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Exogenous acetylsalicylic acid
mitigates cold stress in common
bean seedlings by enhancing
antioxidant defense and
photosynthetic efficiency
Barkat Ali 1, Sujon Kumar2, Xiyu Sui1, Jianpo Niu1, Junqi Yang1,
Mengni Zheng1, Yi Tang1 and Huanxiu Li1*

1College of Horticulture, Sichuan Agricultural University, Chengdu, China, 2Triticeae Research
Institute, Sichuan Agricultural University, Chengdu, China
Cold stress severely limits the growth and productivity of common bean (Phaseolus

vulgaris L.) seedlings, particularly during early development. Exogenous application

of acetylsalicylic acid (ASA) has proven to be an effective strategy for enhancing cold

tolerance. This study investigates the usefulness of exogenous ASA in enhancing

cold tolerance in common bean seedlings exposed to cold stress of 5°C for 12 and

24 hours, along with a control (0h). ASA treatments (1 mM and 2 mM) significantly

improved critical physiological and biochemical parameters, including

photosynthesis, chlorophyll and carotenoid concentrations, oxidative stress

markers, malondialdehyde, electrical conductivity, total soluble proteins (MDA, EC,

SP), and antioxidant enzyme activity. Under cold stress, ASA2 constantly

outperformed the other treatments. Following a 12-hour period, ASA2 showed

increased chlorophyll concentrations (8.88%) and augmented Chl a levels (21.25%),

alongside reducing MDA by 24.96% and SP by 67.1%. After 24 h, ASA2 demonstrated

a slight increase in chlorophyll (4.26%) and raised Chl a (25.33%), with a significant

reduction inMDA (16.5%) and SP (68.3%). ASA1 showed enhancements, mainly inChl

b (39.89% at 12 h) and antioxidant enzymes, with notable increases in SOD (113.17%

at 12 h) and POD (110.98% at 12 h). Correlation studies indicated significant positive

relationships between antioxidant enzyme activity such as, superoxide dismutase,

catalase, peroxidase, ascorbate peroxidase (SOD, CAT, POD, and APX) and

photosynthetic efficiency. Principal component analysis (PCA) identified ASA2 as

the most effective treatment for enhancing stress resilience, accounting for the

largest variance in membrane integrity and reduction of oxidative stress. Network

analysis further confirmed that ASA2 strengthened the connections between

photosynthesis and antioxidant activity, with more resilient and interconnected

nodes indicating improved stress adaptability. At 2 mM, ASA upregulated

antioxidant genes (APX1, POD1, SODC) and photosynthesis genes (RbcS1, PsbS,

POR), reducing cold-induced oxidative stress and preserving chloroplast function,

thereby enhancing cold tolerance and crop resilience under climate stress.
KEYWORDS

common bean, cold stress, acetylsalicylic acid, physiochemical activity,
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Introduction

The common bean (Phaseolus vulgaris L.) is a nutritionally rich

legume (Bitocchi et al., 2012; Hiz et al., 2014), containing high levels

of protein, dietary fiber, complex carbohydrates, essential vitamins,

minerals, and phytochemicals with antioxidant properties

(Rodriguez Madrera et al., 2021; Yang et al., 2023; Zhang et al.,

2023b). Since the mid-20th century, climate change has become a

global issue, significantly impacting in the agriculture (Toth et al.,

2021). Abiotic stressors increasingly threaten crop yields,

potentially reducing global agricultural output (Hirayama and

Shinozaki, 2010; Rhaman et al., 2021). Cold stress, in particular,

poses severe challenges by hindering plant growth, development,

and photosynthesis (Liu et al., 2019).

In common beans, these abiotic stress effects are amplified:

photosynthetic efficiency declines 70% compared to maize and

tomatoes under cold-stress, while membrane damage is 2–3 times

more severe (Sánchez-Reinoso et al., 2018; Mombeni and Abbasi,

2019; Naeem et al., 2020; Iqbal, 2023; Qiao et al., 2024). Common

beans are highly vulnerable to low temperatures, with cold injury

occurring within 0 to 15°C range (Luo Tong et al., 2005; Miura and

Furumoto, 2013; Lv et al., 2023a, Lv et al., 2023a). Symptoms of cold

stress include visible signs such as chlorophyll loss, wilting,

chlorosis, and necrosis (Bracale and Coraggio, 2003; Saibo et al.,

2009). These symptoms transform to catastrophic yield losses after

48 to 72 hours at 10°C, a stress duration that causes only moderate

damage in other vegetables (Liu et al., 2019; Vargas et al., 2021; Xue

et al., 2023). Prolonged exposure to cold can gradually alter cell

structure, reduce photosynthetic efficiency, and increase the

production of reactive oxygen species (ROS), exacerbating

damage to plant tissues (Allen and Ort, 2001; Thomashow, 2001;

Lv et al., 2023a). Plants have developed mechanisms that primarily

involve activating antioxidant systems to neutralize the harmful

effects of ROS. Enzymes like CAT, POD, SOD, and APX help

maintain cellular homeostasis by eliminating ROS and protecting

cell membranes from oxidative stress (Miura and Furumoto, 2013;

Das and Roychoudhury, 2014).

Recent research increasingly highlights the role of plant growth

regulators (PGRs), as salicylic acid (SA) in enhancing plant stress

tolerance (Gautam and Singh, 2009; AbdElgawad et al., 2016;

Tabassum et al., 2017). These substances, including SA and

osmoprotectants, safeguard cell membranes and the photosynthetic

system against environmental damage (Foyer and Noctor, 2003). The

phenolic compound SA is well-known for its ability to regulate plant

growth and development while boosting resistance to both abiotic

and biotic stresses (Khan et al., 2003, Tariq Khan et al., 2012). SA

enhances plant resilience to environmental stress, facilitating essential

processes such as photosynthesis, proline metabolism, and ROS

scavenging (Khan et al., 2003; Saleh et al., 2007; Simaei et al., 2012;

Miura and Tada, 2014; Ruelland, 2017). Acetylsalicylic acid (ASA),

commonly known as aspirin, has a similar molecular structure to SA

and has been extensively studied in plant biology for its mechanisms

in mitigating stress (Senaratna et al., 2000; Canakci and Munzuroğlu,

2007; Soliman et al., 2018a).
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ASA improves plant tolerance to cold stress by upregulating

antioxidant enzymes (SOD, CAT, APX) through NPR1-dependent

and -independent pathways, reducing H2O2 accumulation by 40%

to 60% within 24 h (Daneshmand et al., 2010b; Miura and Tada,

2014; Soliman et al., 2018a). ASA maintains membrane integrity by

enhancing phospholipidogenesis and inhibiting lipid peroxidation,

as evidenced by a 30% to 50% reduction in Malondialdehyde

(MDA) levels compared to untreated plants (Samadi et al., 2019;

Li et al., 2022). ASA activates the CBF/DREB1 cascade, leading to a

2-3-fold increase in proline accumulation and enhanced synthesis

of cryoprotectants (Kabiri and Naghizadeh, 2015; Soliman et al.,

2018a), while stabilizing photosystem II through HSP70 induction,

reducing the decrease in Fv/Fm under cold conditions by 35-45%

(Soliman et al., 2018a). In tomato, SA activated PSII protection

mechanisms mediated by EIN3-like proteins involving HSP21 and

ascorbic acid (Zhang et al., 2023a; Sperdouli et al., 2024). The effects

of ASA on cold stress resistance are similar to those of other plant

growth regulators, such as jasmonic acid (JA) and abscisic acid

(ABA). JA and ABA are recognized for their regulation of stress

response genes and modulation of antioxidant defense mechanisms

(de Ollas and Dodd, 2016; Yoon et al., 2020; Margay et al., 2024).

