievements of the YOLO series across various fields,

there remains room for improvement in small object detection. The

primary challenges stem from insufficient feature representation for

small objects and the inadequacies of existing functional loss

designs for small object detection.
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To address the challenges of small object detection, researchers

have explored methods to capture more feature information within

the network, improve network structures, and minimize feature loss

during transmission, thereby enhancing the detection capabilities

for small objects. Zhu et al. (2020) proposed a deformable end-to-

end object detection framework called DERT, which incorporated a

built-in deformable attention module and is equipped with a

deformation-enhanced FPN network that requires no additional

support. By leveraging attention mechanisms to fuse multi-scale

features, DERT achieves significant improvements in convergence

speed while maintaining high performance, excelling particularly in

small object detection tasks. Chen et al. (2024a) proposed a small

object detection model for drone aerial images (SOD-YOLOv7)

based on the real-time detector YOLOv7. While this improved

method effectively maintained focus on small objects, the real-time

detector significantly increased the parameter count of the model,

reducing computational speed. Wu et al. (2022) introduced an

Intersection over Union (IoU) balanced loss function for single-

stage object detection, aiming to balance classification loss. This

encourages the model to focus more on high-IoU positive samples,

enhancing the correlation between classification and localization

tasks to improve localization accuracy. Zhao et al. (2024) developed

a detection algorithm for tiny and complex objects in drone aerial

images (Subtle-YOLOv8). Subtle-YOLOv8 incorporates Dynamic

Snake Convolution (DSConv) and a Multi-scale Attention Module

(EMA) into the original YOLOv8 network to enhance its detection

capability for tiny objects. However, introducing DSConv and EMA

increases the model’s computational complexity and memory

usage. Chen and Zhang (2024) proposed an innovative cross-scale

feature fusion method (HEPAN), which adds a SCDown down-

sampling module to the network. This approach significantly

reduces model parameters and computational complexity without

compromising detection capability. Zhu et al. (2024) presented a

single-point supervised detection method for tiny objects, which

decomposes learning into two stages to address label noise caused

by scale ambiguity and positional offset in point annotations.

However, this process relies heavily on the quality of the coarse

pseudo-boxes generated in the first stage. If the pseudo-boxes are

inaccurate, the second stage might fail to refine them effectively.

In addition to YOLO-based approaches, a growing body of work

has investigated more flexible and adaptive architectures for small

object detection, especially in the infrared domain. Zhang et al. (2024)

proposed IRSAM, an enhanced Segment Anything Model that

incorporates a Perona-Malik diffusion block and a granularity-aware

decoder to bridge the domain gap between natural and infrared

imagery, thereby improving the representation of small targets.

Chen et al. (2024b) introduced MiM-ISTD, a hierarchical structure

that treats local image patches as “visual sentences” and decomposes

them into “visual words” using a Mamba-in-Mamba architecture.

This formulation allows for efficient local feature representation and

delivers state-of-the-art performance on multiple infrared datasets.

Transformer based methods have also seen rapid progress. Yuan et al.

(2024) presented SCTransNet, a spatial-channel cross transformer

that enhances feature discrimination between small targets and

cluttered backgrounds. Similarly, Li et al. (2024b) designed a
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lightweight Transformer-based decoder with high-frequency aware

modules to integrate global context with fine-grained details.

Furthermore, adaptive and contrast-based models have emerged. Li

et al. (2024c) proposed an iterative threshold analysis combined with

adaptive region growing for better target localization. Chen et al.

(2024c) incorporated deformable attention mechanisms with cross-

aggregation strategies guided by local contrast priors. These methods

highlight the increasing use of attention and hybrid CNN-

Transformer modules to address challenges posed by small target

size, low contrast, and complex backgrounds. These recent

developments suggest that integrating multi-scale context modeling,

deformable attention, and adaptive region priors will be critical to

improving small object detection tasks in the future.

Given the YOLO series algorithms’ lightweight nature,

efficiency, and rapid processing capabilities, we herein propose a

new algorithm, Rice-SVBDete, based on YOLOv8. The primary

contributions of our work in this field are as follows:
Fron
• We propose a new strategy to enhance feature extraction

capabilities by incorporating Dynamic Snake Convolution

(DSConv) Zhang et al. (2020) into the Backbone network.

This integration improves the model’s precision in identifying

the subtle boundary structures of small vascular bundles,

enabling the model to better capture fine and intricate details.

• We designed a Multi-scale Feature Fusion method (MFF) by

incorporating additional Upsample, C2f, and Concat

modules into the feature pyramid network of the Neck

network and adding a new detection head to the original

network structure. This approach significantly enhances the

model’s capability to represent multi-scale features, enabling

a more precise capture of fine-grained object characteristics.

While improving segmentation accuracy, the method also

effectively boosts the model’s robustness and adaptability to

segmentation tasks across different scales.

• We replaced the original Complete Intersection over Union

(CIoU) loss function with the Powerful Intersection over

Union (PIoU) loss function to better optimize the model’s

performance in small object detection. PIoU effectively

enhances the spatial matching between predicted and

ground truth boxes by introducing a dedicated penalty

term, demonstrating significant advantages in handling

small, dispersed objects. Additionally, the design of PIoU

simplifies the computational process, requiring only a single

hyperparameter to adjust the weight distribution of the loss

function. This facilitates the acceleration of model

convergence and optimization performance while

simultaneously achieving an improved balance between

detection accuracy and segmentation quality, thereby

significantly enhancing the model’s efficiency and stability.

