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Soil microbes offer various benefits to plants, including induced systemic resistance

and growth promotion, with some functioning as biocontrol agents. Although the

role of microbial consortium in microbiota function was recently elucidated, the

production of a specific determinant through microbial cooperation for plant

protection against insect infestation has not been demonstrated to date. Here,

we report that a synthetic community (SynCom) comprising four Gram-positive

bacteria could protect pepper plants from aphid infestation under greenhouse and

field conditions. Headspace solid-phase microextraction-gas chromatography

mass spectrometry analysis of the determinants produced by the four bacteria

during co-cultivation led to the de novo detection of a volatile compound, 1-

nonanol. Drench application of 1 mM 1-nonanol reduced aphid infestation. Taken

together, our results suggest that SynCom and its volatile compound can effectively

attenuate insect infestation. This is the first case study demonstrating how a volatile

compound synthesized in the rhizosphere soil by bacteria protects plants against

invasion by a sucking insect pest.
KEYWORDS

rhizobacteria, plant immunity, biological control, volatile, aphid, pepper
1 Introduction

In nature, microbial colonization in the rhizosphere soil facilitates plant adaptation to

various environments by promoting plant growth (Zablotowicz et al., 1991; Hayat et al.,

2010), enhancing abiotic stress tolerance (Yang et al., 2009), and defending plants against

pathogen invasion (Kloepper et al., 2004; Berendsen et al., 2012; Kwak et al., 2018; Lee et al.,
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2021). Certain rhizobacteria act as bioprotectants and biofertilizers

by protecting plants from diseases and enhancing crop yield

(Kloepper et al., 2004; Berg, 2009). Traditionally, beneficial

bacterial species have been applied individually to agricultural

fields; however, their effectiveness as bioprotectants and

biostimulants has often been unstable. This instability under field

conditions is attributed to the complex microbial interactions

within natural communities (Martins et al., 2023). To address this

issue, the co-inoculation of multiple bacterial species that mimic the

natural microbiota, known as synthetic communities (SynComs),

has recently been proposed (Vorholt et al., 2017; Durán et al., 2018;

Martins et al., 2023).

The construction of SynComs can be achieved through the

random selection of various natural isolates or through the

integrated prediction of microbiota and plant phenotypes based on

in silico approaches, such as metagenome sequencing (Martins et al.,

2023). Accounting for microbial interactions is essential for SynCom

construction. Microbial interactions among SynCom members, as

well as those between SynCom members and native microbiota, play

a crucial role in the overall functioning and stability of SynComs in

nature (Lee et al., 2024). Recently, in addition to identifying keystone

taxa important for the functionality and stability of SynComs,

identifying rare taxa with relatively low abundance has been

recognized as an essential consideration for ensuring the full

activity of SynCom members (Jousset et al., 2017; Carlström et al.,

2019; Lee et al., 2021; Xiong et al., 2021; Kim et al., 2023; Lee et al.,

2024). In recent studies, diverse SynComs were constructed to

investigate plant-microbiome interactions for causality

determination, yet the chemical determinants underlying SynCom

functionality remain largely unknown.

Microorganisms do not exist individually in nature, rather in

multi-species communities, where biological diversity leads to

chemical diversity (Martins et al., 2023). The chemicals produced

by microbes include volatile and non-volatile secondary

metabolites. A key feature of volatiles is their ability to travel long

distances through air and soil, making them effective mediators of

microbe-microbe or plant-microbe interactions (Ryu et al., 2003,

2004; Cernava et al., 2015; Silva Dias et al., 2021; Weisskopf et al.,

2021). Bacterial volatiles, including 2,3-butanediol and acetoin, are

known to promote plant growth and activate plant immunity

(Garbeva and Weisskopf, 2020; Silva Dias et al., 2021; Gfeller

et al., 2022; Almeida et al., 2023; Singh et al., 2024; Belt et al.,

2025). For instance, 2,3-butanediol released by Bacillus velezensis

strain GB03 (previously Bacillus amyloliquefaciens) was first

reported to enhance plant growth and immunity in Arabidopsis

thaliana (Ryu et al., 2003, 2004). Subsequent studies reported that

bacterial volatile compounds protect host plants against microbial

pathogens, including viruses, bacteria, and fungi, as well as insect

pests (Cortes-Barco et al., 2010; Song and Ryu, 2013; Kong et al.,

2018; Gfeller et al., 2022; Jung et al., 2023; Singh et al., 2024; Belt

et al., 2025). Previously, most studies investigating the beneficial

effects of volatiles focused on single bacterial species. Consequently,

little is known about the biosynthesis of volatile compounds by

SynCom for crop protection. However, a recent study reported
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differences in volatile composition between bacterial monocultures

and mixed cultures (Schulz-Bohm et al., 2015). In addition, loss of

the unique functionality of microbial volatiles was observed when

specific taxa were absent from a microbial community (Hol et al.,

2015). Thus, these data suggest the potential for the biosynthesis of

specific volatile(s) that determine the functionality of SynCom.