ASA exhibits a unique mechanism of action, especially in its ability

to simultaneously regulate photosynthetic efficiency and

antioxidant pathways. The roles of JA and ABA in regulating

stress-induced gene expression and stomatal control have been

extensively studied (de Ollas and Dodd, 2016; Li et al., 2024),

while the effects of ASA on photosynthesis under cold stress have

received relatively little attention. This study highlights the dual

function of ASA: protecting the photosynthetic system and

enhancing antioxidant defense mechanisms. Despite these

protective effects of ASA, its tissue-specific metabolism in cold-

sensitive crops such as common beans is still not well understood

and requires further investigation.

Compared to traditional osmoprotectants that require high

concentrations (10–100 mM) (Hayat et al., 2012), ASA is effective

at relieving stress at minimal concentrations (1–2 mM) due to its

stable acetyl group and rapid absorption (Daneshmand et al., 2010a;

Kabiri and Naghizadeh, 2015; Soliman et al., 2018a; Matysiak et al.,

2020). Empirical evidence suggests that SA increases survival by 20–

30% compared to SA alone, which is attributed to its triple

mechanism: direct scavenging of ROS (Saleem et al., 2021),

membrane stabilization (Moussa and Abdel-Aziz, 2008), and

activation of stress genes after hydrolysis to SA (Miura and Tada,

2014). The rapid conversion of ASA can be cleverly combined with

cold waves, providing effective protection for high-value legumes,

which cannot be met by bulky protectants. Despite its high cost, its

low dosage and broad-spectrum efficacy make it a promising cold

protection agent in the agricultural field.

Therefore, this study aimed to evaluate the effects of exogenous

ASA on improving the tolerance of common bean seedlings to cold

stress. This study focused on the effects of ASA on antioxidant

enzyme activities, membrane integrity, photosynthetic efficiency,

and physiological parameters under cold stress conditions. The aim

was to explore whether the application of ASA could alleviate cold
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stress damage and enhance plant resistance, thereby providing a

practical method to ensure crop yield under climate change.
Materials and methods

Plant materials

The present study was conducted in a controlled growth

chamber at the College of Horticulture, Sichuan Agricultural

University, Chengdu, China. The cold-sensitive common bean

(Phaseolus vulgaris L.) cultivar ‘Bai-Bulao’ was used, obtained

from the Department of Horticulture, Olericulture Section. The

controlled environment allowed precise regulation of growth

conditions to assess the physiological effects of exogenous ASA on

common bean seedlings under cold stress.
Procedure for preparing and sowing seeds

Common bean seeds were soaked in water for 24 hours to

facilitate maximum growth. After swelling, the seeds were

positioned on Petri dishes lined with damp filter paper to

promote germination. Upon reaching a length of roughly 0.5 cm,

the white root tips were sown into 32-hole plug trays containing a

substrate mixture of peat, vermiculite, and perlite in a 2:1:1 ratio.

The trays were subsequently positioned in a growth chamber

regulated at 25°C, subjected to a 12-hour light-dark cycle with a

light intensity of 30,000 lx. Irrigation was conducted every 48 hours

after seedling emergence to promote optimal growth.
Procedure for preparing and applying ASA

Crystals of ASA with a purity of 99.5% (KESHI Company,

China) were used in this experiment. Two concentrations (1 mM, 2

mM) of ASA were prepared along with a control group (ASA0),

according to the methods of (Soliman et al., 2018a; Wang et al.,

2022). For these concentrations the pH was adjusted to 4.5–5 using

0.05 M NaOH and 0.05 M HCl. The experiment was conducted

under three different conditions 0, 12 and 24 hours. Once the

seedlings reached the stage of having two leaves and one heart stage,

the ASA solutions (1 mM, 2 mM) were applied to the leaves using a

hand sprayer. Every seedling was drenched until individual droplets

started to run off. The seedlings in the non-ASA control group

(ASA0) were treated only with distilled water. Triple replications

were conducted for each treatment, including the control, under all

three conditions normal growth and cold stress of 12 and 24 hours.
Treatment with cold stress and sample
collection

Twenty-four hours following ASA treatment, the seedlings were

exposed to cold stress at a temperature of 5°C for different periods of
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time (12 and 24 hours). The control groups were sustained at ambient

temperature without exposure to cold stress (ASAO). In a completely

randomized design (CRD), treatments were organized with three

replicates per condition. Biochemical and physiological analysis were

conducted on fresh samples obtained from the normal growth

seedlings (0h) and at 12 and 24 hours of cold stress. Additional

samples were preserved at -80°C for subsequent investigations.
Measurement of physiochemical
parameters

Photosynthetic indices

Photosynthesis is the process in which plants convert light

energy into chemical energy, producing glucose and oxygen from

CO2 and water. Crucial parameters comprise Pn, Gs, Ci, Tr and

chlorophyll content (Chl, Chl a, Chl b), which reflect CO2 fixation,

gas exchange, and light absorption. During stress, photosynthesis is

frequently diminished owing to abridged enzyme activity and

pigment injury. Evaluating these parameters supports in

measuring stress influences and the efficiency of treatments like

ASA in sustaining photosynthetic effectiveness. Photosynthesis (Pn)

and associated gas exchange parameters (Pn, Gs, Ci, Tr) were

quantified using the (LI-6400XT, Lincoln, NE, USA). Only

seedlings exhibiting consistent development and intact leaves

were chosen for assessment as given by (Anwar et al., 2018).
Chlorophyll estimation

Chlorophyll is accountable for light absorption in

photosynthesis, which reflects the plants photosynthetic

capability. Chlorophyll quantification was performed by preparing

a 95% ethanol solution and pouring it into 10 ml tubes. Each tube

contained approximately 0.20 g of vein-free leaf samples, which

were then stored in the absence of light for around 16 hours until

the samples turned bright white. Following that, 300 microliters of

each tube ’s solution were moved to an enzyme-linked

immunosorbent assay (ELISA) plate and looked at with a

spectrophotometer at 470, 649, and 665 nm. The following

formulas was used to quantify chlorophyll as given by (Arnon,

1949).