• We conducted a series of comparative experiments with

existing state-of-the-art methods, such as YOLOv8 Jocher

et al. (2023), ASF-YOLO Kang et al. (2024), SOD-YOLO

Khalili and Smyth (2024), and Subtle-YOLO Zhao et al.

(2024), to evaluate the performance of the Rice-SVBDete

method. The experimental results show that the Rice-
tiers in Plant Science 03
SVBDete method achieved higher accuracy in detecting

small vascular bundles in rice stem’s cross-sections,

highlighting its practical application potential in the

anatomical feature analysis of rice stems.
2 Problem statement

Traditional detection of small vascular bundles in rice stem’s cross-

sections typically requires magnification and photography via using a

microscope, followed by manual calculation and statistical analysis. As

illustrated in Figure 1, each microscopic image contains numerous

small vascular bundles that are both highly abundant and exceptionally

tiny. This makes manual annotation prone to visual fatigue, which in

turn affects both the accuracy and efficiency of the results. Since the

phenotypic parameters of rice stem cross-sectional images are directly

related to factors such as stem growth status, nutrient absorption

capacity, and the genetic traits of the variety, we raise the following

question: how can we achieve automated detection of small vascular

bundles in rice stem’s cross-sections under conditions of small size,

dense arrangement, blurry edges, and low contrast.

To systematically address this issue, we define the terms and

symbols used in this study: given a dataset of rice stem cross-

sectional microscopic images X and their corresponding

annotations Y, the goal is to develop a fitted model f (X) that can

accurately identify and classify small vascular bundles in new,

unseen rice stem cross-sectional microscopic images.

Let X = X1,X2,…,Xi,…,XNf g represent a dataset of rice stem

cross-sectional microscopic images, where each image Xi contains

multiple unit features, and N denotes the total number of images in

the dataset. Each target bounding box is represented as Y =

Y1,Y2,…,Yi,…,YNf g, where each Yi contains one or more

bounding boxes indicating the locations of feature units in image

Xi. For each feature unit j in image Xi, the bounding box is

represented as Yj
i = ½xji1, yji1�, ½xji2, yji2�
n o

, where ½xji1, yji1� and ½xji2, yji2�
are the coordinates of the top-left and bottom-right corners of the

bounding box, respectively.
3 Method

This section introduces three main modules: the Dynamic Snake

Convolution module(DSConv), the Multi-scale Feature Fusion

method module(MFF), and the PIoU loss function module. These

modules are designed to improve vascular bundles’ detection

accuracy and reliability in rice stem’s cross-sections.
3.1 Dynamic snake convolution module

In the detection of small vascular bundles in rice stem’s cross-

sections, a series of challenges arise due to their microscopic

characteristics and the complexity of biological structures. Small

vascular bundles, owing to their tiny size, are susceptible to
frontiersin.org
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interference from lighting conditions, uneven cross-sections,

background impurities, and the texture of biological tissues

themselves. These fine structures necessitate that the detection

algorithm should demonstrate both high sensitivity and the

capability to precisely distinguish the target vascular bundles from

the surrounding complex biological tissue background. For instance,

accurately identifying and differentiating vascular bundle tissues with

varying shapes and densities in stem cross-sections, especially under

uneven lighting and variable tissue textures, presents a highly

challenging task. Moreover, compared to other tissues in the stem,

vascular bundles often have finer and harder-to-define boundaries.

To effectively detect small vascular bundles in rice stem’s cross-

sections, we integrate DSConv into the C2f module of the Backbone

network, which serves as the feature extraction network responsible

for capturing and processing hierarchical features from the input

images. This design aims to enhance the model’s ability to perceive

small and complex structures, thereby maximizing the extraction of

vascular bundle feature information from stem cross-section

images. By employing this approach, we improve the model’s

accuracy and robustness in detecting small vascular bundles

against complex biological tissue backgrounds. Specifically, the

standard convolution in the Bottleneck module, a fundamental
Frontiers in Plant Science 04
building block designed to reduce computational cost while

maintaining feature representation, is replaced with DSConv,

creating an improved BottleneckDSConv module. Additionally,

DSConv is used in the convolutions and is responsible for

channel adjustment before and after the C2f module. As shown

in Figure 2, the enhanced C2f module is transformed into the C2f-

DSConv module, serving as a feature extraction component in the

Backbone network.

DSConv was developed to address the high memory access and

computational costs inherent in standard convolution operations. It

achieves this by decomposing the traditional convolution operation

into two parts: Vector Quantized Kernels (VQK) and Distributed

Shifting. VQK quantizes the floating-point tensor weights into

integers, reducing memory usage and accelerating computation

speed. Distributed Shifting adjusts the values in the VQK through

Kernel Distribution Shifts (KDS) and Channel Distribution Shifts

(CDS), scaling and biasing the values to ensure that the output

matches that of the original weight tensor.

