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Elastoplastic fracture behavior of
Caragana korshinskii Kom.
branches: a discrete element
model for biomechanical insights
into shrub resource utilization
Qiang Su, Xuejie Ma, Wenhang Liu, Jianchao Zhang,
Zhihong Yu* and Zhixing Liu

College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University,
Hohhot, China
Introduction: The interaction between Caragana korshinskii Kom. (CKB)

branches and crushing machinery is complex, requiring a detailed mechanical

model to effectively describe the fracture characteristics of CKB during crushing.

This study aims to develop such a model using the discrete element method to

simulate the elastoplastic fracture behavior of CKB.

Methods: A mechanical model for CKB was established based on its fracture

mechanical characteristics. The model incorporates elastoplastic stages,

including elastic, elastoplastic, and fully plastic phases during stem crushing. A

parameter calibration method was employed, combining physical experiments

with simulation experiments to refine the discrete element model. The key

binding parameters of the model were optimized to best simulate the

mechanical properties of CKB under various loading conditions.

Results: The optimal binding parameters for the flexible discrete element model

were identified as: normal stiffness of 3.67×1010 N·m-3, shear stiffness of

3.42×1010 N·m-3, critical normal stress of 6.57×108 Pa, and a binding radius of

0.78mm. Themodel successfully replicated the elastic stage force-displacement

curve in compression tests with an error of only 0.24%. The discrepancies

between simulated and actual fracture forces were 2.79% for compression,

4.68% for bending, 4.14% for shear, and 8.64% for tensile tests, showing good

agreement with experimental results.

Discussion: The developed model accurately simulates the elastoplastic fracture

behavior of CKB under compression, bending, and shear, providing valuable

insights into the crushing mechanism of CKB. The calibration process

demonstrated that the proposed DEM model can be an effective tool for

exploring and optimizing the crushing process of CKB.
KEYWORDS

Caragana korshinskii Kom., discrete element flexible model, elastoplastic mechanics,
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1 Introduction

Caragana korshinskii Kom. is widely distributed in deserts and

saline-alkali areas in the arid and semi-arid regions of northwest

China (Su et al., 2024). It serves as the primary tree species for

vegetation restoration in desert regions (Zhang and Guo, 2014). To

prevent Caragana korshinskii Kom. from withering and dying, it

necessitates periodic pruning every 3 to 5 years (Wang et al., 2020).

Research indicates that Caragana korshinskii Kom. branches (CKB)

are abundant in crude protein and other nutrients, and once crushed,

they can serve as feed for ruminants (You et al., 2022). Nonetheless,

CKB possesses a high lignin content and dense structure, rendering

them more challenging to crush compared to herbaceous biomass.

Thus, exploring the fracture mechanics of CKB and their interaction

between CKB and mechanical components holds significant

implications for the design of crushing machinery (Chen et al., 2015).

CKB exhibits high hardness and toughness, coupled with certain

flexible characteristics. During the crushing process, its stress,

deformation, and motion are complex. Traditional experimental

research methods (Dong et al., 2023; Miu and Kutzbach, 2008)

struggle to accurately analyze the force and motion processes

between the machine and the material. In contrast, simulation-

based approaches, particularly the discrete element method,

effectively overcome this challenge (Zhao et al., 2022). The discrete

element method enables detailed analysis of stem deformation,

fracture characteristics, and micro-mechanical properties (Guo

et al., 2021), demonstrating high precision in simulating the

deformation and motion behaviors of plant stems (Xia et al., 2022).

To enhance the analysis the dynamic behavior of stems, lookup

tables were constructed based on stem measurements. These

measurements were conducted incrementally to assess the impact of

plastic deformation (Leblicq et al., 2016). Wang et al. (2020) proposed

the elastic hollow cylinder bondmodel, established a virtual rice plant,

and simulated the intricate dehulling process of rice. For simulating

the plastic deformation of stems, Liu et al. (2018) developed a flexible

wheat straw model based on the Hertz-Mindlin with bonding contact

model, capable of simultaneously simulating various deformation

behaviors such as bending, tension, and torsion. Zhao et al. (2023)

modeled cotton stalks as isotropic structures, established a discrete

element model for cotton stalks, and utilized this model to investigate

the biomechanical properties of cotton stalks. Although the

aforementioned studies can simulate the fracture characteristics of

stems to some extent, the modeling process is intricate, and the

examination of the fracture mechanics properties of stems is relatively

macroscopic, with often neglecting the flexible properties of stems.

For high-density wooden materials, Guo et al. proposed a novel

nonlinear elastic-plastic bonded sphere discrete element model to

depict the deformation of pine wood. This model can simultaneously

account for the irreversible plastic deformation and nonlinear behavior

of pine wood (Xia et al., 2019) Guo et al., 2020; (Hamed et al., 2023).

Whether investigating the crushing effect of forest wood chips,

flowability (Xia et al., 2021), or mechanical structure design (Chen

et al., 2022), the discrete element method can significantly enhance

research efficiency. However, the aforementioned studies

predominantly focus on the secondary crushing of forest wood chips,
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overlooking the achievement of crushing the entire stem sections.

Therefore, constructing a discrete element flexible model is imperative

for precisely simulating the behavior of biomass during crushing.

Nevertheless, there is currently a dearth of discrete element flexible

models for CKB crushing behavior, hindering the intuitive analysis of

the deformation, damage, and micromechanical behavior of CKB

under the influence of crushers. Consequently, this limitation

impedes the multidimensional and in-depth exploration of the

intrinsic mechanisms underlying CKB-crusher mechanical

interactions. By combining material mechanics theory, a more

realistic branch flexibility model was established with the assistance

of meta-particles. By comparing numerical simulations with

experimental data, the accuracy of the new model in predicting

branch deformation and damage, particularly in the fracture

behavior of highly flexible branches, is expected to be verified.

Consequently, this research endeavors to elucidate the mechanical

evolution principles of CKB subjected to various loading conditions

and employs EDEM software to develop a discrete element model of

CKB. The model is calibrated through an integrative method that

combines both physical experiments and simulation analyses. Initially,

intrinsic parameters and contact coefficients of CKB are quantified

through physical mechanical testing. This is followed by a detailed

analysis of mechanical evolution under different loading conditions.