Chl   a   content   (
mg
g

)

= (13:95OD665 − 6:88OD649)� V=(W � 1000)

Chl   b   content   (
mg
g

) = (24:96OD649 − 7:320D665)� V
W � 1000

Cx : c = (10000D470 − 2:05Ca − 114Cb)� V=(245�W � 1000)

Whereas Chl a and Chl b are the concentrations of chlorophyll a

and b, respectively and Cx.c is the total concentrations

of carotenoids
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Assessment of membrane integrity and
lipid peroxidation

The effects of cold on membrane integrity and lipid

peroxidation were assessed by measuring relative conductivity

and MDA levels. Relative conductivity indicates ion leakage and

membrane integrity under stress. A leaf disk weighing 0.20 g was

immersed in 10 ml of deionized water and the initial electrical

conductivity (EC a) was measured. After heating the tubes at 100°C

for 30 min, the final electrical conductivity (EC b) was assessed.

Electrolyte leakage (EL) was determined as a percentage using the

formula established by: (Jan et al., 2018).

Electrolyte   leakage =  
(ECb − ECa)

ECC
� 100

The variables EC a, EC b, and EC c denote the initial

conductivity, conductivity after water bath, and total

conductivity, respectively.

MDA is an indicator of lipid peroxidation and membrane

damage and is measured to assess oxidative stress. For MDA

assay, 1 ml of enzyme extract was mixed with 0.65%

thiobarbituric acid (TBA) in 20% trichloroacetic acid (TCA)

solution. The solution was heated in a 100°C water bath for

20 minutes, then cooled and centrifuged at 10,000×g for 20 min.

Quantify the absorbance at 532 nm, 600 nm, and 450 nm and

determine the MDA concentration according to the following

formula: (Tiwari et al., 2010).

MDA   μmol=gFW =
(C  �  V  �   10 − 3)

W

C   ( μmol=L) = 6:45    �(OD532 − OD600 − 0:56  �  OD450

Whereas V is the total volume of extract solution (ml); C is the

concentration of MDA and W is the fresh weight (g).
Total soluble proteins

Total soluble proteins (SP) display firmness and metabolic

activity during stress. The Coomassie Brilliant Blue G-250

staining technique was employed to quantitatively identify soluble

proteins. A volume of 100 μl of the supernatant was combined with

3 ml of Coomassie reagent and allowed to incubate for a duration of

2 min. The absorbance was then measured at a wavelength of 595

nm. The G-250 reagent was synthesized by dissolving 100 mg of G-

250 in 50 ml of 90% ethanol, followed by the addition of 100 ml of

85% phosphoric acid. The total volume was then adjusted to 1000

ml. The following formula was used to quantify total soluble

proteins as given by (Arora and Wisniewski, 1994).

Y   pro   ( μ g) = 143:45OD + 3:6   (raw)   0r   143:56OD + 1:28(park)

Protein   content = (
mg
gFW

) = (3� Y � V)=5� 1000� a�W
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Where Y-reticle value μg; V is total volume of enzyme solution

= 3ml; a = 0.1ml; W = 0.2g.
Antioxidant enzymes estimation

To evaluate the activities of superoxide dismutase (SOD),

peroxidase (POD), catalase (CAT), and ascorbate peroxidase

(APX), 0.2 g of fresh plant samples were homogenized in 1 ml of

ice-cold phosphate buffer (0.05 M, pH 7.8). The mixture was

washed with an additional 1 ml of buffer, transferred to a

centrifuge tube, and adjusted to a final volume of 5 ml with

buffer. The homogenate was centrifuged at 3,000 rpm for 20 min

at 0–4°C, and the supernatant was stored at 4°C for future

enzyme testing.

SOD activity was measured by evaluating its ability to hinder

the photochemical reduction of nitro blue tetrazolium (NBT). A

reaction mixture was produced consisting of 0.3 ml 0.75mM NBT,

0.3ml 130mM methionine, 0.3ml 0.02mM riboflavin, 0.3ml 0.1mM

EDTA-Na2 and 0.25ml distilled water pH 7.8. 30 μl of enzyme

extract were added to 3 ml of this mixture. The mixture was placed

under fluorescent light at 4,000 lux for 30 min, while control

samples were kept in the dark. Absorbance was quantified at

560 nm, and SOD activity was determined using the formula

established by: (Beauchamp and Fridovich, 1971).

Total   SOD   activity( μ =g   FW)

= ½(Ack − AE)� � V �=(0:5Ack�W � Vt)

Whereas Ack is the absorbance of the light control tube; AE is the

absorbance of the sample tube; V is the total volume of the sample

solution; Vt is the sample dosage (ml) at the time of determination

and W is the sample weight at the time of measurement.

POD activity was assessed using guaiacol as a substrate. The

reaction mixture consisted of 0.1 M phosphate buffer (pH 6.0), 28 ml
guaiacol, and 19 ml 30% H2O2. To 3 ml of this mixture, 100 μl of

enzyme extract was added. The absorbance at 470 nm was recorded

at 30 s intervals over 3 min, and POD activity was determined using

the method established by: (Quintanilla-Guerrero et al., 2008;

Muñoz-Muñoz et al., 2009).

Total   activity   of   POD(DOD470m − 1g − 1FW)

= (DOD� V)=(a�W � t)

Whereas V = 5ml; a = 0.1ml; W = 0.2g and t = 0.5 min

CAT activity was assessed by observing the decomposition of

H2O2 at a wavelength of 240 nm. Prepare a reaction mixture

containing 0.1M phosphate buffer (pH 7.0) and 5 ml of 0.1M

H2O2. To 3 ml of this mixture, 100 μl of enzyme extract was added.

Absorbance was measured at 0, 1, 2, and 3 min, and catalase activity

was determined using the formula established by: (Aebi, 1984).

CAT   total   activity   (DOD240min − 1g − 1FW)

= (DOD240� V)=(a�W � t)
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Whereas V = 5ml; a = 0.1ml and W = 0.2g.

APX activity was assessed by quantifying the oxidation of

ascorbic acid at 290 nm. Prepare a reaction mixture using 122 ml

of mother liquor A (Na2HPO4·12H2O), 78 ml of mother liquor B

(NaH2 PO4 ·2H2O), 56.8 ml of H2O2 and 0.0352 g of ascorbic acid.

To 3 ml of this mixture, 100 μl of enzyme extract was added. The

absorbance at 290 nm was recorded at 30 s intervals over 3 min, and

APX activity was determined using the formula established by:

(Nakano and Asada, 1981).

APX   total   activity = ½Da290� VT�=(W � Vs� 0:1� t)( μ g − 1)

DA290 is the change of absorbance; W is the fresh weight of the

sample (0.2g); t is the reaction time (min); Vt is the total volume of

enzyme solution (5ml) and Vs is the volume of the enzyme solution

taken during the measurement (0.1ml).
Expression of gene related to cold stress

RNA extraction and RT-qPCR
Total RNA was extracted from the leaves of each treatment

group using the RaPure Total RNA Plus Kit (Guangzhou Meiji

Biotechnology Co., Ltd., China; http://www.magentec.com.cn),

according to the manufacturer’s instructions. RNA concentration

was measured using a Nano-Drop 2000 spectrophotometer

(Thermo Fisher Scientific, Wilmington, DE, USA). First-strand

cDNA synthesis was performed using the PrimeScript™ RT

Reagent Kit with the gDNA Eraser (TaKaRa, Maebashi, Japan),

following the manufacturers protocol. Gene-specific primers were

designed using Primer Premier 5. Quantitative reverse transcription

polymerase chain reaction (RT-qPCR) was conducted using the

iScience SYBR Green I qPCR Mix on a CFX96 Real-Time PCR

System (Bio-Rad, Hercules, CA, USA). b-Actin was employed as the

reference gene for normalization, and relative gene expression levels

were calculated using the 2^−DDCT method (Livak and Schmittgen,

2001). Expression differences in response to various ASA

treatments were analyzed using R software (version 4.4.0).