Previously, based on the microbiome analysis of rhizosphere

soil in tomato (Solanum lycopersicum L.) fields, we constructed a

protective SynCom comprising four Gram-positive bacteria,

namely, Brevibacterium frigoritolerans HRS1, Bacillus niacini

HRS2, Solibacillus silvestris HRS3, and Bacillus luciferensis HRS4

(Lee et al., 2021). This SynCom efficiently reduced the occurrence of

bacterial wilt disease, caused by Ralstonia pseudosolanacearum, in

tomato by activating plant immunity (Lee et al., 2021). A complete

combination of SynCom with keystone taxa and rare taxa can

induce the full activation of plant immunity in tomato. However,

the ability of SynCom to control naturally-occurring plant diseases

and insect pests and the SynCom-derived determinants involved in

this process remain largely unknown.

The aim of the present study is to investigate the biocontrol

activity of the SynCom under field conditions. To validate this, we

applied the SynCom to the root system of pepper plants instead of

tomato plants, as tomatoes are generally cultivated in greenhouse

conditions in S. Korea. Drenching application of SynCom effectively

protects pepper (Capsicum annum L.) plants against aphid (Myzus

persicae L.) infestation, even under field conditions. Compared with

individual bacterium inoculations, the SynCom treatment showed

higher biocontrol activity against aphid infestation in the field. The

four bacterial species when used together as the SynCom specifically

produced the volatile compound 1-nonanol. Thus, our data highlight

the role of a specific combination of bacterial species (HRS1 + 2+3 +

4) in the production of a unique metabolite for host plant protection.
2 Materials and methods

2.1 Plant materials

Pepper (Capsicum annum L. cv. Bulkala) seeds were sown on

autoclaved soilless potting medium (Punong, Co. Ltd., Gyeongju,

South Korea), containing zeolite, perlite, colored dust, and lime (pH

= 4.5–7.5), in a 50-hole plastic tray (28 cm × 54 cm × 5 cm). After 7

days, pepper seedlings were transplanted in new round pots (diameter

= 10 cm, height = 8.5 cm) containing autoclaved soilless potting

medium. Pepper plants were grown in an environmentally controlled

growth room at 25°C under fluorescent lights (approximately 7,000

lux light intensity) and 12 h light/12 h dark cycle.
2.2 Evaluation of SynCom and 1-nonanol
against aphid infestation in the greenhouse

Four different Gram-positive bacteria (Brevibacterium

frigoritolerans HRS1, Bacillus niacini HRS2, Solibacillus silvestris
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HRS3, and Bacillus luciferensis HRS4) were cultured as described

previously. Briefly, four bacterial isolates were cultured on Tryptic

Soy Agar (TSA, Difco Laboratories, Detroit, MI, USA) medium at

30 °C for 1 day and suspended in sterile distilled water (OD600 =

1.0). To prepare the SynCom suspension, the four strains were

initially prepared at a higher concentration and then mixed in

calculated volumes to achieve a final OD600 of 1.0 for each

bacterium. To conduct the greenhouse experiment, 10 mL of the

SynCom suspension was drenched into the root system of 3-week-

old pepper plants twice a week, and the number of aphids on the

aerial parts of each plant was counted at 0, 7, and 14 days after

inoculation. Then, 10 mL of 1-nonanol at four different

concentrations (1 mM, 10 mM, 100 mM, and 1 mM) was drenched

into the root system of 3-week-old pepper plants. Drench

application of 10 mL of 0.5 mM of benzothiadiazole (BTH) and

sterile distilled water (SDW) served as positive and negative

controls, respectively, and the number of aphids on the aerial

parts of each plant was counted at 3, 4, 5, 6, and 7 days

after inoculation.

Aphid (Myzus persicae L.) adults were obtained from the

Department of Agro-Food Safety and Crop Protection, National

Institute of Agricultural Sciences, Rural Development

Administration, South Korea. Aphids were reared in a miniature

plastic box (70 cm wide × 70 cm long × 80 cm tall). Then, 10 aphids

were transferred onto the apex of freshly grown pepper plants using a

small paint brush one week after the SynCom or 1-nonanol treatment.
2.3 Field trials

Field trials were conducted at Nonsan, Chungcheongnam-do,

South Korea (36.23577°N, 127.18946°E). All necessary permits were

obtained from landowners prior to the commencement of field

trials. To evaluate the biocontrol activity of SynCom under typical

field conditions, irrigation and fertilizer treatments were applied

uniformly across all plots, including the negative control, by the

farm owner, according to the environmental conditions at the

experimental site throughout the entire trial period. Before

transplanting, the furrows were covered with black polyethylene

film to prevent weed growth. Pepper seedlings were planted 30 cm

apart. After 30 days of growth, seedlings were irrigated with

bacterial suspensions (OD600 = 1.0), 0.5 mM BTH, or SDW (100

mL per seedling) every 10 days, for a total of three times per month.