3.1.1 Quantization of VQK
VQK takes floating-point weights as input and applies linear

mapping to convert them into fixed-point numbers. These
FIGURE 1

Challenges in the detection of small vascular bundles.
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quantized numbers are then stored using binary two’s complement

representation. The quantization process with b bits is given by

Equation 1:

wq ∈ Z   − 2b−1 ≤ wq ≤ 2b−1 − 1
�� (1)

Here, w represents the value of each parameter in the tensor.

Through linear mapping, VQK scales the floating-point weight values

to binary integers with a specified number of bits, ensuring that the

range of floating-point numbers aligns with the range of binary
Frontiers in Plant Science 05
integers. This allows for efficient computation and memory storage

using integers, ultimately improving computational efficiency.
3.1.2 Distributed shifting
The distributed shifting adjusts the values in VQK through the

scaling and biasing of KDS and CDS, ensuring that the output

matches the original weight tensor. By setting the scaling factors

and bias terms as x, xs, (f, and fs, and initializing the tensor using

the L2 minimization criterion, the network can achieve optimal
FIGURE 2

Network structure of Rice-SVBDete. C2f-DSConv module in the Backbone network improves the model’s accuracy in recognizing the fine
structures at the boundary of small vascular bundles. Multi-feature fusion mechanism of Neck network accurately captures fine-grained
target features.
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performance. For the initialization of the KDS tensor, the element-

wise multiplication of the tensor approximates the original values,

as shown in Equations 2–4:

w0x + xs ≈ wq0 (2)

w1x + xs ≈ wq1 (3)

wBLK−1x + xs ≈ wBLK−1 (4)

We take the average value of x, denoted as x̂ , and use the L2

criterion to minimize the initialization of the KDS tensor. Here, wi

(i = 1, 2,…, BLK − 1) represents the weight parameters of the

quantized VQK tensor, and wqi (i = 1, 2,…,BLK − 1) represents

the weight parameters of the original convolution tensor. The

representation is given by Equation 5:

x = min
x̂

o
BLK−1

i=0
(wqi x̂ − wi)

2 (5)

DSConv dynamically adjusts the offset of the convolution

kernel, enabling flexible adaptation to complex geometric shapes

in images. The core of this approach lies in utilizing these offsets to

finely control the convolution operation, thereby significantly

enhancing the model’s ability to perceive and recognize targets of

varying shapes and sizes. The representation is given by Equation 6:

Ki±c = (xi ± c, yi + Dy) (6)

In this context, Ki±c represents the dynamic adjustment of the

convolution kernel at position i, xi denotes the horizontal

coordinate position of the current convolution kernel during the

convolution operation, yi represents the vertical coordinate

position, and c indicates the offset from the kernel’s center. Dy is

a learnable displacement that dynamically adjusts the shape of the

convolution kernel to adapt to the complex geometric structure of

the target. As shown in Figure 2, compared to the YOLOv8 network,

DSConv pays more attention to the shape of small vascular bundles

and exhibits better suppression of background noise, thus

improving the comprehensiveness and accuracy of detection.
3.2 Multi-scale feature fusion method
module

This paper proposes a detection strategy based on multi-scale

feature fusion to address the challenges of capturing small targets,

insufficient feature representation, and significant differences in

multi-scale targets in rice stem cross-sectional small vascular

bundles. The model’s ability to perceive small target details and

understand complex semantic information is enhanced by effectively

combining upsampling operations, convolutions, and the design of

multi-scale detection heads. The improved network architecture is

shown in Figure 2. The specific improvements are as follows:
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3.2.1 Introduction of upsampling operations to
address model limitations in small object
detection

In the Neck network’s Feature Pyramid Network(FPN)

structure, we have designed and constructed three upsampling

modules, F2, F3, and F4, corresponding to different feature scales

in the FPN. These modules generate high-resolution feature maps

through upsampling and concatenate them layer by layer with the

shallow feature maps in the Backbone network, specifically P2-F2,

P3-F3, and P4-F4. This concatenation strategy aims to fully

integrate the spatial details in shallow features with the semantic

information in deep features, enhancing the model’s ability to

perceive and learn detailed features, thus significantly improving

the model’s performance in small target detection tasks. The

formula is given by Equation 7:

Fl
up = U(Fl)⊕ Fl

s   (7)

where Fl represents the l-th feature map from the deep features.

U( : ) denotes the upsampling operation, Fs represents the feature map

from the shallow layers, and ⊕ denotes the concatenation operation.

3.2.2 Introduction of downsampling convolution
to enhance the model’s understanding of
complex semantic information

In the Neck network’s PAN structure, we have constructed

three convolution modules, T2, T4, and T5, corresponding to

different scale feature levels in the PAN structure. Specifically, by

fusing features from F2-T2, F4-T4, and P5-T5, we strengthen the

top-down feature propagation path. This strategy effectively

compensates for the traditional limitation of relying solely on

FPN, where target localization information might be lost, thus

improving the model’s semantic understanding and object

detection performance in complex scenarios. The formula is given

by Equation 8:

Fl
down  = C(Fl)⊗ Fl−1 (8)

where C(.) denotes the convolution operation, typically a

downsampling convolution, Fl−1 represents the feature map from

the previous layer, and ⊗ denotes the feature fusion operation.
3.2.3 Addition of detection head to enhance the
model’s detection capability for small objects