RT-qPCR was performed with three independent technical

replicates and three biological replicates. The specific primer

sequences for the 14 target genes are provided in Supplementary

Table S2.
Statistical analysis

Statistical analyses of photosynthetic and biochemical

parameters were performed using R software (version 4.4.0) for

Windows. A two-way analysis of variance (ANOVA) followed by

the least significant difference (LSD) test was employed to assess

significant differences among treatment means at a 95% confidence

level (P ≤ 0.05). Results are presented as mean ± standard error (SE)

based on three independent biological replicates.
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Results

Following cold stress, we observed variations in plant

phenotypes between the treated and untreated seedlings

(Figure 1a). The control plants thrived, and ASA facilitated the

growth of bean seedlings at the normal temperature. The plants

exhibited considerable wilting, possessed pliable petioles, and

displayed twisted and desiccated leaves. Seedlings treated with

ASA exhibited milder symptoms under cold stress, characterized

by minor dehydration of the leaves and slight wilting at the edges.
Acetylsalicylic acid enhanced
photosynthetic parameters

Photosynthesis is an important process in plants because it

generates the energy needed for growth, development, and stress

response. Under stress conditions such as cold stress,

photosynthetic efficiency is often reduced, limiting the plant’s

ability to absorb carbon and manage water. Therefore,

understanding the effects of treatments like acetylsalicylic acid

(ASA) on photosynthesis during stress is critical to enhance plant

resilience and efficacy.

After cold stress, the photosynthetic parameters (Pn, Gs, Ci and

Tr) of ASA-treated bean seedlings changed significantly, as shown in

Figure 2. Under standard growth conditions (Figure 2a),

photosynthetic parameters changed significantly among ASA0, ASA1

and ASA2. The Pn, Gs, Ci, and Tr values of ASA0 were significantly

high compared with ASA1 and ASA2. ASA1 exhibits the lowest values

on all parameters, while ASA2 exhibits superior performance

compared to ASA1, but is still inferior to ASA0. The results showed

that these treatments affected gas exchange and photosynthesis under

standard conditions, with the photosynthetic activity of ASA0 (control)

exceeding that of the ASA treatment (p < 0.05).

During cold stress, ASA treatment showed a significant increase

in photosynthetic efficiency. After 12 h of cold stress (Figure 2b), Pn

(119.05%), Gs (147.89%), Ci (113.14%), and Tr (133.33%) were

significantly increased in ASA2 compared with ASA0 (100%), while

ASA1 only showed a slight increase of 114.29% (p < 0.05). These

enhancements became evident after 24 h of cold stress (Figure 2c),

with significant increases (p < 0.05) in Pn (146.90%), Gs (152.63%),

Ci (112.66%), and Tr (166.88%) of ASA2 compared to ASA0

(100%). ASA1 showed moderate enhancement in Pn (121.90%),

Gs (130.79%), Ci (106.73%), and Tr (124.91%) compared with

ASA0 (100%). While ASA1 showed some improvements in

photosynthesis metrics, these improvements were significantly

less pronounced than ASA2. The results clearly showed that 2

mM ASA was superior to ASA1 and ASA0 in alleviating cold stress

and improving gas exchange efficiency (Supplementary Table S1a).
ASA shielded chlorophyll under cold stress

Chlorophyll is the green pigment found in plants and is

essential for photosynthesis because it captures light energy and
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converts it into chemical energy. This process is crucial to the

development and sustainability of the plant. Carotenoids are a

unique class of pigments that promote light absorption and

provide protection against oxidative damage, especially under

stressful conditions such as cold stress. Maintaining chlorophyll

and carotenoid levels during stress is crucial in maintaining plant

health and resilience. This study evaluated the effects of ASA0,

ASA1 and ASA2 treatments on chlorophyll and carotenoid levels

under standard growth conditions (0 h) and during 12 and 24 h

cold stress. Our results demonstrated the impact of these treatments

on chlorophyll concentrations and their potential to improve

recovery under cold stress.

Under standard growth conditions, both ASA1 and ASA2

treatments significantly increased chlorophyll and carotenoid

concentrations compared to the control (ASA0). ASA2 specifically
Frontiers in Plant Science 06
increased total chlorophyll by 20.21% and total carotenoids by

33.33%, while ASA1 increased Chl b by 19.70% and Chl a by

20.48% as shown in Figure 3 (p < 0.05). These findings suggest

that ASA treatment can have a positive effect on pigment production

even in the absence of stress. After 12 hours of cold stress, ASA2

showed a significant capacity to maintain chlorophyll content, with a

slight increase of 8.88% relative to ASA0. Furthermore, ASA2

preserved Chl a content with a significant increase of 21.25%

(Figure 3c). In contrast, the total chlorophyll content increased

significantly by 27.41% (p < 0.05) for ASA1 and 39.89% for Chl b

as shown in Figure 3a (p < 0.05). These findings highlight the efficacy

of ASA1 in rapidly increasing chlorophyll levels during initial cold

stress, but ASA2 excels in maintaining pigment stability. After 24 h of

cold stress, the effects of ASA1 and ASA2 diverge. ASA1 significantly

increased total chlorophyll by 31.01%, indicating a continued
frontiersin.or
FIGURE 1

Effect of exogenous ASA on the phenotype of common bean seedlings during 0, 12, and 24 hours of cold stress. Seedlings were treated with 0 mM
(ASA0), 1 mM (ASA1), and 2 mM (ASA2) acetylsalicylic acid and then exposed to cold stress (5 °C) for 0, 12, and 24 hours. Phenotypic differences were
visibly observed, with ASA-treated plants at 2 mM showing better tolerance, less wilting, and improved leaf turgor compared to the untreated
control (ASA0) under cold stress conditions.
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beneficial effect on chlorophyll synthesis under long-term cold stress

(Figure 3a). ASA2 moderately increased total chlorophyll by 4.26% (p

< 0.05) while effectively maintaining Chl a levels by 25.33%

(Figure 3c). Chl b of ASA1 significantly increased by 41.76% as

shown in Figure 3d (p < 0.05), thus enhancing its function of

increasing pigment content under long-term stress.

These findings emphasize the specific benefits of ASA1 and

ASA2 in increasing chlorophyll concentrations during cold stress.