To prepare the SynCom suspension (a mixture of HRS1, HRS2,

HRS3, and HRS4), suspensions of all four strains were mixed, and

the final OD600 of each bacteria was adjusted to 1.0. Each treatment

was applied to four blocks, in a randomized block design (n = nine

plants per treatment). For GC–MS analysis, we employed an

Agilent 7890A series gas chromatograph (Agilent Technologies,

Santa Clara, CA, United States).

To inoculate pepper plants, Xanthomonas axonopodis pv.

vesicatoria (Xav) was cultured overnight at 28 °C in LB medium.

At 2 weeks after inoculation, 500 mL of Xav (OD600 = 0.01) culture
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using a needleless syringe. Seven days after inoculation, the severity

of disease caused by Xav was recorded on a 0–5 scale, where 0 = no

symptom; 1 = mild chlorosis; 2 = chlorosis; 3 = severe chlorosis and

mild necrosis; 4 = necrosis; and 5 = necrosis with cell death (Kim

et al., 2022). Each treatment was applied to four blocks, with five

plants per treatment, in a randomized block design.
2.4 Evaluation of aphid infestation in
pepper under field conditions

To evaluate the biological control activity of SynCom under

field conditions, we measured the severity of aphid infestation at 4

weeks after treatment at the Nonsan field. The severity of aphid

infestation was recorded on a 0–5 scale based on the distribution of

aphids in the aboveground parts of the pepper: 0 = no infestation; 1

<25% of the pepper plant infested; 2 <50% of the pepper plant

infested; 3 <75% of the pepper plant infested; 4 <100% of the pepper

plant infested; and 5 = whole plant infested. Each treatment was

replicated four or five times in a randomized block design (n = 36

plants per treatment).
2.5 Pepper fruit yield measurement

Fruit fresh weight per plant and number of pepper fruits per 20

plants in a row were measured at 16 weeks after transplanting, with

four replications. Only red-colored fruits were harvested for market

value. Total yield (g/plant) was estimated per treatment, and the

total fruit weight per plant was calculated. In addition, the number

of fruits per plant was recorded at each harvest, and the total harvest

was then calculated as the number of fruits per plant.
2.6 Detection of de novo volatile
compound production

Volatile compounds produced by the SynCom were identified

by headspace solid-phase microextraction-gas chromatography

mass spectrometry (HS-SPME-GC-MS). Briefly, 50 mL of each

bacterial suspensions was inoculated on the TSA medium and

cultured in 20-mL SPME vials at 30°C for 2 days. Suspension

cultures of the four different bacterial species were mixed in

different combinations (HRS1 + HRS2, HRS1 + HRS2 + HRS3,

HRS1 + HRS2 + HRS4, and HRS1 + HRS2 + HRS3 + HRS4), and

the final OD600 of each mixed bacterial species, as well as that of

monocultures (HRS1, HRS2, HRS3, and HRS4), was adjusted to

1.0. The equipment condition of HS-SPME-GC-MS was modified

using the method described previously (Song et al., 2019). Briefly,

the fibers were conditioned in the GC injection port prior to use,

according to the manufacturer’s instructions. A manual holder

was used to handle the fibers. Separation was performed using the
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following program: initial temperature of 50°C with a 2-min hold,

followed by ramping up to 220°C at a rate of 10°C/min with a 2-

min hold. The split–splitless injection port was maintained at

280°C for volatile desorption in split mode, with a split ratio of

1:10. Helium was employed as the carrier gas at a constant flow

rate of 1.0 mL/min. Volatile organic compounds (VOCs) were

separated using a non-polar HP-5MS column (30 m × 0.25

mm × 0.25 µm, Hewlett Packard) with the following program:

initial temperature of 40°C with a 3-min hold, followed by

ramping up to 220°C at 10°C/min with a 2-min hold. The

split–splitless injection port was set to 250°C in splitless mode.