Subsequently, bonding parameters are calibrated via a method

integrating compression testing with discrete element modeling,

resulting in a CKB discrete element flexibility model with elastic-

plastic fracture properties. The optimization of the CKB discrete

element flexibility model is performed using response surface

methodology and genetic algorithms. Finally, bending and shear

tests are conducted to validate the accuracy of the CKB discrete

element flexibility model. This study will bridge computational

mechanics and plant biophysics by proposing a DEM-based

framework that will decode the elastoplastic fracture stages of shrub

branches. The insights from this framework will guide for

biomechanical optimization in agricultural processing, contributing

to more efficient and sustainable practices.
2 Materials and methods

2.1 Sample preparation

The CKB samples were collected from the cultivation area in

Horinger county in Hohhot City, Inner Mongolia (40°9′36″E, 111°48′
N). The variety, Caragana microphylla Lam., were 2–3 years old. As

shown in Figures 1A–C, the structure of CKB featured a cylindrical

cross-section that gradually tapers from the base to the tip. The cross-

section consists of the epidermis, cortex, xylem, and pith, arranged

from the outermost to the innermost layers (Figure 1D). Forty CKB

with straight, intact, and robust main stems were randomly chosen,

with side branches and small leaves carefully removed. They were

encased in plastic film and transported to the laboratory for further

investigation. The average diameter of the CKB was measured

10.13 mm at the thick end and 8.87 mm at the thin end. The

discrete element model used an average diameter of 9.5 mm.
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2.2 Measurement of physical property of
CKB

2.2.1 Mechanical testing of CKB
Specimens prepared from the primary stems of CKB

were designed to withstand tension, compression, bending, and

shear loading. Mechanical measurements (including tension,

compression, three-point bending, and shearing) were performed

in a laboratory setting employing the identical universal testing

machine (WDW-30kN, load accuracy ±0.5%, manufactured by

Wuhan ShiDai Jinfeng Instrument Co., Ltd.) shown in Figure 1E.

Different fixtures were used to accommodate various loading modes.

The computer recorded the force-displacement alterations of the

specimens under different loading modes. Tests were carried out at a

loading speed of 10 mm·min-1, with five samples subjected to each

loading method. The results of the mechanical tests under various

loading modes are presented in Table 1.
2.2.2 Poisson’s ratio µ and shear modulus G
Tensile testing is commonly used to determine the elastic

modulus E of plant stems, thereby deriving the shear modulus G

of the tested material. Throughout the test, CKB samples are

secured at both ends using fixtures, and the upper fixture is

incrementally raised at a speed of 10 mm·min-1 until the sample

fractures completely, yielding parameters such as deformation,

force, and elastic modulus. The tensile test provides a means to

determine of CKB. During elastic deformation, stress is directly
Frontiers in Plant Science 03
proportional to strain. The ratio of stress to strain represents the

elastic modulus E. The elastic modulus of CKB can be calculated

using Equation 1.

E =
F=A
DL=L

(1)

where E is the elastic modulus (Pa), F is the force (N), L is the

effective length (mm), A is the contact area (mm2), DL is the change

in effective length (mm).

Given the negligible impact of Poisson’s ratio on the calculation

results, the Poisson’s ratio of 0.36 from the Wood Handbook was
TABLE 1 Results of the mechanical tests.

Item

Values

Min Max Average
Standard
deviation

Tensile force/N 187.69 428.46 312.32 90.44

Compressive
force/N

2073.56
1044.4 1553.51

409.02

Bending force/N 258.78 895.60 520.48 162.09

Shear force/N 811.02 2089.94 1376.52 260.47

Elastic
modulus/Pa

1.04×109
2.56×109 1.74×109

555.23

Shear
modulus/Pa

3.82×108
9.41×108 6.40×108

204.04
FIGURE 1

Growth and mechanical tests of CKB. (A) Growth status of lemon strips; (B) Field sampling; (C) Sample; (D) Branch components; (E) Mechanical
testing and equipment.
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chosen as the value for CKB.

G =
E

2(1 + m)
(2)

Where G is shear modulus(Pa); m is Poisson’s ratio. The shear

modulus of the CKB was found to be 6.40×108 Pa.

The density r, Poisson’s ratio m, shear modulus G, and other

parameters of CKB are determined based on experimental results.

The experimental fixtures are made of steel, and Table 2 provides

the constitutive parameters necessary for constructing the discrete

element flexible model.

2.2.3 Collision recovery coefficient
To comprehensively account for the randomness in the initial

falling state of the CKB and the effect of its spin during motion, a

collision recovery coefficient measurement device was constructed.

This device was designed to determine the collision recovery

coefficients for “particle-particle” and “particle-geometry”

interactions in the discrete element model. Following the

methodology outlined by Guan et al. (2022), forty samples of

CKB segments were randomly selected for the collision recovery

coefficient calibration test. The experimental setup is illustrated in

Figures 2A, B, with h1 = 30 mm, h2 = 40 mm, and a=45°. Each test

series was repeated ten times, measuring the value of L. The

resulting collision recovery coefficients ranged from 0.37 to 0.60
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for ‘particle-particle’ interactions and from 0.44 to 0.64 for ‘particle-

geometry’ interactions

2.2.4 Friction coefficient
The friction coefficient comprises both the static friction

coefficient and the rolling friction coefficient. The static friction

coefficient represents the ratio of the maximum static friction force

exerted on an object to the normal force. The static friction test

procedure is shown in Figure 2C. In this test, the CKB sample is

initially placed axially on a horizontal test board. As the CKB starts

to slide, the test board is gradually raised and then halted

(Figure 2D). At this juncture, record the angle q indicated on the

angle ruler, and compute the static friction coefficient using

Equation 3. The static friction coefficient ranges from 0.45 to 0.57

for CKB-CKB interactions and from 0.42 to 0.51 for CKB-steel

interactions.

ma =
fs
N1

=
mg sin qs
mg cos qs

= tan qs (3)

where ma is the coefficient of static friction, qs is the critical angle
of static friction (°), N1 is support force (N), fs is friction force (N),

m is the mass of the sample (kg), g is gravitational acceleration (m·s-

2). Rolling friction refers to the resistance encountered when an

object rolls over a surface, causing deformation due to the rolling

motion. The schematic diagram illustrating the principle of rolling

friction is shown in Figure 2E. In the experiment, the test plate is

positioned horizontally, with the CKB sample arranged radially on

its surface. The test board is gradually elevated until the CKB begins

to roll, at which point it is halted. The rolling friction coefficient

ranges from 0.22 to 0.30 for CKB-CKB interactions and from 0.12

to 0.21 for CKB-steel interactions.

As shown in Figure 2E, when the stationary CKB is placed on

the inclined plate and begins to roll, with the assumption that the

external contact surface deforms, Equation 4 represents the

equilibrium forces and couple at point A.
FIGURE 2

Measurement of collision recovery coefficient and friction coefficient. (A) Collision recovery coefficient measurement device; (B) Calculation
principle of collision recovery coefficient; (C) Friction coefficient testing device; (D) Principle of static friction; (E) Rolling friction principle.
TABLE 2 Intrinsic parameters of CKB.

Item
Values

CKB Steel

Poisson's ratio 0.36 0.30

Density/kg·m-3 984.7 7850

Shear modulus/Pa 6.40×108 7.94×1010
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fr −mg sin qr = 0

N2 −mg cos qr = 0

N2e − fr cos qr = 0

8>><
>>:

(4)

where fr, N2 is friction and support force (N), m is the mass of

the sample (kg), g is gravitational acceleration (m·s-2), e is the

vertical distance from point A to axis y (mm), a is the angle between

OA and the y-axis (°), qr is the critical angle of rolling friction (°), r is
the radius of the CKB (mm).