ASA2 was characterized by a superior ability to maintain

chlorophyll and carotenoid levels during the first 12 h of cold

stress, but ASA1 showed a more pronounced ability to increase

chlorophyll content and Chl b after 24 h of cold stress. This suggests

that ASA1 may be superior at enhancing pigment synthesis over

long-term stress, but ASA2 is good at maintaining pigment integrity

under stress conditions. Both ASA treatments ultimately enhanced

resistance to cold stress by enhancing photosynthetic pigments,

indicating their potential use in enhancing plant tolerance to

environmental stress.
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ASA mitigated oxidative stress and
maintained membrane integrity

Oxidative stress in plants can significantly damage cellular

structures, leading to membrane damage, increased ion leakage,

and reduced protein levels. Malondialdehyde (MDA) is a major

indicator of oxidative stress and represents membrane lipid

peroxidation. Electrical conductivity (EC) indicates membrane

integrity, while soluble protein (SP) quantifies cellular protein

concentration, which is critical for stress response. Maintaining

membrane integrity and protein concentration is critical for

improving cold stress recovery.

Under standard growth conditions (0 h), ASA0 had the highest

levels of oxidative stress markers: EC, MDA, and SP, all established

at 100% of baseline values. ASA1 reduced MDA by 2.02% and SP by

70.2%; however, these reductions were relatively small (Figure 4). In

contrast, ASA2 showed the greatest reduction (p < 0.05) in both

MDA (39.23%) and SP (65.1%), indicating a stronger protection
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FIGURE 2

Effects of acetylsalicylic acid (ASA) on net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration
rate (Tr) in common bean under cold stress. Measurements were taken at normal conditions 0h (a), 12 h (b), and 24 h (c) of cold stress.
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against oxidative damage and a more significant increase in protein

content. ASA2 showed enhanced efficacy in attenuating oxidative

damage after 12 hours of cold stress. MDA levels were reduced by

24.96%, EC by 4.25%, and SP by 67.1% (p < 0.05), indicating the

ability of ASA2 to maintain membrane integrity and protein levels

under stress (Figure 4). In contrast, the effect of ASA1 was small,

with only a 1.6% reduction in MDA and a 3.14% reduction in SP,

neither of which reached statistical significance (p < 0.05),

indicating that the efficacy of ASA1 during early cold stress is

limited. After 24 h of cold stress, ASA2 showed superior

performance, reducing MDA by 16.5%, SP by 68.3%, and EC by

16.9% (p < 0.05), highlighting its ability to maintain cell function

during long-term cold stress (Figure 4). In contrast, ASA1 showed

the smallest decrease, with only SP showing a statistically significant

decrease (p < 0.05). These findings highlight the function of ASA2

in maintaining membrane integrity and protecting cellular proteins

during prolonged cold stress.

In conclusion, ASA2 showed a significantly enhanced ability to

reduce oxidative stress markers (MDA and EC) and maintain SP,

particularly under cold stress conditions. Although ASA1 was

advantageous, its effect was reduced, exclusively during prolonged

cold stress (24 h). The findings indicate that ASA2 is more effective

in enhancing cold stress tolerance by significantly reducing

oxidative damage and maintaining cell function, making it a
Frontiers in Plant Science 08
possible option for enhancing plant resistance under adverse

environmental conditions
ASA boosted antioxidant enzymes activity

Plants rely on antioxidant enzymes like SOD, POD, CAT, and

APX to mitigate oxidative damage during stress. These enzymes are

crucial for neutralizing ROS and protecting cellular components.

The ability of plants to initiate these responses is critical for survival

under adverse climatic conditions such as cold stress.

Under standard growth conditions, ASA2 significantly

increased the activities of all evaluated antioxidant enzymes.

Relative to the control treatment (ASA0), SOD activity increased

by 52.64%, POD by 188.98%, and CAT by 106.7% (Figures 5 a-c).

The observed results suggest that ASA2 is particularly effective in

enhancing antioxidant defense in non-stressful situations. ASA1

showed significant increases, especially in POD (83.98%) and CAT

(58.27%). Nonetheless, the APX activity of ASA2 was moderately

but significantly reduced (6.29%) compared with ASA0, suggesting

that there may be a trade-off in APX activity when other antioxidant

enzymes are enhanced. ASA2 showed enhanced antioxidant activity

after 12 h of cold stress. SOD increased by 30.96%, POD by

157.77%, and CAT by 118.49% (p < 0.05), all of which were
frontiersin.or
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FIGURE 3

Effects of acetylsalicylic acid (ASA) on (a) total chlorophyll (Chl), (b) total carotenoid concentration (Cx.c), (c) chlorophyll a (Chla), and (d) chlorophyll
b (Chlb) in common beans under cold stress. Measurements were taken under normal conditions (0 h), 12 h, and 24 h of cold stress.
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significantly higher than the levels recorded in ASA1. ASA1 showed

a more significant increase in SOD (113.17%) and POD (110.98%),

although the increase in CAT (55.74%) was smaller than that of

ASA2. Both treatments showed significant decreases in APX

activity, with ASA1 decreasing by 31.73% and ASA2 decreasing

by 37.03% (Table S1b), consistent with oxidative stress responses in

cold environments. ASA2 significantly enhanced antioxidant

enzyme activity after 24 h of exposure to cold. SOD increased by

51.06%, POD by 87.49%, and CAT by 7.8% (p < 0.05), indicating its

continued ability to enhance oxidative stress defense throughout the

stress process. In contrast, ASA1 showed a small enhancement in

SOD (18.84%) and POD (65.3%), along with a significant decrease

in CAT activity of 49.05% (p < 0.05). Notably, APX activity was

significantly enhanced by ASA2 by 31.88%, offsetting the decrease

noted previously for both treatments during the initial cold shock

(Figure 5d).

The results showed that ASA2 was significantly better than

ASA1 in enhancing antioxidant enzyme activity, particularly during

long-term cold stress. The increase in SOD, POD, and CAT

activities under normal and cold stress environments indicates

that ASA2 can effectively stimulate antioxidant defense. APX

activity was significantly enhanced (31.88%) after 24 h of cold

stress, emphasizing the ability of ASA2 to enhance overall oxidative

stress resistance. Although ASA1 can enhance antioxidant defense,
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it is not as effective as ASA2, especially under continuing cold stress.

The atypical trend in the data specifically, the first decrease in APX

activity followed by the resurgence of ASA2–24 h later suggests a

complex regulatory process that may require modulation of many

antioxidant pathways under stress conditions. ASA2 is a more

effective treatment for alleviating oxidative stress and promoting

cold stress tolerance, providing a feasible strategy to improve

plant resilience
Correlation between antioxidant enzymes
and photosynthesis

Correlation matrix demonstrates the effect of ASA treatment on

the balance between photosynthetic efficiency and oxidative

stress defense.

In the control (Figure 6a), photosynthetic parameters (Pn, Gs,

Tr) were positively correlated with photosynthetic pigments (Chl,

Chl a, Chl b), emphasizing their importance in photosynthesis.