We introduced an additional detection head on top of the original

network, which was designed to efficiently fuse features from different

scales and enhance the model’s perception of multi-scale objects. By

introducing detection heads specifically designed for different scales,

the detection accuracy was significantly improved, especially in the

tasks of small target detection and multi-scale segmentation,

demonstrating outstanding performance. This improvement

effectively compensates for the potential limitations of the original

network in detecting small-scale targets and provides a more
frontiersin.org
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comprehensive and accurate solution for multi-scale object detection

tasks. The formula for the detection output is given by Equation 9:

O = D(Fc) (9)

where Fc = ⊕iFi represents the concatenation of feature maps

from different scales. D( : ) denotes the detection head, which

includes convolution, non-linear activation (such as SiLU), and

loss computation. O is the output, which includes the object

classification scores and bounding box regression.

Our approach enhances the model’s detection capability for

multi-scale objects by employing a multiscale feature fusion

strategy, which integrates upsampling operations, downsampling

convolutions, and the design of multi-scale detection heads. This

comprehensive approach provides an effective solution for accurate

object detection in complex scenarios.
3.3 PIoU loss function

Boundary box regression (BBR) loss function is also crucial in

the detection of small vascular bundles in rice stem’s cross-sections.

A well-designed boundary loss function might bring significant

performance improvements to the model. YOLOv8 calculates the

boundary box regression loss using Complete Intersection over

Union (CIoU). CIoU takes into account three important aspects

when calculating the boundary box regression loss, i.e., the overlap

area, the distance between the centers, and the aspect ratio. Given a

predicted bounding box b and a ground truth bounding box bgt, the

CIoU loss function is given by Equation 10:

LCIoU = 1 − IoU +
r2(b, bgt)

c2
+ av (10)

In this context, IoU refers to Intersection over Union, r2(b, bgt)

is the squared Euclidean distance between the centers of the

predicted bounding box b and the ground truth bounding box bgt.

c represents the diameter of the smallest enclosing box that contains

both the predicted and ground truth bounding boxes. a is a weight

coefficient, and v is the aspect ratio consistency penalty term.

However, the CIoU loss function fails to fully account for

differences in target scales during the calculation process. This issue

becomes particularly apparent when handling small and large targets,

where the localization accuracy for small targets is often insufficient.

This limitation could lead to a decline in small target detection

performance, thus impacting the overall detection accuracy. To

address this issue, this paper introduces the PIoU Khalili and

Smyth (2024) loss function to replace the CIoU loss function in the

original network. PIoU, while measuring the overlap area between the

predicted and ground truth boxes, further incorporates a penalty

mechanism byminimizing the Euclidean distance between the corner

points of the predicted and ground truth boxes. This improves the

model’s ability to capture the positional relationship between the

targets. Additionally, this loss function is more effective in balancing

detection performance across targets of different scales, particularly

demonstrating superior performance in small target detection. The

formula is given by Equation 11:
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LPIoU = 3 · (lq) · e−(lq)
2

· (1 − IoU − e−P
2

) (11)

The penalty term P is given by Equations 12–16:

dw1 = (b1x2 − b1x1) − (b2x2 − b2x1)j j (12)

dw2 = (b1x2 − b1x1) + (b2x2 − b2x1)j j (13)

dh1 = (b1y2 − b1y1) − (b2y2 − b2y1)
�� �� (14)

dh2 = (b1y2 − b1y1) + (b2y2 − b2y1)
�� �� (15)

P =
1
4

dw1 + dw2

wgt
+
dh1 + dh2

hgt

 !
(16)

where b1 and b2 represent the coordinates of the predicted and

ground truth boxes, with (x1,y1) denoting the top-left corner

coordinates, and (x2,y2) representing the bottom-right corner

coordinates. wgt is the width of the ground truth box, and hgt is

the height of the ground truth box. IoU is the Intersection over

Union between the predicted and ground truth boxes. d represents

the Euclidean distance between the corresponding corner points of

the predicted and ground truth boxes. l is the weight coefficient for

the penalty term, which adjusts the influence of P on the loss. q is

the focusing factor, scaled by the exponent of P, and is expressed as

q = e−P2.

The PIoU loss enhances the model’s ability to model the spatial

relationship between object locations by introducing a penalty

mechanism based on the Euclidean distance of corner points. It

effectively balances the detection performance across different scales

of targets, particularly significantly improving the localization

accuracy and robustness in small object detection.
4 Experiments

To evaluate the performance of the proposed method in the

microscopic image analysis of small vascular bundles in rice stem’s

cross-sections, this study conducted a comprehensive assessment of

the RiceSVBDete method. Using a custom dataset, we performed a

series of extensive experiments aiming at evaluating the

effectiveness of Rice-SVBDete in accurately identifying small

vascular bundles.
4.1 Experiment setup

4.1.1 Datasets
The dataset used in our experiments was provided by Guangxi

University, comprising core germplasm resources selected from the

3K RGP (3,000 Rice Genomes Project) Wang et al. (2018). This core

collection exhibits extensive genetic diversity and serves as a

representative subset of global rice germplasm resources. The

materials originate from a wide range of geographic regions,

ensuring high representativeness. They have been widely adopted
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by multiple research institutions, including Guangxi University, for

