
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Vito Renò,
CNR STIIMA - Institute of Intelligent Industrial
Technologies and Systems for Advanced
Manufacturing, Italy

REVIEWED BY

Annaclaudia Bono,
National Research Council (CNR), Italy
Giovanna Guaragnella,
National Research Council (CNR), Italy

*CORRESPONDENCE

Dong Sub Kim

dongsub@kongju.ac.kr

†These authors have contributed equally to
this work

RECEIVED 08 March 2025
ACCEPTED 04 April 2025

PUBLISHED 05 May 2025

CITATION

Won HS, Lee E, Lee S, Nam J-H, Jung J,
Cho Y, Evert T, Kan N, Kim S and Kim DS
(2025) Image analysis using smartphones:
relationship between leaf color and
fresh weight of lettuce under different
nutritional treatments.
Front. Plant Sci. 16:1589825.
doi: 10.3389/fpls.2025.1589825

COPYRIGHT

© 2025 Won, Lee, Lee, Nam, Jung, Cho, Evert,
Kan, Kim and Kim. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 05 May 2025

DOI 10.3389/fpls.2025.1589825
Image analysis using
smartphones: relationship
between leaf color and fresh
weight of lettuce under different
nutritional treatments
Hye Su Won1†, Eunji Lee1†, Seeun Lee2†, Ji-Hyeon Nam1,
Jiwon Jung1, Yuna Cho1, Thomas Evert3, Noah Kan3,
Steven Kim3 and Dong Sub Kim1*

1Department of Horticulture, Kongju National University, Yesan, Republic of Korea, 2Department of
Biological Science, Kongju National University, Gongju, Republic of Korea, 3Department of
Mathematics and Statistics, California State University, Monterey Bay, Seaside, CA, United States
Image analysis can be useful for assessing crop health and predicting yield.

Instead of expensive equipment, smartphones are considered an accessible and

low-cost alternative. The objectives of this study were to evaluate whether fresh

weight in green and red lettuce could be predicted by leaf color (intensity of

green color measured by RGB) under different fertilizer treatments using RGB

imaging from two widely used smartphone models (Samsung Galaxy and Apple

iPhone). The two smartphones showed similar longitudinal patterns of RGB data

(the intensity and dark green proportion), but the absolute difference in the RGB

data was significantly different. Therefore, the averaged results were used for the

analyses. Color intensity and dark green proportion were associated with the

fresh lettuce weight (p = 0.005, 0.003, 0.014 and p < 0.001, respectively). This

study suggests that farmers and practitioners can use these economic devices as

a non-destructive method to diagnose and monitor the nutritional status and

predict lettuce yield.
KEYWORDS

normalized intensity, dark green proportion, RGB, Bland-Altman analysis, green and
red lettuces
1 Introduction

The nutritional status of crops is a critical factor in determining their productivity and

quality. In particular, nitrogen is an essential element for crop growth, and is a growth-

limiting factor as the major element in amino acids, nucleic acids, and chlorophylls

(Maathuis, 2009). Thus, nitrogen deficiency induces reduction of crop growth and

productivity, chloroplast disintegration, and even plant death (Vos et al., 2005).

Conversely, excessive nitrogen leads to abnormal vegetative growth, low flower number,
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and increased susceptibility to plant pathogens (Albornoz et al.,

2016). Moreover, nitrogen lost from the soil causes severe blooms of

aquatic algae and macrophytes associated with eutrophication in

lakes, streams, rivers, and oceans (Carpenter et al., 1998; Schindler

et al., 2008). Nitrogen deficiency often results in pale green or

yellowing leaves due to reduced chlorophyll content, whereas

excessive nitrogen can lead to overly dark green leaves with

excessive vegetative growth (McCauley et al., 2009).

Micronutrients play a crucial role in plant growth and quality.

Microelement deficiency, another commonly observed nutritional

disorder, significantly impacts plant growth, yield, and quality

(Nadeem and Farooq, 2019). Excessive iron, zinc, and manganese

reduces photosynthetic efficiency and impedes nutrient absorption,

ultimately leading to reduction of plant growth and productivity

(Wairich et al., 2024; Mousavi, 2011; Millaleo et al., 2010). Like

deficient and excessive nitrogen, deficient and excessive

micronutrients can be visually diagnosed through leaf color, but it

is challenging to quantify leaf color for objective assessment.