Nonetheless, antioxidant enzymes (SOD, POD) were negatively

correlated with these parameters, indicating that oxidative stress

impedes photosynthesis. MDA and SP were negatively correlated,

highlighting the deleterious effects of oxidative stress. ASA1

increases photosynthetic efficiency, as evidenced by the strong
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FIGURE 4

Effects of acetylsalicylic acid (ASA) on (a) Malondialdehyde content (MDA), (b) electrical conductivity (EC) and (c) total soluble protein (SP) in
common bean under cold stress. Measurements were taken under normal conditions (0h), 12 h, and 24 h of cold stress.
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association with soluble protein (SP) and photosynthetic

parameters (Figure 6b). Antioxidant enzymes (SOD, CAT, and

APX) are positively correlated with pigments, indicating enhanced

oxidative defense capabilities. Nonetheless, oxidative stress still

exists because MDA and EC adversely affect photosynthesis.

ASA2 showed the most substantial association. Antioxidant

enzymes (SOD, POD, CAT, APX) and photosynthetic parameters

(Pn, Chl, Chl a, Chl b) showed significant positive correlations,

indicating that ASA2 has an excellent ability to enhance

photosynthesis and mitigate oxidative damage (Figure 6c). The

negative correlation between MDA and essential photosynthetic

parameters suggests that ASA2 can effectively alleviate

oxidative stress.

ASA2 is the most effective treatment for enhancing

photosynthesis and antioxidant defense while reducing oxidative

stress. ASA1 had certain advantages but could not completely

alleviate oxidative damage, while ASA0 showed obvious signs

of stress.
Principal component analysis

Principal component analysis was performed between all

physiochemical parameters for ASA0 (without ASA) and ASA

(ASA1 Mm and ASA2 Mm) treated seedlings under both normal
Frontiers in Plant Science 10
growth (0h) and cold stress of 12 and 24 hours (Figure 7). In the

control treatment, PC1 accounted for 62.99% of the variance,

indicating a strong negative correlation between MDA and EC,

indicating membrane instability and oxidative damage (Figure 7a).

Photosynthetic factors (Pn, Tr, Chl) had a favorable effect on PC1;

however, their effects were attenuated under stress, indicating

impaired photosynthetic performance in the absence of ASA. PC2

accounted for 17.46% of the variance and was related to antioxidant

enzymes (SOD, CAT, POD), but its effect was rather small.

Oxidative stress had a more pronounced effect on control plants,

resulting in significant deterioration in physiological performance.

In ASA1 (Figure 7b), PC1 accounted for 58.46% of the variance,

showing a strong positive correlation with antioxidant enzymes

(SOD, CAT, POD, APX) and photosynthetic parameters (Pn, Chl,

Chl a). This indicates that ASA1 significantly improves

photosynthetic efficiency and antioxidant defense. Negative

correlations with MDA and EC indicate reduced oxidative stress.

PC2 accounted for 21.01% of the variance, focusing on soluble

proteins and gas exchange, thus emphasizing the importance of

protein stability and gas exchange in the stress response. ASA1

enhances plant recovery by alleviating oxidative stress and

enhancing physiological functions. In ASA2 (Figure 7c), PC1

accounted for 53.66% of the variation and showed strong

connections with antioxidant enzymes (SOD, CAT, POD, APX)

and photosynthetic parameters (Pn, Chl, Chl a, Chl b). This suggests
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FIGURE 5

Effects of acetylsalicylic acid (ASA) on (a) superoxide dismutase (SOD), (b); peroxidase (POD), (c) catalase (CAT), and (d) ascorbate peroxidase (APX);
in common bean under cold stress. Measurements were taken under normal conditions (0h), 12 h, and 24 h of cold stress.
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that ASA2 optimizes the enhancement of photosynthesis and

oxidative defense. MDA and EC were negatively correlated with

PC1, indicating the absence of oxidative damage. PC2 represented

21.57% of the variance and showed changes in Gs, Ci, and SP,

emphasizing the importance of protein stability and stomatal

function in stress responses. ASA2 significantly reduces oxidative

damage while improving overall plant performance.

PCA results indicated that ASA2 provided the fairest

enhancement, improving photosynthesis and antioxidant defense

while reducing oxidative stress. ASA1 also improves photosynthesis

and antioxidant activity, but the effect is less pronounced than ASA2.

The control (ASA0) clearly shows that in the absence of treatment,

oxidative stress significantly impairs physiological function.
Network analysis

Network analysis comparing ASA0 and ASA1 showed a more

robust positive correlation between antioxidant enzymes (SOD,

CAT, APX) and photosynthetic parameters (Pn, Chl, SP) in ASA1,
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as evidenced by the larger green nodes (Figure 8a) This suggests that

ASA1 can enhance photosynthetic efficiency and antioxidant

defense. The reduction in the number and size of red nodes

(representing MDA and EC) in ASA1 implies reduced oxidative

stress and reduced membrane instability relative to the control

(ASA0). ASA1 treatment improved plant physiological

performance by enhancing antioxidant activity and photosynthetic

activity, as evidenced by enhanced green node connectivity. In the

comparison of ASA0 and ASA2, ASA2 exhibits a significantly

stronger network. Prominent green nodes representing antioxidant

enzymes (SOD, CAT) and photosynthetic parameters (Pn, Chl)

exhibit tight interconnections, indicating that ASA2 provides

enhanced protection by improving antioxidant defense and

photosynthetic efficiency (Figure 8b). The reduction in the number

of MDA and EC red nodes and their limited connectivity suggests

that the effects of oxidative stress are greatly attenuated in ASA2-

treated plants compared to ASA0. The strong correlation between

antioxidant enzymes and photosynthetic indicators further confirms

that ASA2 is highly effective in mitigating oxidative stress and

improving overall plant performance.
FIGURE 6

Pearson’s correlation coefficient between three different acetylsalicylic acid (ASA) treatments in common bean under cold stress: (a) ASA0, (b) ASA1,
and (c) ASA2. Correlations were analyzed under normal conditions (0h); and after 12 h and 24 h of cold stress.
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FIGURE 7

Principal component analysis (PCA) between three different acetylsalicylic acid (ASA) treatments in common bean under cold stress: (a) ASA0,
(b) ASA1, and (c) ASA2. Correlations were analyzed under normal conditions (0 h); and after 12 h and 24 h of cold stress.
FIGURE 8

Network analysis of physicochemical parameters across different ASA treatments. The network illustrates the degree of interaction between
(a) ASA0-ASA1 and (b) ASA0-ASA2. The size of each node corresponds to the strength of interactions. The green color represents the strength of
positive and red color represent negative interactions.
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Network analysis showed that ASA2 most broadly enhances

antioxidant defense and photosynthetic efficiency while

significantly reducing oxidative stress. ASA1 enhances plant stress

resistance; however, its effect is less dramatic than ASA2, as

evidenced by the reduction in the number and size of green

nodes. In the absence of treatment, ASA0 exhibits elevated

oxidative stress and decreased physiological performance.
ASA upregulates antioxidant and
photosynthetic genes in cold-stressed
common bean

Cold stress significantly reduced the expression of genes related

to antioxidant defense, chlorophyll, and photosynthesis in common

bean seedlings. Though, exogenous ASA alleviated these

possessions in a concentration-dependent manner. Fold change

analysis showed that antioxidant-related genes, including APX1,

POD1, and SODC, were significantly upregulated under ASA

treatment, APX1 expression increased more than 2-fold and

nearly 3-fold under ASA1-CS and ASA2-CS treatments,

respectively, compared with cold-stressed control seedlings

(ASA0-CS), indicating enhanced ROS scavenging ability.