studies on rice genetic improvement and gene discovery,

highlighting their substantial scientific and practical value. From

this core collection, A total of 289 germplasm accessions from

different countries with similar heading dates were selected based

on their genetic diversity. These included 146 indica rice accessions

and 99 japonica rice accessions (38 subtropical japonica, 13 tropical

japonica, 36 temperate japonica from Southeast Asia, and 12 GJ-

adm). Additionally, 23 japonica rice accessions (cA) and six

japonica rice accessions (cB) from South Asia, along with 15

admixture varieties (admix), were included to represent the major

temperate and subtropical rice gene pools. The rice stem’s cross-

sections were collected from the second internode at the base of the

stem during the heading stage. The sections were sliced to

approximately 0.2–0.5 mm thickness and stored as TIF images.

The resulting dataset comprises 1091 microscopic images

containing 66728 labeled instances of four distinct feature types.

Table 1 shows the distribution of images and labeled cases for each

feature type. Using the Labelme (version 5.2.1) tool, the contours of

small vascular bundles (small), large vascular bundles (big), cavities

(in), and stem perimeters (out) were annotated for each image. The

annotation results are shown in Figure 3, 4. The dataset was divided

into training, validation, and test sets at a ratio of 8:1:1, which were

used for model training, validation, and testing, respectively.

4.1.2 Implementation detail
We implemented the Rice-SVBDete method based on the

YOLOv8 framework of the PyTorch deep learning platform,

training the model on an NVIDIA GeForce RTX 3090 GPU with

24GB of memory. The model was trained for 100 epochs using the

Adam optimizer, with a learning rate of 0.01, a batch size of 16, and

an input image size of 640×640. In our implementation, we adopted

a four-scale anchoring system: P2/4, P3/8, P4/16, and P5/32.

Specifically, the P2/4 scale anchors were designed for detecting

small objects, P3/8 and P4/16 anchors targeted medium-sized

objects, and P5/32 anchors were tailored for detecting large

objects. This hierarchical structure ensures comprehensive

coverage of object sizes within microscopic images.

4.1.3 Evaluation metrics
To evaluate the Rice-SVBDete algorithm’s performance

comprehensively, we select four evaluation metrics: precision(P),

Recall(R), Mean Average Precision (MAP), Mean Absolute

Percentage Error (MAPE), Root Mean Square Error (RMSE),

Dice coefficient(Dice), and Intersection over Union (IoU). These
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metrics evaluate the algorithm’s ability to accurately identify and

classify the feature cells present in microscopic images.

Precision denotes the ratio of true positive cases predicted to be

true to all predicted positive cases Liu et al. (2020). It is calculated as

shown in Equation 17:

P = TP=(TP + FP) (17)

where TP denotes that the predicted value is the same as the

true value, and the predicted value is a positive sample; FP denotes

that the predicted value is different from the true value, and the

predicted value is a positive sample.

Recall denotes the ratio of true positive cases predicted to be

true to all true positive cases. It is calculated as shown in

Equation 18:

R = TP=(TP + FN) (18)

where FN denotes that the predicted value is not the same as the

true value and the predicted value is a negative sample.

The AP curve is the area surrounded by the curve in two

dimensions: Precision and Recall. Usually, Precision is higher when

Recall is lower and lower when Recall is higher. That is, the larger

the AP curve, the better the model’s performance. The definition of

AP is given by Equation 19:

AP =
Z 1

0
 P(R)d(R) (19)

MAP is a comprehensive evaluation metric focusing on

sequence weights. It has become one of the most important

practical metrics for image recognition problems in recent years.

mAP@.5 indicates that the average AP of all images under each

category is calculated at IoU=0.5, and the higher the value of mAP,

the better the model’s performance. The definition of mAP is given

by Equation 20:

mAP =
1
No

N

i=1
APi (20)

where APi represents the average precision value for the category

indexed by i, and N denotes the total number of categories in the

training dataset. mAP@.5 is the average precision calculated at an IoU

threshold of 0.5. mAP@.5:.95 is calculated across IoU thresholds from

0.5 to 0.95, with values computed at intervals of 0.05.

Mean Absolute Percentage Error (MAPE) Nendel et al. (2023)

is a metric used to measure the error between predicted and actual

values, particularly in regression tasks. It represents the average

percentage error, with lower values indicating smaller prediction

errors. The definition of MAPE is given by Equation 21:

MAPE =
1
no

n

i=1

yi − ŷ i

yi

����
����� 100 (21)

here, yi represents the i-th actual value, ŷ i denotes the i-th

predicted value, and n is the total number of data points.

Root Mean Square Error (RMSE) Nendel et al. (2023) is a

commonly used metric for evaluating the error between predicted

and actual values. It emphasizes larger errors and is more sensitive
TABLE 1 Statistics of rice stem’s cross-sections microscopic image
annotation dataset.

Dataset Small Big In Out

Boxes 30854 33692 1091 1091

Images Total 1091

Boxes Total 66728
frontiersin.org

https://doi.org/10.3389/fpls.2025.1589161
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2025.1589161
to outliers. A smaller RMSE value indicates higher prediction

accuracy. The definition of RMSE is given by Equation 22:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − ŷ i)

2

r
(22)

The Dice coefficient (Dice), a commonly used similarity metric,

is widely applied in image segmentation tasks to evaluate the degree

of overlap between predicted and ground truth segmentations.