In agriculture, data collection from bioassays is time consuming

and laborious. Furthermore, evaluation of crop nutritional status is

not reliable or very expensive for high reliability. For example,

chlorophyll meters (e.g., SPAD meters) have been used for non-

destructive measurement (Balasubramanian et al., 1998), but these

devices only assess a small portion of the leaf, making it difficult to

represent the overall condition of the crop. On the other hand,

hyperspectral, multispectral, and thermal imaging technologies

allow for non-destructive and accurate analysis of plant

nutritional status, including water stress and nutrient deficiencies.

However, these technologies require expert knowledge and the use

of expensive, complex equipment for data collection and analysis,

which limits their accessibility for farmers (Sankaran et al., 2015;

Mahlein, 2016). As a result, there is increasing interest in cost-

effective alternatives, such as RGB imaging, which offer a more

accessible approach to plant monitoring.

To overcome these practical limitations, RGB imaging offers a

more accessible and cost-effective alternative. Through

advancements in smartphone camera technology, the accessibility

of RGB image acquisition has significantly improved. RGB imaging

has limitations in directly detecting and quantifying physiological

responses occurring within plant tissues. However, nutrient excess

or deficiency often manifests as visible color changes on the surface

of the plant (Uchida, 2000). Therefore, RGB imaging can be used to

detect such color changes and potentially indirectly predict nutrient

disorders in crops. The RGB color model can be utilized to quantify

crop growth status, and free or low-cost image analysis software has

made RGB analysis more accessible and convenient. For instance,

Ibrahim et al. (2021) developed a smartphone-based image

acquisition method to estimate chlorophyll content in lettuce

leaves using controlled lighting conditions with an SMD LED

setup. By extracting RGB indices and calculating vegetation

indices (e.g., VI, GDR), they reported a strong correlation

between the image-based indices and SPAD-measured

chlorophyll content. Kim et al. (2022) found a relationship

between RGB ratios and strawberry yield, and Petrozza et al.

(2014) monitored physiological responses and biomass of tomato
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plants using RGB imaging. Similarly, Elsayed et al. (2018)

demonstrated that green pixel proportions derived from digital

analysis are strongly associated with nitrogen uptake and biomass in

wheat. Therefore, RGB imaging has the potential to serve as an

accessible indicator for evaluating crop nutritional status. However,

further validation is needed to confirm its reliability.

According to Fontes et al. (1997), nitrogen application

influences crop productivity by affecting physiological responses.

In wheat, RGB-based indices such as G/R, G/B, and (G–R)/(R+G

+B) from canopy images have shown strong correlations with both

leaf nitrogen content and yield (Qi et al., 2021). Based on these

findings, this study applies a similar approach to lettuce by

analyzing two image-derived indices: (1) normalized intensity,

defined as I = (R+G+B)/3, and (2) dark green proportion,

calculated as the ratio of the pixels occupied by a predefined dark

color range (RGB intensity between 0 and 85) to the total pixels in a

segmented leaf area. Building on these methods, this study

investigates whether color-based indicators derived from RGB

images can be used to estimate fresh weight in lettuce under

different fertilizer treatments.

This study aims to evaluate whether fresh weight in lettuce

could be predicted by leaf color (intensity of green color measured

by RGB) under different fertilizer treatments using RGB imaging

from two widely used smartphone models (Samsung Galaxy and

Apple iPhone). By analyzing the relationship between leaf color and

plant biomass, this study explores the feasibility of smartphone-

based imaging as a cost-effective and non-destructive tool for

assessing crop growth.
2 Materials and methods

2.1 Plant materials and cultivation
conditions

The two lettuce cultivars ‘Cheongchima’ (a green-leaf lettuce)

and ‘Jeokchima’ (a red-leaf lettuce) were grown in a polyethylene-

covered greenhouse in Yesan Campus of Kongju National

University, South Korea (36°40’2.4”N 126°51’49.5”E). Each lettuce

type was tested twice. The first green lettuce experiment was carried

out in the spring of 2022, and the second green lettuce experiment

was done in the spring of 2024. The first red lettuce experiment was

conducted in the spring of 2024 (at the same time of the second

green lettuce experiment), and the second red lettuce experiment

was done in the fall of 2024. The daily average air temperature

ranged from 6.5 to 21.5°C in the spring of 2022; from 10.8 to 21.4°C

in the spring of 2024; and from 11.9 and 28.6°C in the fall of

2024 (Figure 1).