Similarly, ASA significantly alleviated the cold-stress-induced

repression of photosynthesis genes RbcS1, PsbS, and POR, with

the expression of these genes under ASA2-CS treatment increasing

more than 2- to 4-fold compared with that under ASA0-CS

treatment. In addition, the expression of chlorophyll metabolism-

related genes, including CHLH, CAO, and NYC1, increased 2- to 3-

fold after ASA treatment compared with the cold stress control.

These results indicated that ASA, especially at 2 mM concentration,

significantly enhanced the expression of stress-responsive genes,

thereby enhancing antioxidant defense and maintaining

photosynthetic efficiency under cold stress conditions (Figure 9).

Heatmap depicts differential expression of essential genes

related to photosynthesis, antioxidant defense, and chlorophyll

metabolism in four treatments (ASA1-CS, ASA2-CS, ASA0-CS,

and ASA0-NT). Warm tones (red) indicate upregulation, while cool

tones (blue) indicate downregulation. Genes such as RbcS1, CHLH,

and PsbS were significantly upregulated under ASA0-CS and ASA0-

NT treatments, indicating enhanced photosynthesis activity under

untreated and control conditions. In contrast, antioxidant-related

genes such as SODC, APXT, and POD1 showed enhanced

expression under ASA1-CS and ASA2-CS treatments, indicating

that ASA treatment enhanced antioxidant defense mechanisms

under cold stress. The expression patterns suggest that ASA,

especially at 1 mM and 2 mM concentrations, is able to regulate

gene networks that mitigate the adverse effects of cold stress on

common bean seedlings (Figure 10).
Discussion

In this study exogenous acetylsalicylic acid (ASA) significantly

improved the cold stress tolerance of common bean seedlings,
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indicating that it has the potential to be an effective method to

alleviate abiotic stress. Cold stress significantly reduces the

photosynthetic efficiency, enzymatic activity, and membrane

stability of plants (Banerjee and Roychoudhury, 2019; Ali et al.,

2022), and ASA has been shown to have the potential to alleviate

these adverse effects (Figure 11).
ASA and photosynthesis

Cold stress usually reduces photosynthetic rate by limiting

stomatal conductance and impairing chlorophyll stability (Fu et al.,

2016; Bhattacharya, 2022). This study showed that application of 2

mM concentration of ASA (ASA2) could maintain higher

photosynthetic parameters (Pn, Gs, Ci, Tr) under cold stress,

indicating that ASA has a protective effect on photosynthesis. ASA2

can maintain chlorophyll (Chl, Chl a, Chl b) and carotenoids (Cx.c),

which are essential for light absorption and energy conversion. This is

consistent with the findings that SA can stabilize the photosynthetic

apparatus, thereby improving light energy utilization (Moustakas

et al., 2023; Sperdouli et al., 2024). Similarly, ASA2 maintained

chlorophyll content, increasing chl a by 21.25% and chl content by

8.88%. This finding was also confirmed by the study demonstrated

that SA treatment can alleviate oxidative damage and photoinhibition

under stress conditions (Yang et al., 2019). At lower concentrations

(ASA1, 1 mM), ASA increased the levels of photosynthetic pigments,

indicating that low doses can also be effective, as pointed out by

(Daneshmand et al., 2010b). Similarly, ascorbic acid treatment in

wheat enhanced the responses of photosynthetic pigments,

osmoprotectants, and antioxidant enzymes to salt stress (Siddiqui

et al., 2018). Correspondingly, several plant growth regulators,

including jasmonic acid (JA) and abscisic acid (ABA), have been

documented to increase chlorophyll content and photosynthetic

efficiency under stress conditions (Awan et al., 2021; Tariq et al., 2022).
ASA and oxidative stress mitigation

Cold stress leads to the formation of ROS, which cause oxidative

damage to cell membranes, proteins, and lipids (Dreyer and Dietz,

2018; Juan et al., 2021; Manasa S et al., 2022). MDA, an indicator of

lipid peroxidation, and EC decreased in seedlings treated with ASA

under cold stress (MDA decreased by 39.23% after 12 h and by

24.96% after 24 h), confirming the protective role of ASA in

maintaining membrane integrity. This is consistent with earlier

studies, showed that SA and other plant growth regulators (PGRs)

mitigate oxidative damage by enhancing membrane stability (Paul

et al. 2024; Kaya et al., 2023). Similarly, Studies have shown that

exogenous SA can alleviate salt stress in mustard plants by

enhancing their growth, physiological and biochemical

parameters, and antioxidant enzyme activities (Islam et al., 2023).

The reduction in EC further confirmed the improved membrane

stability, as increased EC levels are associated with cell damage and

membrane permeability (Sun et al. , 2020; Gurova and

Denisyuk, 2021).
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ASA and antioxidant enzyme activities

Regulating the activity of antioxidant enzymes is the key

mechanism by which ASA reduces oxidative damage. In the

current study ASA1 (1 mM) significantly increased SOD activity

by 113.17% after 12 hours of cold stress, while ASA2 increased the

activity of POD and CAT by 157.77% and 118.49% respectively

after 24 hours. The increase in the activity of SOD, CAT and POD is

associated with the enhancement of ROS scavenging ability and the

reduction of oxidative damage (Gill and Tuteja, 2010; Azarabadi

et al., 2017; Fujita and Hasanuzzaman, 2022). The increase in CAT

and POD activities may indicate an alteration in the antioxidant

pathways, thereby enhancing the detoxification of ROS under cold

stress (Valizadeh-Kamran et al., 2018). Similar changes in

antioxidant processes have been observed in other studies on

PGR treatments, in which SA and JA enhance stress responses by

reconfiguring antioxidant pathways (Khan et al., 2020; Ghassemi-

Golezani and Farhangi-Abriz, 2021; Sabagh et al., 2021; Samanta

and Roychoudhury, 2025). Although SA has been documented to

affect antioxidant enzyme activities, other plant growth regulators,

like JA and ABA, have also been shown to affect the response of the

antioxidant system to abiotic stress (Saxena et al., 2019; Tariq

et al., 2022).
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ASA-mediated antioxidant–photosynthesis
crosstalk