The MS parameters were set to the full-scan mode, with a range of

40–500 amu at a scan rate of 0.817 scan/s. The ion source

temperature was 250°C, with an ionization energy of 70 eV and

a mass transfer line temperature of 300°C. The retention time

(tR) and mass spectrum of each VOC was compared with those of

authentic standards and of volatiles from the National Institute of

Standards and Technology (NIST) reference library. An in-house

dedicated mass spectral library, containing the spectra of known

compounds, was also used to verify the identity of the

detected VOCs.
2.7 Expression analysis of defense-related
marker genes in pepper leaves

Total RNA was isolated from pepper leaves collected at 8 days

post-aphid inoculation, and first-strand cDNA was synthesized as

previously described (Song et al., 2017). Quantitative real-time PCR

(qRT-PCR) was carried out on the Chromo4 Real-Time PCR

System (Bio-Rad, Hercules, CA, USA) using iQ™ SYBR® Green

SuperMix (Bio-Rad), 10 pM sequence-specific primers

(Supplementary Table 1) (Lee et al., 2012; Yi et al., 2013; Kong

et al., 2018), and cDNA (template). The reaction conditions were as

follows: an initial polymerase activation step at 95°C for 10 min,

followed by 40 cycles of denaturation at 95°C for 30 s, annealing at

60°C for 30 s, and extension at 72°C for 30 s. Gene expression levels

were calibrated and normalized against the mRNA level of CaActin.
2.8 Statistical analysis

Data were analyzed using analysis of variance (ANOVA) in

JMP 4.0 software (SAS Institute Inc., Cary, NC, USA). Significant

treatment effects were determined based on the F-value at a

significance level of p < 0.05. When a significant F-value was

obtained, post hoc pairwise comparisons were conducted using

Fisher’s protected least significant difference (LSD) or Tukey’s

honestly significant difference (HSD) test at p < 0.05. For ordinal

disease severity measurements related to naturally occurring aphid

infestations and Xav infections, statistically significant differences

were assessed using the nonparametric Kruskal-Wallis test,

followed by Dunn’s post hoc test for multiple comparisons,

implemented in R (http://www.r-project.org/).
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3 Results

3.1 Gram-positive bacterial SynCom
reduced aphid infestation in pepper

Previously, we designed a plant-protective SynCom comprising

four Gram-positive bacterial species isolated from field upland soils

(Lee et al., 2021). Since the drench application of SynCom

systemically elicited induced resistance in tomato plants, we wanted

to test whether the drench application of SynCom can protect

economically important crop plants from insect pests. The roots of

pepper plants grown under greenhouse conditions were drenched

with the SynCom suspension, and the population of aphids on the

aboveground plant parts was assessed (Figures 1A, B). Compared

with the control, drenching with 0.5 mM BTH (positive control)

reduced the aphid population size by 1.8- and 2.7-fold at 7 and 14

days post infestation, respectively (Figure 1C). Similar to BTH, the

drench application of SynCom also reduced the population of aphids

on pepper plants by 1.7- and 1.6-fold at 7 and 14 days post

infestation, respectively (Figure 1C). However, unlike BTH, the

SynCom treatment did not result in a growth penalty in pepper

(Supplementary Figure 1).

SynCom activates the signaling of defense-related phytohormones,

salicylic acid (SA) and jasmonic acid (JA), in tomato plants (Lee et al.,

2021). To validate the activation of SA and JA signaling by SynCom

treatment in pepper plants, we analyzed the expression patterns of

defense-related marker genes involved in SA and JA signaling in pepper

leaves at 24 hours post aphid inoculation (Figure 1D). Compared with

the negative control, treatment with SynCom and BTH upregulated the

expression of SA signaling marker gene CaPR1 by 2.5-fold and 2.07-

fold, respectively. In addition, SynCom treatment upregulated the

expression of JA biosynthesis gene CaLOX by 2.74-fold compared to

control, but not BTH treatment. However, the expression of JA

responsive gene CaPIN2 was downregulated by SynCom treatment

compared to control. Thus, this result suggests that the SynCom

treatment activates induced resistance in pepper plants against aphids.
3.2 SynCom enhanced resistance against
aphids and Xav in pepper under field
conditions

To test the disease control activity of the Gram-positive

bacterial SynCom under field conditions, the roots of pepper

plants grown at Nonsan, South Korea, were drenched with either

individual bacterial suspensions or the SynCom suspension

(Figures 2A, B). Among the bacterial treatments, only drenching

with the SynCom suspension significantly reduced aphid infestation

in pepper plants by 1.5-fold compared with the negative control

(Figure 2B). In contrast, individual application of each strain did

not lead to a significant reduction in aphid infestation compared

with the negative control (Figure 2B). Meanwhile, treatment with

BTH (positive control) reduced aphid infestation by 2.7-fold

compared with the negative control (Figure 2B).
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Previously, we showed that the activation of induced resistance

against both aphids and Xav involves the same defense signaling

pathways, including SA and JA signaling (Lee et al., 2012). Thus,

SynCom-mediated induced resistance led us to hypothesize that the

SynCom treatment can also elicit induced resistance against Xav

infection in pepper. Indeed, drenching with SynCom reduced the

symptoms of bacterial spot disease, caused by Xav, on the leaves of

pepper plants under field conditions (Figure 2C). SynCom

application notably reduced the severity of bacterial leaf spot on

pepper leaves by 1.4-fold compared to the negative control

(Figure 2C). In contrast, none of the individual SynCom strains

showed a significant effect on disease severity (Figure 2C).

