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under different light conditions
as basis of an AI-based
model for PAM fluorescence/
gas-exchange correlation
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Khanh Tran Quoc2 and Ralf Kaldenhoff1

1Department of Applied Plant Sciences, Faculty of Biology, Technical University of Darmstadt,
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Photosynthetic activity can be monitored using pulse amplitude modulated

(PAM) fluorescence or gas exchange. While PAM provides insight into the light-

dependent reactions, gas exchange reflects CO2 fixation and water balance.

Accurate, non-invasive prediction of photosynthetic performance under varying

conditions is highly relevant for phenotyping and stress diagnostics. Despite their

physiological link, data from both methods do not always correlate. To

systematically investigate this relationship, photosynthetic parameters were

measured in maize (Zea mays, C4) and basil (Ocimum basilicum, C3) under

different photon densities and spectral compositions. Maize showed the highest

CO2 assimilation rate of 30.99 ± 1.54 μmol CO2/(m²s) under 2000 PAR green

light (527 nm), while basil reached 10.56 ± 0.92 μmol CO2/(m²s) under red light

(630 nm). PAM-derived electron transport rates (ETR) increased with light

intensity in a pattern similar to CO2 assimilation, but did not reliably reflect its

absolute values under all conditions. To improve prediction accuracy, we applied

a machine learning model. XGBoost, a gradient-boosted decision tree algorithm,

efficiently captures nonlinear interactions between physiological and

environmental parameters. It achieved superior performance (R² = 0.847; MSE

= 5.24) compared to the Random Forest model. Our model enables accurate

photosynthesis prediction from PAM data across light intensities and spectral

conditions in both C3 and C4 plants.
KEYWORDS

chlorophyll fluorescence, gas exchange, machine learning, photosynthesis prediction,
C3/C4 plants
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Introduction

Chlorophyll fluorescence analysis by pulse-amplitude

modulated (PAM) fluorometry and gas exchange measurements

are essential techniques for investigating the mechanisms

underlying photosynthesis. The PAM technique allows for a

detailed analysis of parameters such as maximum photosynthetic

efficiency (Fv/Fm), photochemical efficiency of Photosystem II

(FPSII), and related terms (Kornyeyev and Holaday, 2008).

Fv/Fm represents the ratio of variable fluorescence (Fv) to

maximum fluorescence (Fm) and indicates the maximum

efficiency of Photosystem II (PSII) under optimal light conditions.

It shows how effectively light energy is converted into chemical

energy. FPSII is the quantum yield of the photosynthetic electron

transport chain under a given light condition. Accordingly, FPSII

values reflect the competence with which the plant uses absorbed

light for electron transport, which ultimately contributes to the

synthesis of NADPH and ATP.

While PAM measurements primarily assess the efficiency of

energy conversion in the thylakoid membranes, gas exchange

measurements directly assess the diffusion of CO2 as well as that

of water vapor. Key data collected from gas exchange analysis

include photosynthetic rate, transpiration rate, and stomatal

conductance. These provide information about net carbon gain

and stomatal regulation (Long and Bernacchi, 2003). Even though

both techniques are related to photosynthesis they do not monitor

the same biochemical reaction. PAM focuses on photochemical

reactions at the level of PSII, whereas gas exchange reflects the

integrated result of downstream metabolic activity, particularly the

fixation of carbon through the Calvin cycle. The two methods are

functionally linked, as the energy generated in the light reactions

drives the dark reactions. Optimal photochemistry is a prerequisite

for effective carbon assimilation. Conversely, impaired light

reactions can reduce the flux into carbon metabolism. However,

discrepancies arise because several intermediate and downstream

processes—such as Rubisco activity, mesophyll conductance, or

photorespiration—can modulate the link between photochemical

and net carbon fixation (Flexas et al., 2012). This decoupling

becomes particularly evident under stress conditions such as high

light, where PAM fluorescence may overestimate photosynthetic

capacity due to ongoing electron transport despite limited CO2

fixation (Baker and Rosenqvist, 2004; Flexas and Medrano, 2002;

Genty et al., 1989). If a calculation of the relationship between PAM

and gas exchange measurements would be feasible, these could

significantly reduce the time required for photosynthetic

assessments because PAM measurements are quick and less time-

consuming in comparison to gas exchange measurements. PAM

fluorometry enables fast and non-invasive measurements of

photosynthetic activity, with fluorescence parameters such as Fv/

Fm orFPSII typically measured within seconds to a few minutes. In

contrast, gas exchange measurements are often more time-

intensive, requiring stabilization of measurement conditions and

taking several minutes to up to an hour per sample. Portable PAM

fluorometers can be used both in the field as well as laboratory and

provide data within a few minutes, whereas gas exchange
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measurements are more labor-intensive, requiring specialized

equipment, which is substantially larger and data observation

requires more time (Baker, 2008). In case of a determinable

relation between values from PAM and gas exchange, i.e. using

FPSII to predict the efficiency of CO2 fixation, PAM measurements

can be utilized to determine photosynthetic rates. Under optimal

conditions there is a good correlation between FPSII and the CO2

assimilation rate as the electrons produced in PSII are mainly used

for CO2 fixation (Lysenko et al., 2022). This makes PAM

fluorescence measurements a meaningful indicator for

photosynthetic activity in different plant species (Maxwell and

Johnson, 2000) particularly under moderate light intensities.

Genty et al., showed that the quantum yield of PSII electron

transport correlates well with carbon assimilation when there are

no additional active electron sinks. This relationship is more stable

under optimal conditions with moderate light (200 to 400 PAR

(Genty et al., 1989). It is the basis for using PAM measurements to

estimate the rate of CO2 fixation. However, it is increasingly evident

that these predictions considerably lose accuracy under non-

optimal conditions. For example, Genty et al. (1989) also showed

that the correlation between FPSII and the gas exchange decreases

notably at high light intensities (up to 600 PAR) as alternative

electron flows are activated that do not contribute to CO2 fixation.