In the spring of 2022, the first green lettuce experiment was

conducted from March 28 to May 24, 2022. Five seeds of

‘Cheongchima’ (World Seed Co., South Korea) were sown in four

plastic pots filled with commercial soil (Hungnongseed. Co., South

Korea), and covered with vermiculites (GFC. Co., South Korea).

The top diameter of the pot was 13 cm, and the height was 13.5 cm.

The lettuces were irrigated with 120 mL of water at 8 A.M. every
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three days. Three weeks after sowing, the first main leaf was fully

developed and four seedlings were thinned. Three days after

thinning, the irrigation was increased to 150 mL every three days.

With regard to all fertilizers, the rate recommended by the

manufacturer was applied for the selected pot size. For a precise

treatment, fertilizers of different particle sizes were blended into a

nutrient solution. For example, when 0.34 g nitrogen fertilizer was

to be applied per pot, a 20-fold concentrate was diluted and applied

to the pots with irrigation water. Similarly, 0.01 g iron fertilizer and

0.66 g fertilizer for leafy vegetables were applied per pot. After the

second fertilization, as the size of lettuce and air temperature

increased, the irrigation was increased to 300 mL daily. Three

fertilizers were used to evaluate the effect of: a nitrogen fertilizer

(46% nitrogen) (TaegheungF&G. Co., South Korea), a fertilizer for

leafy vegetables (12% nitrogen, 5% water-soluble phosphoric acid,

7% water-soluble potassium, 3% magnesium oxide, and 0.3%

citrate-soluble boron) (TaegheungF&G. Co., South Korea) and a

microelement fertilizer (5.5% water-soluble iron, 3.5% water-

soluble zinc, 0.3% water-soluble manganese, and 0.005% water-

soluble molybdenum) (Daeyu Co., South Korea). The fertilizers

were applied twice, once after the first main leaf developed and then

after three weeks.

In the spring of 2024, the green lettuce (‘Cheongchima’, World

Seed Co., South Korea) was grown from April 4 to May 30 in 2024,

and the red lettuce (‘Jeokchima’, Kwonnong., South Korea) was

grown from April 4 to June 4, 2024. The eight lettuces per treatment

were sub-irrigated three times a week for three hours from 9 A.M. to

12 P.M. Three weeks after sowing, the third main leaf was developed

and the lettuces were transplanted into pots. The first fertilization

was performed one week after transplanting, and the second

fertilization was two weeks after the first fertilization. However,

since the red lettuces grew slower, its first fertilization was done five

days later than the green lettuces. The ingredient, amount, and

method of fertilizer and size of pot were the same as in the

2022 experiment.

In the fall of 2024, the second red lettuce experiment was

conducted. The red lettuce was grown from September 2 to

November 4, 2024. The six lettuces per the treatment were sub-
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irrigated three times a week for three hours from 9 A.M. to 12 P.M.

Four weeks after sowing, the third main leaf was developed and the

lettuces were transplanted into pots. As in the 2024 spring

experiment, the first fertilization was performed one week after

transplanting, and the second fertilization was two weeks after the

first fertilization. The ingredient, amount, and method of fertilizer

and size of pot were the same as in the 2022 experiment.
2.2 Acquirement of growth data

The fresh weight was measured and the number of leaves were

counted on harvest day. The fresh weight was measured from the

above-ground part excluding roots. The leaves measuring less than

2 cm on the longest side were excluded from the leaf count.
2.3 Acquirement of image data

In the spring 2022, the green lettuces were photographed on the

last day of the experiment. There were four lettuces per treatment.

All photos of these plants were taken on clear days, which might

have resulted in slight differences from the actual harvest days. The

image acquisition dates differed by up to one week between the

plants. We monitored the plants by collecting image data twice a

week, and we observed consistent patterns of RGB values after a

certain point during the growth period. There would be inherent

variations in the image data between days, and even within days, but

given the consistent patterns observed near the last day of the

experiment, we believe that the image data taken within one week

represented the leaf colors and that the different time points did not

have significant impact on the correlation between RGB values and

fresh weight.