BTH achieved a significant 1.6-fold reduction compared to

negative control, and its disease control efficacy was comparable

to that of SynCom (Figure 2C). Taken together, these results

indicate that the combination of Gram-positive bacteria
Frontiers in Plant Science 05
(SynCom) systemically protects pepper plants from attack by

insect pests and bacterial pathogens.
3.3 SynCom treatment increased fruit yield

To investigate the effect of SynCom on the fruit yield of pepper

plants, we measured the weight and number of fruits harvested from

SynCom-treated pepper plants in the field at Nonsan in 2019

(Figures 3A, B). Drenching with SynCom enhanced the fruit

number and weight per plant by 1.5- and 1.7-fold, respectively,

compared with the negative control (Figures 3A, B). The drench

application of HRS4 suspension also enhanced the fruit weight per

plant by 1.7-fold, but not fruit number per plant, compared with the

negative control (Figures 3A, B). Treatment with HRS1, HRS2, and

HRS3 suspensions individually did not affect pepper fruit number
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FIGURE 1

Synthetic community (SynCom) comprising four Gram-positive bacteria reduced aphid infestation in pepper plants. (A) Experimental procedure for
the aphid control assay. SynCom (10 mL) was drenched into the root system of 3-week-old pepper plants twice a week. One week after the
SynCom treatment, each pepper plant was inoculated with 10 aphids. The total population of aphids on the aerial parts of plants were counted at 0,
7, and 14 days post-inoculation. (B) Photograph showing aphid infestation on the aboveground parts of pepper plants at 14 days post-inoculation.
(C) Total number of aphids on SynCom-treated pepper plants. SynCom, mixture of Brevibacterium frigoritolerans HRS1, Bacillus niacini HRS2,
Solibacillus silvestris HRS3, Bacillus luciferensis HRS4; BTH, 0.5 mM benzothiadiazole (positive control); SDW, sterile distilled water (negative control).
Data represent mean ± standard error of the mean (SEM; n = 18 replications per treatment). Different letters indicate significant differences between
treatments (P < 0.05; least significant difference [LSD] test). Diamonds and bolded lines of the boxplot are the average and median of indicated
values, respectively. (D) Relative expression levels of salicylic acid signaling marker gene (CaPR) and jasmonic acid signaling marker gene (CaLOX and
CaPIN2) in the leaves of pepper plants treated with 1-nonanol at 24 hour post-inoculation with aphids. Data represent mean ± SEM. Different letters
indicate significant differences between treatments (P < 0.05; LSD).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1589266
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lee et al. 10.3389/fpls.2025.1589266
(A) (B)

0

5

10

15

20

AB

B

AB

AB

A

C

B

0

100

200

300

400

Fr
ui

tw
ei

gh
tp

er
pl

an
t(

g) AB
AB

AB

A

A

C

B

tnalprepreb
mun

stiurF

FIGURE 3

SynCom treatment increased pepper fruit yield. (A, B) Number (A, B) fresh weight of pepper fruits harvested from three blocks, each containing
seven plants (n = 21), treated with Gram-positive bacterial species (either individually or as a mixture), BTH, and SDW. For each treatment, seven
plants per block were measured and averaged, resulting in one value per block. Dots represent these block-level averages. HRS1, Brevibacterium
frigoritolerans HRS1; HRS2, Bacillus niacini HRS2; HRS3, Solibacillus silvestris HRS3; HRS4, Bacillus luciferensis HRS4; SynCom, mixture of HRS1–4;
BTH, 0.5 mM benzothiadiazole (positive control); SDW, sterile distilled water (negative control). Different letters indicate significant differences
between treatments (P < 0.05; LSD). Diamonds and bolded lines of the boxplot are the average and median of indicated values, respectively.
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field conditions. (A) Severity standard for aphid infestation in pepper plants in the field at Nonsan. Aphid infestation severity was recorded on a 0–5
scale, based on the proportion of aboveground tissues infested: 0 = no infestation; 1 = less than 25% of plant parts infested; 2 = 25–49% of plant
parts infested; 3 = 50–74% infested; 4 = 75–99% infested; 5 = whole plant infested, resulting in plant death. (B) Severity of aphid infestation in
pepper plants at 4 weeks after SynCom treatment. Data represent mean ± SEM of 10 plants with four block repeats (n = 40 replications per
treatment). Asterisks indicate significant differences (*P < 0.05; **P < 0.01; ***P < 0.001; Dunn’s test). (C) Drench application of SynCom protected
pepper plants against Xav infection under field conditions. Data represent mean ± SEM of five plants with three block repeats (n = 15 replicates per
treatment). Asterisks indicate significant differences (*P < 0.05; **P < 0.01; ***P < 0.001; Dunn’s test). HRS1, Brevibacterium frigoritolerans HRS1;
HRS2, Bacillus niacini HRS2; HRS3, Solibacillus silvestris HRS3; HRS4, Bacillus luciferensis HRS4; SynCom, mixture of HRS1–4; BTH, 0.5 mM
benzothiadiazole (positive control); SDW, sterile distilled water (negative control).
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and weight. Meanwhile, drenching with BTH significantly reduced