As the inclined plate is gradually lifted, when the angle between

its upper surface and the lower plane of the base reaches the static

rolling stability angle, the force equilibrium of the stationary CKB

placed on the inclined surface is disrupted, initiating its rolling

motion. The condition for rolling is as follows:

N2e≤frr cos qr →
e
r
≤ tan qr • cos qr (5)

In Equation 5, e/r represents the rolling friction coefficient.

Compared to Equation 3, it is evident that the rolling friction

coefficient of the material is lower than the sliding friction

coefficient. Additionally, the rolling friction coefficient is

correlated with the static rolling stability angle and plays a crucial

role in enabling CKB to overcome resistance and roll.
2.3 Discrete element flexible modelling of
CKB

2.3.1 Setting of bonding parameters
The Hertz-Mindlin with Bonding V2 contact model is used to

describe particle-particle interactions. It establishes bonds between

adjacent discrete spherical particles that are initially unconnected.

This model represents the internal bonding properties of CKB and

simulates its evolving behavior under microscopic crushing

conditions. As shown in Figure 3A, forces can displace particles

in both normal and tangential directions.

During the simulation, the forces and torques acting on bonded

particles are iteratively updated. The following expressions describe

the incremental corrections to the normal and tangential cohesive

forces and moments over a single time step dt, which are

accumulated over time to compute the total bonded interactions

As demonstrated in Equations 6, 7:

dFn = nnKnAbdt
dFt = −ntKsAbdt
dMn = −wnKsJdt
dMs = − 1

2 wtKnJdt

8>>>>><
>>>>>:

(6)

where

Ab = p · R2
ab

J = 1
2 p · R4

ab

(7)

where dFn and dFs represent the normal and tangential

adhesion forces of the bonding key, dMn and dMs represent the

torques of the bonding key in the normal and tangential. dt is time
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step in the simulation (s), vn, vt, wn, wt are the normal and

tangential velocities, and the normal and tangential angular

velocities, respectively. Kn, Ks are, respectively, the shear and

normal bond stiffness, Ab and J are, respectively, the moment of

inertia, the polar moment of inertia, and the cross-sectional area of

the bond. Rab is the bond radius, which depends on the diameter of

the smallest sphere in contact.

When the normal and tangential stresses (smax, tmax) between

two adjacent particles attain their maximum values, bond rupture

occurs (Potyondy and Cundall, 2004; Liu et al., 2019).

Consequently, the fracture behavior of CKB can be simulated by

modeling its bonding state. The mathematical expressions for the

normal and tangential ultimate stresses are presented in Equations 8

and 9.

smax <
−Fn
Ab

+
2Ms

J
R (8)

tmax <
−Ft
Ab

+
Mn

J
R (9)

where smax is the normal ultimate stress (Pa), tmax is the

tangential ultimate stress (Pa), Ab is the contact area.

The configuration of particle-particle bonding parameters is

critical for the successful construction of the model. If the parameter

is too small, the bond stiffness is insufficient to withstand the

external forces compared to the external forces acting on the

particles, resulting in unsuccessful bonding between neighboring

particles and model “collapse”. Conversely, if the parameter is too

large, the bond stiffness exceeds the critical load-bearing capacity,

causing excessive elastic deformation in the particle contact areas,

which may result in particle bouncing and potential “explosions.”

Significant differences exist in the parameter combinations of

bonding bonds among different discrete element models (Hu

et al., 2023; Li et al., 2024).
2.3.2 A discrete element modeling methodology
for CKB

A rapid stem modelling approach is proposed to integrate the

concept of discrete element particle bonding. The core methodology

involves importing the 3D coordinates of the center of mass of all

spherical particles into EDEM software, followed by utilizing the

Hertz-Mindlin with bonding contact model to “bond” all the

particles into a “polymer”. Subsequently, the Hertz-Mindlin

contact model is applied to “bond” all particles into an

“aggregate”. To improve simulation accuracy, the molded model

is designed to closely resemble the biological characteristics of the

crop while also being simplified to improve simulation efficiency.

The cross-section of CKBs to a circle transforms the particle-filling

challenge of the discrete element model into a problem of “filling a

large circle with a small circle”. Filling circles in bounded shapes has

been an intriguing problem for a long in pure mathematics

literature (Zadorozhnyi et al., 2024).

Figure 3B illustrates the particle generation process for a

circular cross-section. In this depiction, the yellow circular region

represents the particle template to be filled, and the circle is
frontiersin.org
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partitioned into a grid. The initial particle is generated at the center

of the contour, and subsequent particles are generated around the

contour according to the set particle-particle contact radius,

extending outward to a radius Rab before generating additional

particles. This iterative process continues until the entire region is

filled, forming a discrete element model. As particles accumulate

layer by layer along the length direction of the stem, the CKB

discrete element model is ultimately established.

The microstructural characteristics of CKB are characterized by

the concentric annual rings surrounding the pith core, a consequence

of the wood’s incremental growth layers during each growth period.

As CKB undergoes prolonged growth, its xylem becomes hardened,

the pith core thins, and the epidermis hardens through natural air

drying (Wang et al., 2020), significantly impacting the cutter’s

performance. To enhance computational efficiency, the model was

simplified. Additionally, CKBs were treated as isotropic due to their

radial loading during cutting. The identical particles were employed

to represent the epidermis, xylem, and pith of CKB.

The three-axis spatial coordinate method was employed to

precisely construct the desired physical structure model with a

minimal number of particles, ensuring both computational

efficiency and model fidelity. The CKB was approximated as a

cylinder, representing the stalk’s cross-section in the spatial

coordinate system OXYZ. The Z-axis signifies the stalk’s axial
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direction, with point O(0, 0, 0) as the cross-section center

coordinate. Particle position is determined by its three-axis

coordinates (X, Y, and Z), while cross-section particles are arranged

in a circular pattern resembling a tree’s shape. All constructed meta

particle cross sections were stacked along the axial direction without

gaps to form the desired length discrete metamodel.

The 3D model can be generated using 3D modeling software.

The specific operational steps are outlined below:
a. Export the 3D model representing the actual shape and size

of the CKB to a.x_t file format. Utilizing the three-axis

spatial coordinate method, Hypermesh 2020 performs

meshing with a mesh size set at 1 mm, and subsequently,

the meshed model is saved in.msh format.

b. Hypermesh 2020 software calculates essential data, including

the spatial 3D coordinates of each node in the meshmodel, the

number and names of nodes, and the actual mesh radius. The

delineated mesh’s center point coordinates serve as the meta-

particle coordinates derived from the mesh coordinates.

c. Particle creation rules are devised based on the template

shown in Figure 3C, specifying parameters such as particle

number, type, three-axis coordinates, and rotation angles

along each axis. Within the EDEM software, a new “meta-

particle” sub-file is established, and upon importing the
FIGURE 3

Particle contact model and filling rules. (A) Hertz–Mindlin model with the bonding contact; (B) Particle generation rules and three-axis spatial
coordinates; (C) Particle filling rule for discrete element model.
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Fron
creation rules, a singular CKB discrete meta-simulation

model can be generated. This model serves as a particle

template for subsequent simulations.
In this investigation, the parameter setting for “Hertz-Mindlin

with Bonding V2” adopts empirical values to ensure firm bonding

between each particle forming the discrete metamodel of the CKB,

thereby avoiding any “collapse” or “explosion”. The CKB growth area

feature diameters uneven terrain, with the most statistically obtained

cutting locations situated 20~30 cm above the ground. Consequently,

the diameters of this area were measured, ranging from 8.87 to 10.13

mm, with an average diameter of 9.50 mm considered for the discrete

element model. However, due to the inability to closely tangent

particle diameters, the diameter of the CKB discrete element model

was adjusted to 9.30 mm. Figures 4A–C illustrates the CKB discrete

element flexibility model utilized for the calibration tests.