The photos of each lettuce were taken using two smartphone

models, a Samsung Galaxy A50 (referred to as Model 1) and an

Apple iPhone 13 mini (Model 2). Model 1 was equipped with a 25

MP wide-angle camera, and Model 2 had a 12 MP wide-angle

camera. The images captured by Models 1 and 2 had resolutions of
FIGURE 1

Daily average air temperature during the lettuce cultivation in 2022 trial and 2024 trial (A) from March 28 to May 24, 2022, (B) from April 4 to June
4, 2024, (C) from September 2 to November 4, 2024.
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3024 × 3024 pixels and 1440 × 1440 pixels, respectively. Each lettuce

was photographed separately, and the cameras were positioned

vertically above the plant to capture the canopy. The images were

captured from a height of 0.5 m under natural light conditions using

the smartphones’ automatic shooting mode. The photos were

converted from JPEG to GIF format for image analysis (Kim

et al., 2022). To remove irrelevant parts in each photo, green

vegetation and other parts (e.g., soil and plastic pots) in the GIF

files were separated out using image segmentation (Kim et al.,

2021). The separated GIF files were uploaded to the image analysis

program freely available at http://mkwak.org/imgarea.

In the spring of 2024, green lettuces were photographed two

days before and red lettuces seven days before the experiment

ended. A Samsung Galaxy Note 10 (Model 3) and an Apple iPhone

8 (Model 4) were used to take photos. Both Models 3 and 4 were

equipped with 12 MP wide-angle cameras, and all images were

captured at a resolution of 4032 × 4032 pixels. In the second green

lettuce experiment and the first red lettuce experiment, four lettuces

per treatment on black background were photographed at a time

with a color chart (Spyder Checker 24). The camera was positioned

vertically above the plant to capture the canopy, and the images

were captured at a height of 1 m. As in the spring 2022 experiment,

the images were captured under natural light conditions using the

smartphones’ automatic shooting mode. The method of editing and

analyzing photos was the same as in the 2022 experiment.

In the fall of 2024, the red lettuces were photographed three

days before the experiment ended.) The same smartphone models,

Models 3 and 4, were used to take photos, and six lettuces per

treatment were photographed at a time against a black background,

along with a color chart (Spyder Checker 24). The experimental

conditions (the shooting distance, angle, lighting conditions, and

image resolution) were consistent with those in the spring of 2024.

The method for editing and analyzing the photos was the same as in

the 2022 experiment. Given the inherent variability of smartphone

cameras and experimental conditions across the experiments, the

standardization of the image capturing process is critical, and the

discrepancy is the RGB values were analyzed and the average of two

smartphones’ results was used in statistical analysis as described in

the subsequent section.
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2.4 Statistical analysis

The image analysis program receives a GIF image file and

outputs uniquely observed RGB codes and associated pixels in the

input image. The pixels of green colors, for which the value of G was

greater than the values of R and B, were included in the analysis,

and the two response variables were derived from the raw data. The

first variable was the intensity, defined as I = (R + G + B)/3 after

normalizing R, G, and B (Zhi et al., 2020). When the R, G, and B

values are normalized between zero and one, I = 0 represents black,

and I = 1 represents white.

The second variable was the proportion of dark green color. The

values of R, G, and B lie between 0 and 255, and the RGB codes (0, 0,

0) and (255, 255, 255) represent black and white, respectively. The

value of G was divided into three levels: 0 to 85 for dark green, 86 to

170 for medium, and 171 to 255 for light green. Table 1 presents

four commonly observed dark green, medium green, and light

green colors and the corresponding RGB codes, and the proportion

of dark green color is defined as the proportion of pixels occupied

by the four dark green colors: (0, 43, 0), (0, 85, 0), (51, 85, 0), and

(51, 85, 51). This proportion is hereafter referred to as the dark

green proportion.

The values of intensity and dark green proportion observed

from the same lettuce leaf were not identical between Models 1 and

2 and between Models 3 and 4. We evaluated the degree of

agreement between the two smartphone models using Bland-

Altman analysis (Bland and Altman, 1986), which is a visual

representation and statistical inference used to assess the

agreement between two measurement devices. We let x and y be

observed values of the same lettuce leaf when the photo was taken

by two different smartphone models. Given n paired observations of

(x, y), we let m be the calculated average of the difference, d = y – x,

and let s be the standard deviation of d. the be the difference. The

95% limits of agreement (LOA) were calculated by

m ± 1:96� s

and the 95% confidence interval (CI) for the expected difference

was calculated by
TABLE 1 Examples of dark, medium, and light green colors commonly observed in the image data.