the pepper fruit yield (Figures 3A, B). Thus, SynCom treatment

increased the yield of pepper fruits under field conditions.
3.4 De novo production of 1-nonanol by
the SynCom deterred aphid infestation in
pepper

To identify the determinant eliciting plant immunity against

aphid infestation, we analyzed the volatiles produced by SynCom

bacteria by HS-SPME-GC-MS. Previously, various combinations

(dual, triple, and quadruple mixes) were tested by supplementing

the core strains HRS1 and HRS2 with HRS3 and/or HRS4, and the

complete combination of all four strains (HRS1 + HRS2 + HRS3 +

HRS4) most effectively suppressed disease development (Lee et al.,

2021). Based on this, we analyzed the volatiles emitted by single

strains or various combinations in which HRS1 and HRS2 were

supplemented with HRS3 and/or HRS4 (Figure 4). We selected

major compounds that were detected only in the SynCom

treatment, with a match quality >90% and a peak area >1%, and

were not detected in the control. 1-Butanol, 3-methyl-, Octyl

chloroformate, (S)-(+)-6-Methyl-1-octanol, 1-Nonanol, and

Cyclodecane were detected in SynCom (Supplementary Table 2,
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Supplementary Figure 2). Among five major candidates, the full

SynCom (HRS1 + HRS2 + HRS3 + HRS4) treatment resulted in the

production of the volatile compound 1-nonanol, with a 90%

matching quality of its mass spectrum in the MS library, at levels

higher than those produced in other treatments (i.e., individual or

other combinatorial inoculations) (Figure 4). The volatile

compound 1-nonanol was also detected in the HRS4 and HRS1 +

2+4 treatments, but its abundance in the SynCom treatment was

5.1- and 13.8-fold higher, respectively, at 13.6 min (Figure 4). Since

the four bacterial strains were more effective in protecting pepper

plants from aphids and Xav when used altogether than when used

individually, we hypothesized that 1-nonanol generated by SynCom

might be a key factor in reducing plant diseases.

To investigate the active concentration of 1-nonanol for controlling

aphid infestation, we applied serially diluted concentration of 1-nonanol

(1 mM, 100 mM, 10 mM, and 1 mM) to the pepper root system

(Figure 5A). Drench application of 1 mM 1-nonanol significantly

decreased the aphid population on pepper plants by 26.1%, 34.5%,

45.1%, 48.3%, and 38.9% at 3, 4, 5, 6, and 7 days post-inoculation,

respectively compared with the negative control (Figure 5A). Significant

reduction in aphid populations was also observed in the SynCom or

BTH treatment at 4, 5, 6, and 7 days post-inoculation.

To investigate whether the SynCom-derived 1-nonanol

activates defense signaling in pepper, we analyzed the expression
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Chromatographic profiling of volatile organic compounds (VOCs) produced by Gram-positive bacteria. GC-MS of VOCs released by Gram-positive
bacteria,either individually or in different combinations. The TSA medium was inoculated with bacterial suspensions in 20-mL SPME vials and
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patterns of defense-related marker genes involved in SA and JA

signaling in pepper leaves at 24 hours post-inoculation (Figure 5B).

Compared with the negative control, treatment with SynCom and

BTH upregulated the expression of SA signaling marker gene

CaPR1 by 2.52-fold, 2.09-fold, respectively. Treatment with 1 mM

1-nonanol and BTH upregulated the expression of SA signaling

marker gene CaPR1 by 2.10-fold, compared with the negative

control. SynCom treatment activated the expression of the JA

biosynthesis gene CaLOX by 2.74-fold compared to the control,

but did not affect the expression of the JA responsive gene CaPIN2.