Within the Hertz-Mindlin model, the interaction force between

two discrete CKB element model particles is governed by

parameters such as the standard stiffness per unit area, shear

stiffness per unit area, critical normal stress, critical shear stress,

and bonding radius. This study draws upon analogous crop stems to

initially establish the parameter ranges for the standard stiffness per

unit area, shear stiffness per unit area, critical everyday stress, and

critical shear stress of the CKB discrete element model (Liu et al.,

2023), as illustrated in Table 3.
2.4 Parameter calibration method

Parameters such as particle radius, Poisson’s ratio, and elastic

modulus in the CKB discrete element model are directly related to

the particle-particle bonding parameters, which serve as the

primary initial values for simulations in EDEM. Therefore,

calibrating the simulation parameters of the CKB discrete element
tiers in Plant Science 07
model is crucial for improving its accuracy. Compression tests were

conducted to calibrate parameters related to “particle-particle” and

“particle-geometry” interactions, with the focus on determining the

peak damage force during the CKB compression simulation.

A Plackett-Burman test was performed using Minitab 2019

software to identify the factors with significant effects. The peak

destructive force was used as the response variable, while the

simulation parameters for contact were defined as shown in

Table 3 (Chen et al., 2025). The setup simulation test comprised

eleven real parameters, each set to low level (-1) and high level (1)

based on recommended range values. The simulation trials included

one center point and a total of twenty-one sets, each repeated three

times to calculate the average damage resistance, denoted as Fmax.

Based on the results of the Plackett-Burman test for selecting

significant parameters, a steepest ascent test was designed to narrow

the parameter range. In the simulation test, non-significant

parameters were set to the midpoint of their range, while the

specified increments gradually increased significant parameters.

A Central Composite Design test was implemented using response

surface methodology, following the results from the steepest ascent test.

Significant parameters were set at high, medium, and low levels, coded

as 1, 0, and -1, respectively, while non-significant parameters were kept

constant, based on the steepest ascent test results. Five centroids were

used to estimate the error. A total of twenty-seven test sets were

conducted, each repeated three times, and the mean values were

recorded as the numerical results for each set.
2.5 Optimal extraction condition by GA-
BP-GA

Due to the complex interplay between independent and

dependent variables, MATLAB was employed to perform GA-BP

regression fitting modeling (Parida et al., 2024) on the data acquired
FIGURE 4

Discrete element model and parameter optimization method. (A) Compression model; (B) Bending and shear model; (C) Stretch model; (D) A
general schematic of a three-layer neural network; (E) Flow chart of combined GA-BP optimization.
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through central composite design, ensuring the consistency between

the predicted values from the quadratic polynomial model and

experimental data and extracting optimal bonding parameters. To

mitigate over-training and over-parameterization risks, the entire

dataset (comprising 81 groups) was randomly partitioned into 57

groups (70%) for training and 24 groups (30%) for testing (Xu et al.,

2022). Furthermore, to expedite neural network gradient descent

while enhancing accuracy in finding the optimal solution, the

mapminmax function was employed for input and output data

normalization (Ma et al., 2023).

The BP neural network (BPNN) is a classic back-propagation

neural network, shown in Figure 4D. Comprising three layers—

input layer, hidden layer, and output layer—it integrates external

input data processed by the “tansig” activation function in the

hidden layer and the “purelin” output function in the output layer.

Subsequently, the output layer neurons deliver results (Xu et al.,

2022). The training target error is set at 0.001, with a learning rate of

0.001 and a maximum of 200 training steps. The input layer consists

of four neurons: normal contact stiffness (Kn), tangential contact

stiffness (Ks), critical tangential stress (tm), and contact radius (Rab),

with the maximum compression force Fmax designated as the output

layer. The number S of hidden layer nodes is determined through

trial and error. The formula for calculating the number S of hidden

layer nodes is:

S =
ffiffiffiffiffiffiffiffiffi
n + l

p
+ c (10)
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where n and l are the number of neurons in the input layer and

output layer, c is a constant, ranging from 1 to 10 (Qi et al., 2019),

the values of S calculated from Equation 10 range from 4 to 13.

Before executing the BP neural network, a genetic algorithm is

used to optimize the initial weights and thresholds of the hidden

and output layers, addressing issues such as local minima. The

genetic algorithm iteratively improves the population of individuals

through selection, crossover, and mutation. Once optimized, the

initial weights and thresholds derived from the genetic algorithm

are applied to the BP neural network, which then learns and updates

the model until the termination criterion is met (Salim et al., 2019),

as shown in Figure 4E. The genetic algorithm parameters are

configured as follows: 200 evolutionary iterations, a population

size of 200, the norm Geom Select selection function with a

coefficient of 0.09, a crossover coefficient of 0.8, and a mutation

coefficient of 0.2 (Gammoudi et al., 2021).

Optimizing unknown nonlinear functions purely based on

input-output data is challenging. To address this, the genetic

algorithm’s nonlinear optimization capabilities are utilized, with

the neural network model acting as the fitness function for the

optimization process. The goal of the optimization is to achieve a

maximum compression force of 1553.51 N while simultaneously

optimizing four bonding parameters. The genetic algorithm is

configured with 100 evolutionary iterations, a population size of

200, the normGeomSelect selection function with a coefficient of

0.8, a crossover coefficient of 2, and a mutation coefficient of 0.2.
2.6 Bending, shear and tensile test
verification

Building upon the aforementioned research, the optimal

combination of CKB bonding parameters was determined. To

delve deeper into the efficacy of these parameters in delineating

the bending and shear mechanical properties of CKB, a CKB

discrete element flexibility model measuring 9.3 mm in diameter

and 90 mm in length was developed. Figure 4A depicts a three-point

bending test, while Figure 4B illustrates a double-support cutting

test. The tool thickness is set 1.5 mm, with an included angle of

150°, and a loading speed of 10 mm·min-1 is applied. Figure 4C

shows the tensile test.
3 Results and discussion

3.1 Mechanical analysis of elastic plastic
crushing of CKB

The mechanical relationship of CKB sample tensile failure are

illustrated in Figure 5A. The curve exhibits two distinct stages: a

nonlinear phase followed by a linear elastic phase. In the initial

phase of the tensile test, the force increases gradually as the

displacement rises, which can be attributed to sliding between the

clamp and the specimen. Subsequently, the force increases linearly

with displacement, accompanied by ongoing deformation until the
TABLE 3 The levels of Plackett-Burman test for particle.