Dark Medium Light

Color RGB Color RGB Color RGB

(0, 43, 0) (102, 128, 0) (102, 213,102)

(0, 85, 0) (102, 128, 51) (153, 213,51)

(51, 85, 0) (102, 170, 0) (153, 213, 102)

(51, 85, 51) (102, 170, 51) (204, 255, 102)
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m ± 1:96� s=n1=2:

We note that the 95% LOA and 95% CI have different roles as

follows. The 95% LOA is devised to predict random differences to

be observed if the experiment is repeated, and the 95% CI is devised

to estimate the expected (average) difference. If a calculated 95% CI

is entirely positive or negative (i.e., zero is not in the interval), it is

statistical evidence that one model tends to underestimate or

overestimate the color parameter values of the same target when

compared to the other model. If a calculated 95% LOA is wide, the

difference between the two measures, x and y, is large, hence it

indicates unreliable measures.

Analysis of variance was used to compare the intensity and dark

green proportion between the four treatment groups. The mixed-

effects model was used to test for the relationships between fresh

weight and intensity and between fresh weight and dark green

proportion within the treatment groups. R version 4.3.0 was used

for the statistical analyses (R Core Team, 2023).
3 Results

3.1 Bland-Altman analysis

Figure 2 shows the Bland-Altman plot used to assess the degree

of agreement between two measurement devices across four

experiments: the first and second green lettuce experiments, as

well as the first and second red lettuce experiments. Models 1 and 2

are compared for the first green lettuce experiment (Spring 2022),

and Models 3 and 4 are compared for the remaining experiments

(Spring 2024 and Fall 2024).

In the first green lettuce experiment in spring 2022, for normalized

intensity, the resulting 95% CI and LOA were (0.02, 0.04) and (-0.03,

0.09), respectively. That is, Model 2 (Apple iPhone 13 Mini) tends to

have a higher estimate of normalized intensity thanModel 1 (Samsung

Galaxy A50), on average, and the differences between the two models

range between -0.03 and 0.09 95% of the time. The 95% CI and LOA

for the dark green proportion were (-0.13, -0.10) and (-0.21, -0.02),

respectively. This result suggests that two measurement devices have a

systematic disagreement, on average, and averaging two results would

be recommended for subsequent analyses. Table 2 summarizes the

results of Bland-Altman analysis for the normalized intensity and dark

green proportion in each experiment.

Similar trends were observed between Models 3 and 4. Model 4

(Apple iPhone 4) resulted in a higher value of normalized intensity

and a lower value of the dark green proportion than Model 3

(Samsung Galaxy Note 10), on average, in the experiments in spring

2024 and fall 2024. The sample size (n) affected the precision of the

95% CIs reported in Table 2, and the systematic disagreement was

observed even when n = 48 in spring 2022. We observed that images

taken by iPhones appeared to be more saturated in color than

images taken by Galaxy phones, and this difference could contribute

to the consistently skewed 95% CIs. This result suggests that

calibration and adjustment between the two models would have

provided more robust results in these experiments and would
Frontiers in Plant Science 05
increase statistical power for the analyses reported in the

subsequent sections.

According to the 95% LOAs, the two devices disagreed more

when the normalized intensity was measured for red lettuce than for

green lettuce, and they disagreed more when the dark green

proportion was measured for green lettuce than for red lettuce.

Given that the true value of each color parameter is unknown and

which model’s result is closer to the truth, we used the average of

two values for each target to increase the robustness of the results.

Even though two devices disagreed in terms of absolute values, their

patterns (recognizing high or low intensity and dark green

proportion) were consistent enough to obtain some statistical

significance in our experiments (see Sections 3.2 and 3.3).