However, except for SynCom, the expression of the JA marker genes

CaLOX and CaPIN2 did not up-regulated in any 1-nonanol

treatments compared to negative control (Figure 5B). Meanwhile,

unlike BTH, exogenous 1-nonanol treatment did not result in a

growth penalty in pepper (Supplementary Figure 3). Taken

together, these results suggest that the SynCom can activate SA-

dependent induced resistance in pepper plants against aphids

through the de novo synthesis of 1-nonanol.
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4 Discussion

Rhizosphere microbiota benefit plants by enhancing their

abiotic and biotic stress tolerance. While studies have explored

the interactions among beneficial microbiota, the production of

unique plant-protective determinants by these microbiota remains

largely unknown. Here, we demonstrate that a Gram-positive

SynCom and its de novo synthesized metabolite, 1-nonanol,

protects pepper plants from aphid infestation under greenhouse

and field conditions. The SynCom showed higher biocontrol

activity against aphids and Xav compared with individual

bacterial inoculations. We found that the volatile compound 1-

nonanol, produced by the combination of all four Gram-positive

positive bacteria (SynCom), reduced aphid infestation in pepper

plants, demonstrating how this specific bacterial combination

produces a unique metabolite to enhance plant defense.

Previously, the SynCom exhibited priming effects against

Ralstonia pseudosolanacearum SL341, which causes bacterial wilt
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Exogenous 1-nonanol treatment protected pepper plants from aphid infestation. (A) Effect of 1-nonanol on aphid population size. The root system
of pepper plants (n = 5) was drenched with 10 mL of 1-nonanol at different concentrations (1 mM, 100 mM, 10 mM, and 1 mM). The number of aphids
on the aerial parts of pepper plants was counted at 3, 4, 5, 6, and 7 days post-inoculation. Comparison of treatments at different time points (Day 3
to Day 7) was performed using repeated measures ANOVA, with Group and Time as between-subjects and within-subjects factors, respectively,
followed by Tukey’s honestly significant difference (HSD) post-hoc tests for pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001). The
experiment was repeated three times with similar results. (B) Relative expression levels of salicylic acid signaling marker gene (CaPR) and jasmonic
acid signaling marker gene (CaLOX and CaPIN2) in the leaves of pepper plants treated with 1-nonanol at 24 hour post-inoculation with aphids. Data
represent mean ± SEM. Different letters indicate significant differences between treatments (P < 0.05; LSD). SynCom, mixture of HRS1, HRS2, HRS3,
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disease in tomato (Lee et al., 2021). Consistent with this finding,

when applied as a biocontrol agent in pepper, another Solanaceae

crop, the SynCom exhibited strong disease control activity against

aphids under both indoor and field conditions (Figures 1, 2). In

alignment with previous data, the application of all four Gram-

positive bacteria (SynCom) resulted in the highest biocontrol

activity compared with individual bacterium inoculations and

control (Figure 2, Lee et al., 2021). Similar to resistance against

aphids, the SynCom treatment also protected pepper plants against

the semibiotrophic bacterial pathogen Xav (Figure 2B). Since the

SynCom treatment primed SA- and JA-dependent induced

resistance against R. pseudosolanacearum in tomato and aphid in

pepper plant (Lee et al., 2021, Figure 1D), it is likely that the induced

resistance triggered by the SynCom used in this study shares

similarities with that induced against other phytopthogens and

herbivores, including the sucking insect-pest aphid, Xav, and R.

pseudosolanacearum (Walling, 2000; Kaloshian and Walling, 2005;

Pieterse et al., 2009; Lee et al., 2012, 2021). In comparison with

immune chemical triggers such as BTH, which can lead to

excessive immune activation and growth penalties in plants, the

SynCom not only enhanced disease resistance but also increased

pepper fruit yield, suggesting that SynCom can systemically elicit

induced resistance without growth penalties (Figures 1, 2;

Supplementary Figure 1).

Induced resistance triggered by SynCom may be a result of the

production of 1-nonanol, which protects pepper plants against

aphid infestation without any growth penalties (Figures 2, 4, 5,

Supplementary Figure 3). Exogenous 1-nonanol application can

systemically activate the expression of genes involved in defense

phytohormone (JA and SA) signaling as well as oxidative stress

responses in Arabidopsis and cotton plants (Gamboa-Becerra et al.,

2022; Parmagnani et al., 2023; Ni et al., 2024). Consistently,

treatment with either the SynCom or exogenous 1-nonanol

activated the expression of SA signaling genes in pepper leaves

following infestation by the sucking insect aphid (Figures 1D, 5B),

suggesting that SynCom-derived 1-nonanol is a key metabolite that

elicits SA-dependent immunity against aphids in pepper.