Principal component and network studies showed that ASA

treatment, especially ASA2, promoted a synchronized response

between antioxidant defense and photosynthetic efficiency under

cold stress. In both ASA1 and ASA2 treatments, there were

significant positive correlations between antioxidant enzymes (SOD,

CAT, APX) and photosynthetic parameters (Pn, Chl, SP), suggesting a

mechanistic interaction: enhanced ROS scavenging capacity (SOD)

could protect the structure and function of chloroplasts, thereby

maintaining CO2 uptake and chlorophyll integrity The interaction

between antioxidants and photosynthesis was reflected in the reduction

of oxidative stress indicators (MDA, EC) and the enhancement of

physiological performance in ASA-treated seedlings. The SOD-Pn

interaction showed that superoxide dismutation is essential

for maintaining electron transport efficiency and reducing

photooxidative damage. ASA2 showed the most resilient integrated

network, indicating its enhanced ability tomaintainmembrane stability

and photosynthetic function under cold stress. These results confirm

previous studies that SA derivatives enhance plant stress resilience by

enhancing antioxidant capacity and optimizing photosynthetic

efficiency (Farouk et al., 2020; Yang et al., 2023).
FIGURE 9

RT-qPCR analysis of gene expression in response to ASA treatment and cold stress. Bar plots show the relative expression levels of 14 selected
genes involved in photosynthesis, chlorophyll metabolism, antioxidant defense, and stress response under four conditions: ASA0-CS (cold stress
without ASA), ASA0-NT (normal temperature without ASA), ASA1-CS (low concentration of ASA under cold stress), and ASA2-CS (higher
concentration of ASA under cold stress). Expression levels were normalized, and error bars represent standard deviation across replicates. Genes
RbcS1, APX1, POD1, and NYC1 show significant upregulation under ASA treatment compared to cold stress alone, while hcb1, CHLH, and ZE show
downregulation, particularly under ASA2-CS. These results support the role of ASA in modulating gene expression to enhance cold stress tolerance
in plants.
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During cold stress, APX activity unveiled a biphasic response

to ASA treatments. In seedlings treated with ASA1 and ASA2,

APX activity decreased significantly after 12 h, with a more

decrease at the 2 mM ASA treatment. This early inhibition may
Frontiers in Plant Science 15
indicate a transient alteration in antioxidant defense mechanisms,

in which ASA affects the redox environment and redistributes

ROS scavenging functions between various enzymes (Caverzan

et al., 2012; Rajput et al., 2021). Consistent with recent studies,
FIGURE 10

Heatmap of key gene expression profiles in response to ASA treatment and cold stress. The heatmap displays the relative expression levels of selected
stress-responsive genes across four treatment groups: ASA1-CS, ASA2-CS, ASA0-CS (ASA-treated under cold stress), and ASA0-NT (ASA-treated under
normal temperature). Expression values were standardized and clustered using hierarchical clustering. Red indicates higher expression, blue indicates
lower expression, and white represents intermediate levels. Genes RbcS1, CHLH, PsbS, GLCAT14B, and APX1 show differential expression patterns in
response to ASA treatment and cold stress. Data were obtained through RT-qPCR analysis, and values represent normalized expression changes.
FIGURE 11

Schematic representation of ASA-induced enhancement of cold stress tolerance in plants. Exogenous application of acetylsalicylic acid (ASA)
improves plant growth under cold stress conditions (5°C). ASA treatment enhances physiological and biochemical processes, including:
(1) photosynthesis parameters (Pn: net photosynthetic rate, Gs: stomatal conductance, Ci: intercellular CO2 concentration, Tr: transpiration rate),
(2) chlorophyll content (Chl, Cx·c; Chla, Chlb); (3) antioxidant enzyme activities (SOD, superoxide dismutase; POD, peroxidase; CAT, catalase; APXm
ascorbate peroxidase), and (4) biochemical indicators such as soluble protein (SP). Meanwhile, cold-induced damage indicators like Malondialdehyde
(MDA) and electrolyte conductivity (EC) are reduced. These responses contribute to improved cold stress tolerance and plant growth.
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APX is markedly sensitive to the cellular redox environment and

may be transiently inhibited when other pathways, such as SOD or

POD, are temporarily favored to control acute oxidative surges

(Gill and Tuteja, 2010; Sharma et al., 2012). Remarkably, APX

activity was significantly enhanced under ASA2 treatment at 24 h

of cold stress, indicating that its activation was time-dependent.

This pattern suggests that ASA may first inhibit APX activity as a

rapid defense response but then reactivate it to maintain a

sustained antioxidant balance during plant adaptation to

prolonged cold stress (Duan et al., 2012). This suggests that

ASA2 can provide a more durable and stable antioxidant

defense under long-term cold stress, which is consistent with

previous research results (Wu et al., 2024). SA analogs such as

ASA are recognized for their ability to modulate gene expression

and enzyme activity through redox-sensitive signaling pathways

and hormone interactions (Mittler, 2002; Koornneef et al., 2008;

Caarls et al., 2015; Khan et al., 2015), which may play a role in the

subsequent enhancement of APX. The temporal regulation of

APX activity during ASA treatment suggests the existence of a

dynamic and coordinated antioxidant response, which improves

the cold stress tolerance of common bean seedlings.
Gene expression modulation by ASA

At the molecular level, ASA regulates the expression of essential

genes related to photosynthesis and antioxidant defense. Cold stress

(ASA0-CS) reduced the expression of multiple genes related to ROS

detoxification, such as APX1, POD1, and SODC, leading to

increased ROS levels and oxidative damage (Karami-Moalem

et al., 2018; Gorpenchenko et al., 2023). However, ASA treatment,

especially 2 mM concentration of ASA (ASA2-CS), counteracted

these effects by upregulating the expression of antioxidant genes

and enhancing ROS scavenging ability. Similar results were

obtained with the exogenous application of abscisic acid (ABA)

which enhanced antioxidant enzyme activities and related gene

expressions, particularly SOD and POD, thereby improving plant

tolerance to cold-induced oxidative stress (Guo et al., 2012). SA

analogs and ASA can enhance the expression of antioxidant genes

in response to cold stress (Akçay et al. 2024; Soliman et al., 2018a).

In addition to antioxidant genes, ASA also restored the expression

of genes related to photosynthesis (RbcS1, PsbS, and POR),

emphasizing its function in protecting the photosynthetic

apparatus under stress. Studies have shown that SA mitigates

aluminum toxicity in alfalfa by maintaining chloroplast integrity

and enhancing the expression of photosynthetic genes (Cheng et al.,

2020). Similarly exogenous hemin can alleviate Cd stress in maize

by promoting leaf photosynthesis (Piao et al., 2022). These findings

are consistent with studies in other legumes, including mung bean

and broad bean, in which PGRs enhanced the expression of genes

related to stress tolerance (Tuteja et al., 2010; Reddy et al., 2012;

Divi et al., 2016; Büyük and Aras, 2017).
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Conclusion

In summary, the utilization of ASA, particularly at a dose of 2

mM (ASA2), presents considerable promise for enhancing cold

stress resilience in common bean seedlings. ASA not only

maintained photosynthetic efficiency and chlorophyll integrity but

also reduced oxidative damage by regulating antioxidant enzyme

activity and gene expression. These results align with prior research

on SA and other PGRs, indicating that ASA may serve as an

effective means to bolster plant resilience against abiotic stressors.

Subsequent investigations should concentrate on the intricate

molecular processes through which ASA influences gene

expression and enzymatic activity to enhance its utilization in

agricultural contexts. Furthermore, comparing the effects of ASA

with those of other plant growth regulators such as JA and ABAmay

yield additional insights into their synergistic roles in

stress tolerance.
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