Nevertheless, more reliable measurement is desired for future

experiments to powerfully detect and precisely estimate the

treatment effects and any relationship with growth responses, and

practical suggestions for calibration or adjustment prior to future

experiments is discussed in Section 4.
3.2 Growth responses after fertilizer
application

The ANOVA was used to compare the four treatments: control

(C), nitrogen fertilizer (N), leaf vegetable fertilizer (LV), and

microelement fertilizer (I). For the first green lettuce experiment

in spring 2022, the expected number of leaves were not significantly

different between the four treatments (p = 0.388), and the expected

fresh weight was (p < 0.001). In particular, the N and LV treatments

resulted in higher averages of fresh weight than the C treatment (p <

0.001 and p = 0.007, respectively). For the second green lettuce

experiment in spring 2024, we observed similar patterns for both

number of leaves and fresh weight between the four treatments

(Figure 3). In particular, the N treatment resulted in higher averages

of fresh weight than the LV, I, and C treatments (p = 0.004, p <

0.001, and p < 0.001, respectively). In summary, in both green

lettuce experiments, the treatment effects were significant for the

fresh weight, but not for the number of leaves. In particular, the N

treatment appeared to be the most beneficial for increasing the fresh

weight among the four treatments compared in the

two experiments.

For the first experiment of red lettuce, the N treatment yielded

higher fresh weight, on average, than the I and C treatments did (p

= 0.019 and p < 0.001, respectively), and the N and LV yielded

similar fresh weight, on average (p = 0.884). For the second

experiment of red lettuce, due to the high variability in the LV

treatment, the ANOVA showed weak evidence for the difference in

treatment effects on fresh weight (p = 0.213). The treatment effects

on the number of leaves were not statistically significant in both red

lettuce experiments as in both green lettuce experiments. Still, the N

treatment consistently showed the highest average fresh weight and

average number of leaves for the red lettuce (Figure 4) as well as for

the green lettuce (Figure 3). In summary, the N treatment appeared

to be the most effective for increasing the growth responses of both

green and red lettuce.
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3.3 Color parameters and after fertilizer
application

Figure 5 presents the scatter plots of fresh weight against

normalized intensity for the green lettuce, and the four
Frontiers in Plant Science 06
treatments (C, LV, N, and I) are distinguished by the shapes of

data points. In the first green lettuce experiment, it was clearly

shown that the C treatment resulted in high intensity value, low

dark green proportion, and low fresh weight, whereas the N

treatment resulted in low intensity value, high dark green
FIGURE 2

Bland-Altman plots of normalized intensity values (the first column) and dark green proportions (the second column) observed in the four
experiments (each row). The 95% confidence intervals (CIs) are marked by dotted lines, the 95% limits of agreement (LOAs) are marked by solid lines,
and another dotted line is used to mark the zero.
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proportion, and high fresh weight. In addition, when we accounted

for treatment effects in the mixed-effects model, the expected fresh

weight was higher for plants with lower normalized intensity (p =

0.003, R² = 0.518) and those with higher dark green proportion (p =

0.005, R² = 0.356). In the second green lettuce experiment, the

scatter plots were not as clear as in the first experiment. The fresh
Frontiers in Plant Science 07
weight and normalized intensity were not significantly correlated (p

= 0.2229, R² = 0.009). Although the relationship between fresh

weight and dark green proportion was statistically significant, the R-

square value was low (p = 0.003, R² = 0.064).

Figure 6 presents the scatter plots for the red lettuce. As shown

in Figure 5 for the green lettuce, the C treatment generally resulted
FIGURE 3

In the green lettuce experiment, the number of leaves and weight (g) in the four treatment groups, C: untreated treatment, LV: fertilizer for leaf
vegetables treatment, N: nitrogen fertilizer treatment, I: microelement fertilizer treatment.
TABLE 2 The results of Bland-Altman analysis (95% CIs and 95% LOAs) for the normalized intensity and dark green proportion in each experiment.