Parameter
Code
name

Parameter
coding

Low
(-1)

High
(+1)

Particle-particle collision
recovery coefficient

A 0.37 0.60

Particle-particle coefficient of
static friction

B 0.45 0.57

Particle-particle coefficient of
kinetic friction

C 0.22 0.3

Particle-geometry collision
recovery coefficient

D 0.44 0.64

Particle-geometry's static
friction coefficient

E 0.42 0.51

Particle-geometry's coefficient of
kinetic friction

F 0.12 0.21

Particle-particle normal stiffness per
unit area/N·m-3 Kn 1×109 1×1011

Particle-particle shear stiffness per unit
area/N·m-3 Ks 1×109 1×1011

Particle-particle critical normal
stress/Pa

sm 1×107 1×1010

Particle-particle critical shear stress/Pa tm 1×107 1×1010

Bonding radius/mm Rab 0.6 1
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tensile force reaches its peak. Upon exceeding the ultimate strength,

the specimen undergoes a sudden fracture, characterized by a sharp

drop in force without a discernible plastic zone— a behavior typical

of brittle materials.

Figure 5B depicts the CKB’s resistance to compression

deformation. The compression process progresses through

distinct stages: elastic, plastic, and compaction. Initially, the

softness of the skin leads to a nonlinear increase in force,

followed by linear elastic deformation of the CKB. With

continued loading, if the maximum compression force exceeds

the crushing strength of the CKB, it fractures and undergoes

permanent plastic deformation. Further deformation results in a

significant increase in compression, leading to gradual compaction

of the CKB under sustained compressive force.

Figure 5C illustrates CKB’s resistance to bending deformation.

Initially, the bending force increases with displacement in the elastic

stage, transitioning into the viscoelastic failure stage. During this

phase, the bending force increases gradually alongside increased

deformation. Upon reaching the peak value due to the indenter,

rupture of the outer skin occurs at this location, resulting in a

sudden drop in load followed by subsequent plastic deformation.

Figure 5D shows the force-displacement curve observed during

the shear test. Initially, the curve exhibits a nonlinear growth stage,
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with the shear force increasing as displacement rises. Subsequently,

as displacement continues to increase, the shear force undergoes

linear elastic changes. Similar to the bending test, during the

viscoelastic stage, the shear force gradually increases, culminating

in the maximum load value. Ultimately, CKB failure occurs,

accompanied by a rapid decrease in load as displacement

increases, marking the end of the curve upon complete

sample detachment.
3.2 Test results of parameter calibration
process

3.2.1 Plackett–Burman design test analysis
The significance of each factor is determined using the Plackett–

Burman design test, which compares the difference between the two

levels of each factor with the overall difference, enabling efficient

identification of factors that significantly influence the response

value (Spadi et al., 2021). Design-Expert 13 software is used in this

study, with Fmax serving as the response variable, to identify factors

significantly impacting Fmax. For each factor, high and low levels are

selected, a center point is selected, and a total of 21 tests are

conducted, as shown in Table 4.
FIGURE 5

Force versus displacement for different loading modes. (A) Tensile test; (B) Compression test; (C) Bending test; (D) Shear testl.
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Figure 6A depicts the Pareto diagram illustrating the results of

the Plackett–Burman design test. The factors affecting Fmax from

large to small are: Kn, tm, Ks, Rab, B, sm, A, D, F, C, E, Kn, tm and Ks

are identified as the significant influencing factors positively

correlated with Fmax. Overall, bonding parameters exert a more

substantial impact on Fmax, thus warranting the test’s focus

on them.
3.2.2 Steepest climb test analysis
The steepest climb test can be used to study the impact of factor

levels on evaluation indicators and further narrow the range of

factor levels. Research has found that contact parameters have a

small impact on Fmax (Bryan et al., 2021). The contact parameters

have been measured through experiments in the Materials and

methods section. In subsequent experiments, the average is selected

for simulation calculations, and the impact of the contact

parameters on the maximum compression force is no longer

considered. Based on the results from the Plackett–Burman

design test, this study focused solely on conducting the steepest

ascent test for the bonding parameters to investigate their influence

on the force-deformation curve. The relative error DE is given by

Equation 11.
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D E =
∣ Fmax − Fave ∣

Fave
� 100 (11)

where Fave is the average value of Fmax (N).

Following iterative experimental adjustments, it was noted that

the experimental design outcomes shown in Table 5 closely

resemble the actual values. It is worth noting that the relative

errors for tests No. 3 and No. 5 were the smallest, at 6.93% and

6.02% respectively. Building upon these findings, subsequent

central composite design test were executed.

Figure 6B shows the deformation curve obtained from the

climbing test. The variations during the elastic stage across all

curves are largely consistent, displaying a trend of linear growth.

Higher values of Kn, Ks, and Rab are associated with increased

compressive strength for P1 and P2, with the maximum

compression force exceeding 2000 N. Curves corresponding to

tests P3 to P7 exhibit a similar trend in compression force the

evolution, characterized by an initial increase followed by a

decrease. At an average deformation of 2.02 mm, the yield point

is attained, leading to a gradual decrease in compressive strength.

This is followed by a stage of compression and densification, during

which compressive strength gradually increases. Consequently, Kn,

Ks and Rab not only affect Fmax, but also significantly influence the
TABLE 4 Design and results of Plackett-Burman test scheme.

NO. A B C D E F Kn Ks sm tm Rab Fmax

1 1 1 1 -1 -1 1 1 -1 1 1 -1 1097.85

2 1 -1 1 1 -1 -1 -1 -1 1 -1 1 149.85

3 -1 -1 -1 1 -1 1 -1 1 1 1 1 1167.05

4 1 1 -1 -1 1 1 -1 1 1 -1 -1 6.19

5 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1612.92

6 -1 1 1 -1 1 1 -1 -1 -1 -1 1 155.47

7 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 443

8 1 1 -1 -1 -1 -1 1 -1 1 -1 1 515.08

9 0 0 0 0 0 0 0 0 0 0 0 849.58

10 1 -1 1 -1 1 1 1 1 -1 -1 1 716.83

11 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 7.11

12 1 -1 -1 1 1 -1 1 1 -1 -1 -1 625.17

13 -1 1 -1 1 -1 1 1 1 1 -1 -1 724.18

14 1 1 1 1 -1 -1 1 1 -1 1 1 1694.48

15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.92

16 1 -1 1 1 1 1 -1 -1 1 1 -1 84.01

17 -1 -1 1 -1 1 -1 1 1 1 1 -1 2610.67

18 1 1 -1 1 1 -1 -1 -1 -1 1 -1 22.99

19 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1356.97

20 -1 1 -1 1 1 1 1 -1 -1 1 1 1022.18

21 -1 1 1 1 1 -1 -1 1 1 -1 1 1021.29
fr
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F-s curve trend. Therefore, the parameter range of Kn and Ks is

further determined to be 1×1010 to 5×1010 N·m-3.
3.2.3 Response surface test analysis
To determine the optimal combination of bonding parameters,

a four-factor, three-level central composite experimental design was

executed utilizing Design-Expert 13 software. Based on the findings

from the Plackett-Burman design and steepest climb tests, the

contact parameters were set to the 0 level. A total of 27 tests were

conducted, with the average of three repeated tests serving as the

test outcome. Table 6 illustrates the experimental design and

corresponding results.
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After analyzing the results of the central composite design test, a

second-order regression model was developed to explain the factors

influencing CKB under compressive force, as shown in Equation 12.