Interestingly, only SynCom treatment, not exogenous 1-nonanol

alone, induced the expression of the JA biosynthetic gene CaLOX

(Figure 1D). These indicates that in addition to 1-nonaol, SynCom-

derived other metabolites might contribute to the activation of a

more complex plant immunity against not only sucking insect but

also broad spectrum of phytopathogens (Lee et al., 2021, Figure 2).

Thus, while 1-nonanol serves as a key metabolite, the SynCom

might activate a more complex plant immunity against broad-

spectrum phytopathogens and insect pests through the combined

effect of multiple metabolite(s). Traditionally, a bottom-up

approach has been used to construct a plant-protective SynCom,

in which the microbial characteristics of random combinations of

isolated bacteria are investigated via in vitro tests, including

enzymatic activity and metabolite production assays (Marıń et al.,

2021; Martins et al., 2023). However, the SynCom constructed using

the bottom-up approach exhibits unstable activity in field

conditions, possibly because of the complexity of microbial

interactions within natural communities. A multispecies
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combination does not always result in additive or synergistic

effects, and the presence or absence of specific taxa is crucial for

determining the activity of the SynCom (Sanchez-Gorostiaga et al.,

2019; Marıń et al., 2021). The SynCom used in this study was

constructed using a top-down approach, based on the microbiome

analysis of natural rhizosphere soil (Lee et al., 2021). Among the

members of our SynCom, HRS1 and HRS2 play key roles in

activating plant immunity; however, the full activation of induced

resistance against bacterial wilt disease requires the support of

minor helper strains including HRS3 and HRS4 (Lee et al., 2021).

Consistently, in this study, the complete SynCom combination

(HRS1 + HRS2 + HRS3 + HRS4) showed maximum disease

control activity against aphids and Xav in pepper plants even

under field conditions (Figures 1, 2). Interestingly, the emission of

1-nonanol was significantly higher in the SynCom treatment than

in individual or partial combination treatments lacking HRS3 and/

or HRS4 (i.e., dual or triple combinations), suggesting that minor

helper strains such as HRS3 and HRS4 play a crucial role in volatile

compound biosynthesis through microbial interactions within the

SynCom (Figure 4). These results demonstrate that specific

microbial combinations can maximize the production of unique

metabolites, offering new evidence for microbial interdependency

and syntrophic interaction (Zengler and Zaramela, 2018; Kost et al.,

2023; Lee et al., 2024). Meanwhile, the 1-nonanol were also detected

in single inoculation of HRS4 and in partial combinations that

included HRS4, indicating that HRS4 strain is the key strain

responsible for 1-nonanol production. The ability of 1-nonanol

production has only been found in Gram-negative bacteria, such as

Pseudomonas aurantiaca and Erwinia amylovora, and not in Gram-

positive bacteria (Ni et al., 2022; Parmagnani et al., 2023).

Therefore, our findings represent the first report about 1-nonanol

emission from Gram-positive Bacillus luciferensis HRS4 and from a

Gram-positive bacterial SynCom.

For decades, various microorganisms have been used

individually as alternatives to synthetic pesticides. However their

activity has mostly declined under field conditions, because the lack

of consideration for interactions within microbial communities in

nature (Lee et al., 2021; Martins et al., 2023; Lee et al., 2024). In this

study, using the top-down approach, a specific combination of four

Gram-positive bacteria was constructed, which demonstrated

effective biocontrol activity in pepper plants not only in the

greenhouse but also in the field. A specific combination of

bacterial species in the SynCom can lead to the production of

unique volatile compounds, in amounts greater than those

produced by monocultures, to support plant health and growth.

This finding provides new insights for the development of future

biocontrol agents. However, further research is needed to address the

following: (1) benefits provided by 1-nonanol to the SynCom in the

field; (2) the mechanism of 1-nonanol-induced plant immune

signaling against diverse phytopathogens and herbivores; and (3)

how the SynCom-derived 1-nonanol influences native microbial

communities under natural conditions. Further investigation using

soil and leaf microbiome profiling could help evaluate the

colonization capacity of SynCom members and their impact on

native microbial communities. In addition, plant metabolomic
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analyses, including volatile profiling, may offer deeper insights into

the immune responses activated by SynCom or 1-nonanol

treatment. Although previous studies have shown that the absence

of SynCom increases plant disease susceptibility, the causes of

SynCom dysbiosis remain unknown (Lee et al., 2021). Preventing

the dysbiosis of protective microbiota or applying their active

metabolites is essential for advancing biological control strategies

(Chen et al., 2020; Lee et al., 2021; Arnault et al., 2023). Future efforts

should focus on increasing the abundance of protective SynCom

using probiotics or utilizing SynCom-derived metabolites, such as 1-

nonanol, as postbiotics for agricultural applications.
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(2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A.
100, 4927–4932. doi: 10.1073/pnas.0730845100
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