Experiment

Normalized intensity Dark green proportion

Number of photos
compared (n)

95% CI for
mean difference

95% LOA
for difference

95% CI for
mean difference

95% LOA
for difference

Green lettuce (Spring 2022)
Models 1 vs. 2

48 (0.02, 0.04) (-0.03, 0.09) (-0.13, -0.10) (-0.21, -0.02)

Green lettuce (Spring 2024)
Models 3 vs. 4

224 (0.01, 0.02) (-0.06, 0.08) (-0.03, -0.01) (-0.11, 0.07)

Red lettuce (Spring 2024)
Models 3 vs. 4

192 (0.01, 0.03) (-0.14, 0.18) (-0.001, 0.003) (-0.03, 0.03)

Red lettuce (Fall 2024)
Models 3 vs. 4

72 (0.01, 0.04) (-0.08, 0.14) (-0.01, -0.003) (-0.01, 0.01)
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in high intensity value, low dark green proportion, and low fresh

weight, whereas the N treatment resulted in low intensity value,

high dark green proportion, and high fresh weight. This pattern was

clearer in the first red lettuce experiment. In the first red lettuce

experiment, fresh weight was higher in plants with lower

normalized intensity (p = 0.014, R² = 0.121) and higher dark

green proportion (p < 0.001, R² = 0.581). The similar patterns

were replicated in the second red lettuce experiment that fresh

weight was higher in plants with lower normalized intensity (p =

0.009, R² = 0.202) and higher dark green proportion (p < 0.001, R²

= 0.375).

In general, it appears that the correlation between the

normalized intensity and fresh weight is negative, but it was not

consistently shown in the second green lettuce. On the other hand,

the observed correlation between the dark green proportion and

fresh weight was consistently positive in all four experiments. In

conclusion, the N treatment results in the high dark green

proportion, on average, and a high dark green proportion is

associated with high fresh weight for both green- and red-leaf

lettuce. It appears that the dark green proportion is a more

reliable indicator of fresh weight than the intensity value.
Frontiers in Plant Science 08
4 Discussion

Eshkabilov et al. (2021) employed hyperspectral imaging to

non-destructively estimate the nutrient content (e.g., NO₃⁻, Ca²⁺,
K⁺) of hydroponically grown lettuce, achieving high prediction

accuracy. Ren et al. (2017) utilized a low-cost multispectral

imaging system to remotely detect nutrient deficiency and water

stress in lettuce, demonstrating reasonable classification

performance using vegetation indices such as BWDRVI.

Sandmann et al. (2018) attempted to detect biotic stress in lettuce

using thermal imaging, NDVI, and chlorophyll fluorescence. While

fluorescence-based indicators showed high accuracy, thermal

indices exhibited relatively poor performance, with error rates

exceeding 35%. The use of smartphone-acquired RGB images to

evaluate lettuce growth provides a practical and accessible solution

for field-based monitoring. However, images captured under

natural light conditions are exposed to varying lighting

environments, which may introduce noise and inconsistencies in

RGB results.

Yang et al. (2021) predicted grain moisture content and optimal

harvest timing using smartphones and machine learning. To
FIGURE 4

In red lettuce experiment, number of leaves and fresh weight (g) in the four treatment groups, C: untreated treatment, LV: fertilizer for leaf
vegetables treatment, N: nitrogen fertilizer treatment, I: microelement fertilizer treatment.
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minimize the influence of lighting variability during outdoor image

acquisition, they employed a Simple Spectral–Geometric Correction

Board (SSCB) and a color calibration chart. Additionally, Lameski

et al. (2017) attempted to address this issue under natural lighting

conditions by using techniques such as RGB normalization,

vegetation indices, and automatic thresholding (Otsu’s method).

We expect that with additional calibration, adjustment,

standardization, and preprocessing methods, which are

limitations of this study, smartphone imaging can yield more

accurate results even under outdoor conditions in future studies.

Prior to this study, it was uncertain whether commonly

available smartphone cameras could be used for research or

practical purposes (Fan et al., 2021). In this regard, we performed

the Bland-Altman analysis, and showed that Models 1 and 3

(Samsung Galaxy) consistently showed a higher normalized

intensity value, on average, than Models 2 and 4 (Apple iPhone),

respectively, which resulted in Models 1 and 3 showing lower dark

green proportions than Models 2 and 4, on average, in three of the

four experiments (Figure 2). We believe that the different results

may depend on smartphone manufacturers because Models 1 and 3

and Models 2 and 4 were made by the same manufacturers.

Heinonen and Mattila (2021) reported that various smartphone

models perceive colors differently. Despite the degree of

disagreement, the longitudinal patterns of the intensity and dark
Frontiers in Plant Science 09
green proportions were similar within the devices, and the average

values provided more robust results for comparing the treatment

effects. As any color measure can substantially vary among camera

models, the Bland-Altman analysis and averaged results are

recommended before conducting research, and using the averaged

result would be more reliable.