Fmax = 1317:76 + 359:86Kn + 100:91Ks + 95:16tm + 494:7Rab + 22:99KnKs

+134:24Kntm + 210:85KnRab − 48:36Kstm + 112:04KsRab

+27:73tmRab � 59:23Kn
2 � 382:74Ks

2 � 63:51tm 2 + 84:04Rab
2

(12)

Table 7 presents the variance analysis results of the

quadratic regression model. The regression model (p<0.001)

indicates a highly significant relationship between the maximum

compression force and the derived regression equation. The lack

of fit term (p=0.6584>0.05) suggests a small proportion of

abnormal errors between the derived regression equation and

the actual fitting, indicating a good fit. With a coefficient of

determination (R²=0.9652) and an adjusted determination

coefficient (Radj²=0.9247), along with an accuracy of 16.05%, the

regression model exhibits satisfactory accuracy. Additionally, Kn,

Rab, Kntm, KnRab, and Ks² demonstrate extremely significant

effects on Fmax (P<0.01). Ks, tm and KsRab exhibit significant

effects on Fmax (p<0.05), while the remaining factors are not

significant. The order of influence of the four parameters on

Fmax is Kn=Rab>Ks>tm.
Drawing upon the theoretical framework and the analysis

shown in Figures 6C, D, it becomes evident that an increase in Kn

enhances the stiffness of the CKB discrete element model in the

normal direction, consequently augmenting Fmax. Rab is employed

to delineate the bonding behavior among particles, as illustrated in
FIGURE 6

Pareto chart and response surface graph. (A) Pareto chart; (B) Effect of bonding model parameters on Fmax; (C-E) Response surface of the optimal
solution of parameter calibration.
TABLE 5 Steepest climb test method and results for bonding parameters.

No. Kn Ks tm Fmax DE(%)

1 5×1010 5×1010 1×1010 2785.90 79.33

2 5×1010 3×1010 1×109 2296.34 47.82

3 5×1010 1×1010 1×108 1445.99 6.93

4 3×1010 1×1010 1×1010 1269.11 18.31

5 3×1010 3×1010 1×109 1459.89 6.02

6 3×1010 5×1010 1×108 1100.32 29.17

7 1×1010 1×1010 1×1010 933.54 39.91
Values in parentheses represent DE. The other parameters are as follows: the contact
parameters are all taken to the 0 level, s=5.005×109 Pa, and Rab=0.8 mm.
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Figure 6D. It is observed that Fmax escalates with an augmentation

of Rab. A larger bonding radius engenders a stronger bonding force

among particles, thereby bolstering the resistance to compression-

induced destruction. As shown in Figure 6E, Fmax exhibits an initial

rise followed by a decline with increasing Ks. Broadly speaking,

augmenting Ks can enhance CKB’s capacity to withstand

tangential deformation Equation 2. Nonetheless, owing to the

directionality of the compressive force, the tangential stiffness

exerts minimal impact on the radial compression of CKB. This

finding aligns with the conclusions drawn from the discrete element

models of cotton stalks (Zhao et al., 2023) and yam roots (Liu

et al., 2022).

Design-Expert 13 software is used to optimize the regression

model, with the average CKB compression force (1553.51 N) set as

the target. Equation 13 defines the optimization constraints.
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a → 1553:51

s:t:

1� 1010 ≤ Kn ≤ 5� 1010

1� 1010 ≤ Ks ≤ 5� 1010

1� 107 ≤ tm ≤ 1� 1010

0:6 ≤ Rab ≤ 1

8>>>>><
>>>>>:

8>>>>>>><
>>>>>>>:

(13)

By employing the average value of the actual compression force,

the regression equation is solved to ascertain the optimal

combination of four factors that align with the compression

characteristics of CKB: Kn=3.05×10
10 N·m-3, Ks=3.25×10

10 N·m-3,

sm= 7.06×109 Pa, Rab=0.80 mm.

3.2.4 Inversion of significance parameters in GA-
BP-GA

Using the trial-and-error method, the number of neurons in the

hidden layer was explored, ranging from 3 to 13. Due to the limited

size of the training dataset, regression fitting may introduce errors.

Therefore, the training process was iterated 5 times to determine the

optimal number of neurons, which was found to be 13. The

performance across the training, validation, and testing datasets

for various epochs is shown in Figure 7A. The mean squared error
TABLE 7 ANOVA of the central composite design test.

Source
Sum of
Squares

df
Squares
Mean

F-value p-value

Model 9.44E+06 14 6.70E+05 23.79 <0.0001**

Kn 2.33E+06 1 2.33E+06 82.84 <0.0001**

Ks 1.83E+05 1 1.83E+05 6.51 0.0254*

tm 1.63E+05 1 1.63E+05 5.79 0.0331*

Rab 4.41E+06 1 4.41E+06 156.55 <0.0001**

KnKs 8454.02 1 8454.02 0.3004 0.5937

Kntm 2.88E+05 1 2.88E+05 10.25 0.0076**

Kn Rab 7.11E+05 1 7.11E+05 25.28 0.0003**

Kstm 37413.13 1 37413.13 1.33 0.2713

KsRab 2.01E+05 1 2.01E+05 7.14 0.0203*

tmRab 12303.19 1 12303.19 0.4372 0.5210

Kn² 9020.20 1 9020.20 0.3206 0.5817

Ks² 3.77E+05 1 3.77E+05 13.39 0.0033**

tm² 10370.33 1 10370.33 0.3685 0.5551

Rab² 18178.72 1 18178.12 0.6460 0.4372

Residual 3.38E+05 12 28138.71

Lack
of Fit

2.72E+05 10 27155.78 1.05 0.5818

Pure
Error

66106.71 2 33053.35

Cor Total 9.71E+06 26
fro
*Indicates that the term is significant, P<0.05,** indicates that the termis highly significant,
P<0.01; coefficient of determination R2 = 0.9652; adjusted determination
coefficientR2adj=0.9247;coefficient of variance CV=16.18%.
TABLE 6 Central composite design test and results.