Intersection over Union (IoU), another frequently used

performance metric for image segmentation, quantifies the ratio

of the intersection to the union of the predicted and ground truth

segmentation regions.
4.2 Comparisons with state-of-the-art
methods

To identify the most suitable baseline model, a comparative

evaluation was conducted under a consistent evaluation protocol.
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Representative two-stage method Faster R-CNN Ren et al. (2016)

and one-stage methods SSD Liu et al. (2016), RetinaNet Lin et al.

(2017), and YOLOv8 Jocher et al. (2023) were selected for

comparison. The results are presented in Table 2.

As shown in Table 2, while methods such as SSD, RetinaNet, and

Faster R-CNN exhibit high P on small vascular bundle detection,

their R and F1 scores remain relatively low. For instance, RetinaNet

achieves a precision of 97.08% but only 32.49% in R, yielding an F1

score of 0.49. In contrast, YOLOv8 achieves a balanced performance

with a P of 61%, a R of 57%, and an F1 score of 0.59 on small targets.

Furthermore, for inner-region detection—where precise localization

is critical—YOLOv8 significantly outperforms all other methods,

achieving nearly perfect detection performance (F1 score = 0.99).

These findings suggest that YOLOv8 strikes an optimal balance

between detection accuracy and efficiency, particularly under the

challenging conditions of dense distribution, blurred boundaries, and

low contrast, which are typical in rice stem cross-sectional imaging.

Therefore, we selected YOLOv8 as the base model for our Rice-

SVBDete framework due to its superior capability in capturing small
FIGURE 4

Dataset annotation. (A) shows the overall annotation result, while (B, C) are zoomed-in views of specific regions in (A).
FIGURE 3

Rice stem cross-sections microscopic image.
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and intr icate anatomical features whi le maintaining

computational efficiency.

To evaluate the effectiveness of our proposed Rice-SVBDete

method, we compared it against several widely used state-of-the-art

image recognition algorithms. Specifically, we benchmarked our

method against YOLOv8 Jocher et al. (2023), ASF-YOLO Kang

et al. (2024), SOD-YOLO Khalili and Smyth (2024), and Subtle-

YOLO Zhao et al. (2024). These algorithms represent diverse

architectural paradigms and have demonstrated exceptional

performance in various computer vision tasks, providing a robust

baseline for comparative analysis.

Table 3 presents the quantitative results of the comparative

analysis. As shown in the table, our proposed Rice-SVBDete

method outperforms all state-of-the-art methods across all four

evaluation metrics. Specifically, Rice-SVBDete achieves an

impressive P of 0.794 and R of 0.784, surpassing SOD-YOLO by

0.013 and 0.015, respectively. Additionally, Rice-SVBDete attains

the highest mAP@.5 of 0.732, outperforming its closest competitor,

SOD-YOLO, by 0.017. Rice-SVBDete also demonstrates superiority

in the most challenging metric, mAP@.5:.95, achieving a score of

0.248, which is 0.011 higher than the second-best method, the

improved YOLOv8. These results underscore the effectiveness of

our proposed method in accurately detecting and localizing objects

under varying degrees of occlusion and overlap. Moreover, we

illustrate the detection results of Rice-SVBDete in Figure 5. The

figure clearly demonstrates that Rice-SVBDete successfully

identifies small vascular bundles of varying sizes and accurately

detects structures with blurred boundaries.

To further validate the prediction accuracy of Rice-SVBDete, we

used manually annotated vascular bundle regions as the reference

standard and performed a comparative analysis between the
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algorithm’s predicted results and the manual measurements. The

analysis results are shown in Figure 6. As observed in the figure, the

algorithm demonstrates high accuracy in predicting the number

and area of small vascular bundles, with MAPE values of 0.0% and

19.06%, respectively, and RMSE values of 0 and 0.001. These results

indicate that Rice-SVBDete exhibits high reliability and accuracy in

predicting small vascular bundle parameters.
4.3 Ablation studies

4.3.1 Effectiveness of different modules
We also conducted a comprehensive ablation study to evaluate

each proposed module’s impact. Specifically, we systematically

included or excluded the DSConv, MFF, and PIoU modules from

the model and assessed their performance. The experimental results

in Table 4 clearly show improved model performance with the

addition of more modules. Incorporating all three modules

(DSConv, MFF, and PIoU) resulted in the highest P, R, mAP@.5,

and mAP@.5:.95. This suggests a synergistic effect between

DSConv, multi-scale feature fusion, and PIoU loss. The consistent

improvement across all evaluation metrics highlights the

crucial role of multi-scale feature fusion in enhancing object

detection accuracy.

4.3.2 Effectiveness of DSConv
To evaluate the effectiveness of the DSConv module, we trained

our model and conducted extensive experiments. Table 4 highlights

the significant impact of DSConv on the model’s performance metrics.

The P and R values increased from 0.61 and 0.57 without DSConv to

0.617 and 0.574 with DSConv, respectively, indicating that this
TABLE 3 Comparisons with state-of-the-art methods.