We focused on the two color parameters, normalized intensity and

dark green proportion. The dark green proportion showed a significant

correlation with fresh weight across all four experiments. In contrast,

the normalized intensity was significantly correlated with fresh weight

in three of the four experiments, and showed weak evidence in the

second green lettuce experiment. The normalized intensity had a

higher correlation coefficient (R value) than the dark green

proportion only in the second green lettuce experiment. In all other

experiments, the dark green proportion resulted in a higher R value

than the normality intensity. Although the relationship between color

variables and fresh weight was statistically significant in most

experiments, the low R² values observed in this study suggest that

there are other useful color parameters than the normalized intensity

and dark green proportion. Ribeiro et al. (2023) confirmed that

vegetation indices derived from RGB images, such as GLI, NGRDI,

and SI, showed significant correlations with biometric traits of lettuce,

including fresh weight. Clemente et al. (2023) demonstrated that

vegetation indices such as GLI can reliably estimate anthocyanin,
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FIGURE 5

Relationship between fresh weight and normalized intensity, and fresh weight and dark green proportion in the green lettuce experiments.
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carotenoid, and chlorophyll contents in mini lettuce. Therefore,

incorporating various vegetation indices derived from RGB images is

expected to enable a more quantitative and precise analysis of the

relationship between color information and fresh weight.

A more pronounced correlation between dark green proportion

and fresh weight was observed in the red lettuce experiment than in the

green lettuce experiment. This is because red lettuce contains not only

chlorophyll but also anthocyanin, and the effect of nitrogen fertilizer is

more clearly analyzed than in green lettuce, which is colored only by

chlorophyll. In addition, among green RGB colors (i.e., the value of G is

higher than the values of R and B), the dark green color may be more

distinguishable in red leaves than in green leaves.

The nitrogen content and photosynthetic capacity of leaves are

closely related to the duration of light exposure, with light intensity

playing an important role (DeJong and Doyle, 1985). The longer the

exposure to high light, the greater the nitrogen content of the leaves,

resulting in enhanced photosynthetic capacity. Unlike the other three

experiments conducted in the spring, the second red lettuce experiment

was conducted in the fall season. In the fall, photosynthetic activity was

likely limited due to shorter sunlight duration and reduced light

intensity. Therefore, the differences in growth among fertilizer

treatments were not evident in the fall experiment, possibly due to

reduced nitrogen absorption and utilization.
Frontiers in Plant Science 10
5 Conclusion

The objectives of this study were to compare the effects of nitrogen

fertilizer, leaf vegetable fertilizer, andmicroelement fertilizer on the fresh

weight and leaf count and to predict the growth responses by leaf color

using RGB imaging with ordinary smartphones. The novelty of this

work was evaluation of this non-destructive, simple, and economic

method for predicting the lettuce yield, and it is the novelty of this work.

Based on the four experiments, twice for green-leaf lettuce and twice for

red-leaf lettuce, we conclude that the treatment effect is more significant

on fresh weight than on leaf count, the nitrogen fertilizer is the most

effective for increasing fresh weight, and the fresh weight can be

predicted by the dark green proportion extracted from RGB images

obtained by commonly used smartphone models.

Predicting fresh weight using RGB imaging enables farmers to

adopt precision agriculture more easily, optimizing crop growth

while reducing agricultural input costs. Additionally, applying an

appropriate amount of fertilizer conserves environments.

RGB imaging can serve as non-destructive tools for rapid

assessments of nutritional status of plants, and more reliable

cameras and external controls may increase the predictability. In

this study, we conclude that the dark green proportion is a more

reliable predictor of fresh weight than the normalized intensity
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FIGURE 6

Relationship between fresh weight and normalized intensity, and fresh weight and dark green proportion in the red lettuce experiments.
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value, but we observed substantially different results between

smartphone cameras. The measurement reliability should be

improved via calibration or adjustment of sensors and studying

more various cameras. In addition, more reliable and sensitive color

parameters (than the dark green proportion) may be found for

better prediction. With continual improvement, this non-

destructive, simple, and economic method can lead to user-

friendly mobile applications that enable farmers to easily utilize

this technology in the field.
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