No. Kn Ks tm Rab Fmax

1 1 1 1 -1 706.67

2 1 -1 -1 -1 198.75

3 1 -1 1 -1 844.46

4 0 0 0 -1 718.49

5 -1 -1 -1 1 599.05

6 1 -1 -1 1 1271.36

7 1 1 -1 -1 486.46

8 1 -1 1 1 2113.33

9 -1 -1 1 -1 202.48

10 0 0 1 0 1237.14

11 0 0 -1 0 1236.68

12 1 1 1 1 2273.51

13 -1 1 1 -1 264.38

14 0 0 0 0 1562.00

15 -1 -1 1 1 602.16

16 -1 1 1 1 1037.15

17 0 0 0 1 2050.50

18 0 0 0 0 1236.68

19 0 1 0 0 919.73

20 -1 1 -1 -1 248.21

21 -1 1 -1 1 1026.42

22 1 1 -1 1 2051.28

23 -1 -1 -1 -1 450.22

24 -1 0 0 0 760.33

25 0 0 0 0 1258.68

26 1 0 0 0 1722.05

27 0 -1 0 0 915.53
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(MSE) of the yield reached its minimum at epoch 3, with a value of

0.0018869, indicating the completion of neural network training.

The training of the GA-BP network demonstrates rapid

convergence and high stability, thereby better meeting the

experimental requirements.

Building on the aforementioned optimization, a neural network

model with exceptional performance was developed. As shown in

Figure 7B, post-training analysis reveals correlation coefficients (R)

for the training, validation, testing, and overall datasets, which are

0.99954, 0.98771, 0.96117, and 0.99094 respectively. These values

signify a strong correlation between the predicted and actual data,

rendering this neural network model suitable for subsequent

experimental analyses.

Figure 7C depicts the fitness change curve of random evolutionary

generation variations. Initially, GA leverages its group search

characteristics, inducing a sharp drop in the fitness of the selected

individual. Subsequently, through multiple crossover and selection

processes, GA induces minor positive changes in the fitness of the

selected individual, gradually approaching the target value. By the

119th generation, the fitness curve gradually converges near 0,

indicating minimal disparity between the predicted and target

values. After numerous iterations, when the number of evolutionary

iterations reaches the target value of 200, GA ceases selection and

identifies the individual with the closest fitness. Employing the

compression average (1553.51) as the optimization target, the

optimal parameters obtained are as follows: Kn=3.67×10
10 N·m-3,

Ks=3.42×10
10 N·m-3, sm=6.57×108 Pa, Rab =0.78 mm.

Table 8 presents the parameters obtained through RSM and GA-

BP-GA for simulation, with corresponding errors from the actual

values being 6.06% and 2.79%, respectively. Notably, the parameters
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optimized by GA-BP-GA show greater accuracy and closer alignment

with the actual values. Analyzing the numerical values of the breaking

points, it is observed that the simulated values exceed the actual values,

possibly due to the oversimplification of CKB and the neglect of

mechanical differences between the epidermis and xylem.

Consequently, an actual test curve, close to the previous target value,

is selected for curve fitting in the elastic deformation stage.

Simultaneously, compression force-displacement curves obtained

using two bonding parameters are simulated, and these curves are

fitted for the elastic deformation stage. Figure 8 illustrates similar trends

among the three curves, with fitting equation values approaching 1,

indicating greater accuracy of the compression force fitting equation in

the elastic stage. Notably, the errors in the slopes between the simulated

and actual curves are 9.40% and 0.24%, respectively, underscoring the

ability of the established CKB discrete element flexibility model to

capture force changes during compression.

An important observation is that the simulated deformation

upon reaching fracture exceeds the actual value. Specifically, the

actual compression curve of CKB fractures at 1.71 mm, followed by

a linear increase in compression force. In contrast, the simulation

curves fracture at approximately 2.34 mm and 1.98 mm of

deformation, respectively. Following the fracture, there is an

initial phase of linear growth, followed by force fluctuations

attributed to bond breakage between particles.
3.3 Verify test results

In the CKB simulated bending test, the Fwi is 544.85 N, while the

average Fwa of the physical bending test is 520.48 N, resulting in a
FIGURE 7

GA-BP-GA evaluation. (A) Performance; (B) Regression analysis; (C) Fitness curve in evolution process.
TABLE 8 Comparative analysis between simulated and actual values.

Rupture pressure value (N) The slope of the fitted curve

Simulated values /N
RSM GA-BP-GA RSM GA-BP-GA

1459.35 1596.78 1058.90 965.65

Actual values/N 1553.51 967.92

Error/% 6.06 2.79 9.40 0.24
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relative error of 4.68%. Figure 9A presents a comparison between

the simulated bending curve and the actual bending curve,

illustrating distinct stages of the CKB fracture process: elastic,

elastoplastic, and fully plastic regimes, characterized by a gradual

reduction of resistance (Figure 9D). Notably, the curves in the

elastic stage almost overlap; however, as deformation increases, the

slopes of the actual bending curves surpass those of the simulated

bending curves, attributed to the simplification of CKB. Upon

exceeding the breaking point of CKB, although the load-

displacement curve undergoes sharp changes, it still maintains a

certain bearing capacity. Furthermore, the sustained tension of

fibers on the bottom side of the CKB inhibits further fracture

during the actual bending test. With increasing bending force and

propagation of microcracks, absorbed energy is released in the form

of elastic waves after several repeated failure processes, culminating

in the complete fracture of the stem sample. The CKB flexible

discrete element model effectively captures the gradual destruction

and failure of CKB through the fracture of bonding relationships

between particles.

Figure 9B shows a comparison between actual experiments

and simulation experiments. The mean Fc of the actual shear test

for CKB is 1352.85 N, while the Fc of the simulated bending test is
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1408.80 N, resulting in a relative error of 4.14%. Figure 9E shows

the shear force-deformation curve, where in the shear force

gradually increases as deformation escalates, displaying a trend

of initially increasing and then decreasing rate of increase. This

pattern mirrors that of the bending curve, albeit requiring a longer

duration to reach the maximum crushing point. Upon surpassing

the shear strength of the sample, the sample fractures, with force

changes exhibiting smoother trends compared to the compression

curve, devoid of significant fluctuations. Comparative analysis

reveals a similar trend in the relationship between shear force

and displacement obtained from simulation to real results,

underscoring the capability of the CKB discrete element

flexibility model to depict the crushing relationship during

shear processes.

To further validate the accuracy of the discrete element model, a

tensile test was conducted. Figure 9C shown a comparison of the

tensile deformation between the simulation and the actual test.

During the tensile test, the branches underwent stretching, followed

by a local fracture at the center and a complete cross-sectional

fracture. The fracture behavior in the simulation model closely

mirrors that of the actual branches. Figure 9F depicts the variation

in tensile force as the branches were stretched. The tensile force
FIGURE 8

Verification of F-s curves and equation fitting for the elastic deformation stage. (A) F-s curves comparison; (B) F-s curve fitting in physical test; (C) F-
s curve fitting in simulation test (RSM); (D) F-s curve fitting in simulation test (GA-BP-GA).
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changes follow a similar pattern, indicating that the discrete

element model replicates the tensile properties of real tea

branches. The model’s maximum tensile force is 352.08 N, with

an 8.64% relative error compared to the actual test value of 321.63

N. Therefore, the model accurately reflects the tensile properties

of CKB.
3.4 Discussion

This investigation reveals that CKB possesses distinct

mechanical characteristics, markedly differing from those of

cotton straw (Jha et al., 2008) and maize straw (Okyere et al.,

2022) in stress levels and deformation rates. Intriguingly, CKB

displays notable plasticity under compression, with its mechanical

attributes heavily contingent upon the orientation of wood fibers.