Method Precision Recall mAP@.5 mAP@.5:.95 Dice IoU

YOLOv8 Jocher et al. (2023) 0.61 0.57 0.501 0.187 0.589 0.418

SOD-YOLO Khalili and Smyth (2024) 0.781 0.769 0.715 0.237 0.775 0.633

ASF-YOLO Kang et al. (2024) 0.632 0.588 0.531 0.194 0.609 0.438

Subtle-YOLO Zhao et al. (2024) 0.765 0.747 0.703 0.235 0.756 0.608

Rice-SVBDete 0.794 0.784 0.732 0.248 0.789 0.651
TABLE 2 Comparison of basic models.

Method SSD RetinaNet Faster R-CNN YOLOv8

P (%) R(%) F1 P (%) R(%) F1 P (%) R(%) F1 P (%) R(%) F1

small 97.18 36.39 0.53 97.08 32.49 0.49 91.49 43.23 0.59 61 57 0.59

in 60 6.74 0.12 0 0 0 50 25.84 0.34 99.1 1 0.99

big 98.9 32.53 0.49 97.95 31.09 0.47 97.41 36.64 0.53 83.6 84.9 0.84

out 0 0 0 0 0 0 0 0 0 99.1 1 0.99
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module enhances feature extraction capability while minimizing false

positives and false negatives. Moreover, the mAP@.5, evaluated at an

IoU threshold of 0.5, showed a significant improvement, increasing

from 0.501 without DSConv to 0.513 with DSConv.
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4.3.3 Effectiveness of MFF
The MFF module represents a significant advancement in

addressing the complex challenges associated with the small

vascular bundles in rice stem’s cross-sections, such as their highly
FIGURE 5

Detection results of State-of-the-Art Methods.
FIGURE 6

Comparison of manual labeling and algorithmic detection results. (a, b) show the fitting of area and count of small vascular bundles between the
predictions and the labels, (c, d) present the least squares fitting results for these two parameters.
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variable morphology, dense arrangement, indistinct edges, and low

contrast. This module integrates the strengths of both shallow and

deep feature representations within the model. The heatmap in

Figure 7 provides a visual representation of the impact of the MFF

module. After incorporating the MFF module, a focused and precise

attention map was obtained, highlighting the model’s capability to

detect small vascular bundles with varying morphological features,

including those with blurred boundaries. Overall, the MFF module

addresses the limitations of single-scale models, which struggle to

balance global semantic information and local detailed representation.

By leveraging the complementarity of features across different scales,

the MFF module enhances the model’s ability to perceive complex

scenes on a global scale while improving its capacity to capture small

targets and fine details. Consequently, it significantly enhances Rice-

SVBDete’s performance in accurately detecting and analyzing small

vascular bundles.

Figure 8 presents a qualitative comparison of vascular bundle

detection results across different model configurations, including

the baseline YOLOv8, and models with individual or combined

enhancements: DSConv, MFF, and DSConv+MFF. Three

representative samples are shown, each with the original image,

ground truth annotations, and detection results. Red circles

highlight incorrect or missed detections. In the YOLOv8 baseline,

several small or low-contrast vascular bundles are either missed or

inaccurately localized (e.g., Samples 1, 2, and 3). Introducing

DSConv improves detection in regions with subtle edge

information by enriching local spatial features. MFF further

enhances multi-scale context awareness, helping to recover small

or clustered targets. However, each module alone still suffers from

occasional false negatives or localization inaccuracies. The

combined model (DSConv+MFF) significantly reduces both

missed detections and localization errors. As shown in the final

column, most vascular bundles are correctly identified across all

samples, even in challenging regions where the baseline model fails.

These results demonstrate that the proposed structural

enhancements improve quantitative performance and provide

visibly more accurate and robust detections, especially for small,

ambiguous targets prone to failure in the original YOLOv8 model.
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4.3.4 Model efficiency analysis
To evaluate the computational efficiency of the proposed

method, we conducted a detailed runtime analysis across various

ablated versions of the model.

As shown in Table 5, the baseline YOLOv8 model achieves the

lowest per-image processing time of 12.8 ms, attributed to its

lightweight architecture. However, the integration of individual

modules—DSConv, MFF, and PIoU—inevitably leads to increased

inference times. When DSConv is added alone, the inference time

rises to 29.0 ms, mainly due to the dynamic kernel operations

introduced by depthwise separable convolutions. Adding MFF

results in a moderate increase to 19.2 ms, reflecting the cost of

enhanced multi-scale feature fusion. Similarly, incorporating PIoU

increases the runtime to 16.8 ms by introducing a more refined

localization strategy. Combined configurations present a more

complex picture. Including both DSConv and MFF yields the

highest inference time among all variants (31.5 ms), while

DSConv + PIoU and MFF + PIoU combinations result in 24.3 ms

and 15.5 ms per inference, respectively. These combinations reflect

trade-offs between feature richness and computational cost.

Notably, the proposed full model—comprising all three modules:

DSConv, MFF, and PIoU—achieves a total per-image runtime of

37.7 ms. While this represents the highest latency among all

configurations, it still supports an effective throughput of

approximately 26 FPS. This level of performance remains

sufficient for most offline or near real-time agricultural scenarios,

and is justified by the substantial improvements in detection

accuracy delivered by the synergistic effect of the three modules.
4.4 Effectiveness of other parameters

To further evaluate the adaptability and effectiveness of the Rice-

SVBDete method, we conducted detections on parameters such as the

large vascular bundles (big), cavities (in), and stem perimeter (out) of

rice stem’s cross-sections. The core metrics, including P, R, and mAP,

were recorded, as shown in Table 6. The experimental results

demonstrate significant improvements in detecting large vascular
TABLE 4 Experimental results using DSConv only, MFF only, and DSConv+MFF.

DSConv MFF PIoU Precision Recall mAP@.5 mAP@.5:.95

0.61 0.57 0.501 0.187

✓ 0.617 0.574 0.513 0.187

✓ 0.784 0.765 0.717 0.248

✓ 0.618 0.579 0.512 0.189

✓ ✓ 0.773 0.761 0.705 0.235

✓ ✓ 0.767 0.765 0.709 0.242

✓ ✓ 0.603 0.567 0.501 0.187

✓ ✓ ✓ 0.794 0.784 0.732 0.248
The symbol ✓ means that the module is selected.
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bundles, cavities, and stem perimeter using the Rice-SVBDete method,

specifically for the “in” category, P, andmAP@.5:.95 improved by 0.004

and 0.001, respectively. In the “big” category, notable enhancements

were observed in P, R, mAP@.5, and mAP@.5:.95, with increases of

0.147, 0.135, 0.173, and 0.15, respectively. For the “out” category, P and

mAP@.5:.95 improved by 0.004 and 0.002, respectively. These results

fully demonstrate that the Rice-SVBDete method exhibits excellent

performance in detecting small vascular bundles and achieves

outstanding accuracy and robustness in detecting parameters such as
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large vascular bundles and cavities. This effectively enhances the

method’s overall detection capability and adaptability.
5 Conclusion

The small vascular bundles in rice stem’s cross-sections exhibit

characteristics such as highly variable shapes, dense arrangements,
FIGURE 7

Heatmap examples without MFF and with MFF.
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blurred edges, and low contrast, making them difficult to capture.

These features present significant challenges for traditional

detection and recognition methods. However, rice breeding,

quality assessment, and related biological research require

advanced and reliable automated identification technologies. Deep

learning-based methods, especially the development of artificial

neural networks, provide a highly promising solution for the
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automated detection of small vascular bundles in rice stem’s

cross-sections. In this study, we propose a new method, Rice-

SVBDete, by introducing DSConv to optimize the feature

extraction process and integrating an MFF module to enhance the

model’s ability to express diverse features and overall accuracy,

effectively addressing the key issue of automatic detection of small

vascular bundles in rice. The Rice-SVBDete method precisely
FIGURE 8

Visualization of detection results before and after applying DSConv and MFF modules.
TABLE 5 Time consumption for DSConv only, MFF only, and DSConv+MFF.

DSConv MFF PIoU Preprocess Inference Postprocess Per image

0.8 9.5 2.5 12.8

✓ 0.6 29 2.8 32.4

✓ 0.9 17 1.3 19.2

✓ 0.9 14 1.9 16.8

✓ ✓ 0.5 31.5 2.9 34.9

✓ ✓ 0.8 15.5 9.0 25.3

✓ ✓ 1.0 24.3 2.5 27.8

✓ ✓ ✓ 0.5 36.4 0.8 37.7
The symbol ✓ means that the module is selected, and the time unit is ms.
TABLE 6 Detection results of other parameters.

Method YOLOv8 Rice-SVBDete

Metrics P R mAP@.5 mAP@.5:.95 P R mAP@.5 mAP@.5:.95

in 0.991 1 0.995 0.991 0.995 1 0.995 0.992

big 0.836 0.849 0.809 0.326 0.983 0.984 0.982 0.476

out 0.991 1 0.995 0.906 0.995 1 0.995 0.908
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captures the edge details of small vascular bundles while effectively

overcoming detection bias caused by low contrast and

noise interference.

Although the method builds upon recent deep learning

components, its novelty lies in the context-aware integration and

adaptation of these techniques for biological imaging tasks.

Specifically, the architectural design is tailored to the unique

challenges of detecting small and ambiguous structures in

complex plant tissue environments, which has been rarely

addressed in existing literature. In experiments, Rice-SVBDete

outperforms existing state-of-the-art methods in core metrics

such as P, R, and mAP, fully validating its excellent performance

and broad adaptability in small vascular bundle detection tasks,

providing a reliable and efficient solution for rice stem cross-

section analysis.

However, the method has certain limitations. It relies heavily on

high-quality annotated datasets for training, which may not be

readily available for different crop species with distinct structural

characteristics. Future work will focus on extending the model’s

adaptability to a broader range of crop species by incorporating

cross-species transfer learning and domain generalization strategies.

Efforts will also aim to reduce the dependency on annotated data

through self-supervised or weakly-supervised learning techniques.

Additionally, integrating multimodal imaging data, such as

hyperspectral or X-ray imaging, will be explored to improve

robustness and accuracy, enabling more comprehensive

microscopic image parameters detection across diverse

agricultural applications.
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