When longitudinally arranged fibrous bundle-like organic materials

within the stem undergo pressure against transverse grains, cell

walls flatten, resulting in the densification of CKB. Unlike many

straw materials, CKB’s cross-grain compression does not lead to

unloading failure once it transitions into plasticity fully. Instead,

after a certain strain threshold is reached, pressure resistance

escalates rapidly.

CKB exhibits an irregular shape, uneven material distribution,

and significant variation in mechanical properties, which are

further influenced by moisture content and cross-sectional area

disparities (Krenke et al., 2018; Nazari Galedar et al., 2008). This

investigation constructs a CKB discrete element flexible model with

elastic-plastic fracture characteristics, employing a stem sample
Frontiers in Plant Science 15
with a representative moisture content of 32.45% and a diameter

of 9.5 mm. In contrast to prior studies (Shi et al., 2022), this paper

incorporates a comparison of force change curves under bending

and shear failure, enhancing the model’s authenticity. Bonding

parameters notably impact the destructive potential of CKB,

consistent with findings from prior research (Zhang et al., 2023).

Leveraging CKB’s flexibility, the discrete element model enhances

Rab. Interestingly, parameters affecting maximum compression

force-Kn, Ks, and tm-differ from prior research, potentially due to

varying modeling methodologies. This study employs a discrete

element flexible model with meta-particles, utilizing X, Y, and Z

coordinates to position and rotate particles, minimizing overlap and

gaps, thereby reducing setup time and energy. Utilizing a BPNN

based on genetic algorithms for optimal bonding parameter

determination mitigates the influence of RSM, prone to local

optima, a technique frequently employed in chemistry and food

sciences (Karambeigi et al., 2023). Drawing from Ding et al. (2023),

this study introduces this approach into discrete element simulation

parameter optimization, enhancing bonding parameter accuracy.

This study simplifies the branch material as a homogeneous

isotropic material, without distinguishing the mechanical

properties of the epidermis and xylem. However, the epidermis of

agricultural and forestry branches is harder and more brittle, while

the xylem exhibits ductility and elastic-plastic behavior. These

differences may result in inconsistencies in the simulation’s

mechanical parameters. The isotropic assumption overlooks the

differences in the mechanical properties of fibers along the

longitudinal and radial directions, potentially leading to

inaccuracies in stiffness and strength estimation. To address the
FIGURE 9

Multi mechanical experimental verification. (A) Comparison of three-point bending tests; (B) Comparison of double support cutting tests;
(C) Comparison between tensile simulation test and actual test; (D) Comparison of bending force; (E) Shear force comparison; (F) Comparison of
tensile force.
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limitations of the homogeneous isotropic model, future work will

use a transverse anisotropic model to more accurately represent the

mechanical properties of branches. Experimental calibration of

parameters such as elastic modulus, shear modulus, and Poisson’s

ratio in various directions will also be conducted. Additionally, to

account for the differences between the epidermis and xylem, a

layered composite material model will be employed to assign

distinct mechanical parameters to each component.

Furthermore, previous studies by the research team have

indicated that within a specific moisture content range, the

maximum crushing force of CKB decreases with increasing

moisture content. While studies have employed specific bonding

parameters as variables to delineate the mechanical evolution

characteristics of different CKB’s, their accuracy requires further

validation. Moving forward, comprehensive consideration of

various factors is imperative to establish a robust correlation

between the mechanical properties of CKB and the discrete

element flexibility model, facilitating enhanced exploration of

CKB’s biomechanical properties and expediting its utilization

as feedstock.
4 Conclusion

This paper proposes a method for calibrating parameters related

to the multi-mechanical properties of elasto-plastic materials,

specifically focusing on CKB. It conducts comprehensive

investigations into the crushing evolution principles of CKB via

multi-mechanical tests and integrates these findings with empirical

evidence to formulate a discrete CKB model characterized by elasto-

plastic crushing properties, termed the metaflexible model.
Fron
1. A force-displacement curve for CKB during the stubble

period was obtained through a series of diverse mechanical

tests. The analysis revealed that the elastic-plastic crushing

mechanical behavior of CKB three stages: elastic, elastic-

plastic, and fully plastic. CKB exhibited maximum

destructive forces of 312.32 N, 1553.51 N, 520.48 N, and

1376.52 N under various loading conditions including

tension, compression, bending, and shearing, respectively.

Notably, the tensile and bending tests necessitate lower

levels of destructive force. The measured elastic modulus,

Poisson’s ratio and shear modulus of CKB are 1.74×109 Pa,

0.36 and 6.4×108 Pa respectively.

2. The CKB discrete element flexibility model was constructed

utilizing mesh division and the rapid filling method for

element particles, augmented by integration with the Bond

V2 model. Analysis and calibration via PB tests and central

composite design tests respectively led to the establishment

of regression equations for normal stiffness per unit area,

shear stiffness per unit area, critical tangential stress,

bonding radius, and Fmax. The impact of each factor on

Fmax was assessed through variance analysis. The findings

indicate that the normal stiffness per unit area and bonding

radius exert a highly significant influence on Fmax, while
tiers in Plant Science 16
the shear stiffness per unit area and critical tangential stress

also contribute significantly to Fmax. Utilizing the peak

compression crushing force and force-displacement

evolution curve as response variables, the parameters of

the discrete element flexibility model for Caragana stalks

were optimized. The optimal parameters for the bonding

model were determined as follows: Kn=3.67×10
10 N·m-3,

Ks=3.42×10
10 N·m-3, sm=6.57×10

8 Pa, Rab=0.78 mm.

Simulation tests conducted using bonding parameters

yielded an error of 2.79% compared to actual destructive

forces, with a slope error of the elastic stage curve at 0.24%.

3. Leveraging the calibration outcomes, a discrete element

flexibility model for CKB was formulated. Subsequently,

the bending and shear processes from both actual and

simulated tests were scrutinized, followed by a comparative

analysis of the test outcomes. The discrepancies between

the simulated and actual fracture forces in the bending,

shear, and tensile tests were 4.68%, 4.14%, and 8.64%,

respectively, aligning well with the experimental results.

The simulated crushing curve demonstrates a high degree

of concordance with the measured curve. This affirms the

accuracy of the established CKB discrete element flexibility

model, which adeptly delineates the crushing mechanical

attributes of CKB. Furthermore, it corroborates the

feasibility and efficacy of the modeling approach

advocated in this article.
The model will be used to optimize the structural parameters

of crushing blades, including their shape, angle, and number,

thereby improving crushing efficiency. It will also help analyze

the movement trajectory of branches, reduce blockages, and

enhance conveyor performance. Additionally, by evaluating

energy consumption, it will assist in achieving energy-saving

designs and extending the equipment’s lifespan. These future

applications will contribute to improving the performance and

reliability of crushing machinery, providing significant practical

value in engineering.
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