The measured photosynthetic rates do not match with the PAM

predicted assimilation rate, particularly under high light irradiation.

It is explained by excess energy in the photosystem that can no

longer be used efficiently and flows into alternative protection

mechanisms (Genty et al., 1989). Similar results were reported by

Flexas andMedrano (2002) under water deficit conditions. Stomatal

conductance regulates the entry of CO2 into the leaf. It was reduced

by water deficiency more than the capacity to transport electrons.

Consequently, a high electron transport rate was measured by

PAM, even though the gas exchange was severely restricted. This

is due to the water stress induced reduction in stomatal

conductance which decreases substomatal CO2 concentrations.

The CO2 limitation is apparently not detected by PAM (Flexas

and Medrano, 2002). Baker and Rosenqvist (2004) showed that

under severe stress, such as high temperature, electron flow rates

remain high, while the CO2 exchange is severely restricted. Heat

damage can disrupt the function of enzymes such as Rubisco while

electron transport in Photosystem II is maintained by alternative

mechanisms and detected by PAM. Under these conditions, current

CO2 assimilation is inefficient (Baker and Rosenqvist, 2004). Under

conditions of low CO2 concentrations or low temperatures,

conventional models also fail (Murchie and Lawson, 2013). Here

the assimilation rate depends on enzyme-activity rather than

electron transport.

In summary, PAM parameter and assimilation rates are

decoupled to a certain extent under the conditions exemplarily

mentioned above (Murchie and Lawson, 2013). The current

photosynthetic activity is overestimated, as alternative electron

fluxes or limitations in stromal processes can affect the results

(Baker, 2008; Flexas and Medrano, 2002; Genty et al., 1989).

Suboptimal conditions include extreme light intensities, water

scarcity, heat stress or non-ideal CO2 concentrations.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1590884
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pappert et al. 10.3389/fpls.2025.1590884
In addition, the predictive ability of PAM measurements for

photosynthetic activity relates to the specific physiology of the plant

under investigation due to different photosynthesis pathways (von

Caemmerer and Furbank, 2003; Farquhar et al., 1980). C3 plants,

such as basil , tend to exhibit higher variations when

photorespiratory processes are intensified (Yin and Struik, 2009).

It occurs more frequently when light intensity is high (>1000 PAR),

and CO2 availability is low (e.g., 100 ppm). Then a considerable part

of the electron transport is directed toward oxygen degradation and

can no longer be used for CO2 fixation. Foyer and Noctor (2000)

provide a detailed explanation of the relationship between electron

transport, oxygen degradation and photorespiration, especially

under high light intensities and low CO2 availability (Foyer and

Noctor, 2000).

In contrast, a linear relationship between PSII activity and CO2

fixation was initially expected for C4 plants such as maize (Krall and

Edwards, 1992). Unlike C3 plants, they utilize a more efficient CO2

fixation mechanism characterized by the spatial separation of CO2

uptake and fixation in the Calvin cycle (Sage and Zhu, 2011). This

leads to an almost complete elimination of photorespiration and to

a stronger correlation between the electron transport rate in PSII

and the CO2 fixation rate. However, under extreme light intensity or

stress conditions, such as drought, high temperatures, or nutrient

deficiencies, alternative electron fluxes that do not directly

contribute to CO2 fixation are also activated in C4 plants.

Finally, nitrogen availability plays a significant role in restricted

photosynthesis rate prediction by PAM parameters, particularly in

C4 plants. Kromdijk et al. (2016) showed that under conditions of

high nitrogen supply, both C3 and C4 plants show a stronger

correlation between PAM parameters and CO2 fixation, as nitrogen

is an important factor for photosynthetic capacity and electron

transport rates (Kromdijk et al., 2016). Nitrogen deficiency, on the

other hand, significantly weakens this correlation, as photosynthetic

capacity is limited under suboptimal nutrient conditions. Thus, C4

plants tend to exhibit a stronger correlation under optimal

conditions, while C3 plants are more susceptible to decoupling.

As a tool for the model setup, we examined the impact of light on

the electron transport rate in PSII obtained by PAM, kept

temperature, CO2 concentration, water supply, as well as

humidity constant and measured gas exchange.

Taken together, a mathematical model is required to predict

photosynthetic rates by PAM data under non-optimal conditions.

Two machine learning tree-algorithms— Random Forest Regressor

(Breiman, 2001) and XGBoost (=Extreme Gradient Boosting)

Regressor (Chen and Guestrin, 2016) — are further on validated

in this research to predict the relationship between chlorophyll

fluorescence (PAM) and gas exchange data. Traditional linear or

empirical models often fail to capture the nonlinear and

multifactorial nature of photosynthetic responses under variable

environmental conditions. Machine learning approaches,

particularly tree-based algorithms such as Random Forest and

XGBoost, are well suited to model such complex interactions and

have shown high predictive accuracy in various plant-related

applications (Boulesteix et al., 2012; Lysenko et al., 2022; Saleem

et al., 2024; Singh et al., 2016, 2023; Varghese et al., 2023; Wu et al.,
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2022; Zhang et al., 2020). These models were selected since the

underlying processes are non-linear and comprise large sets of input

features to accurately predict the assimilation rate. Another

advantage of tree-based algorithms is the explainability due to the

accessible split points of the input data. Almeida et al. (2020)

revealed the capability of tree algorithms for plant classification

and identifying different vegetative and floral traits out of a set of 16

traits (Almeida et al., 2020). An accuracy of 89% was achieved on

average. Additionally, XGBoost has reached in multiple biological

research questions a high accuracy and low error rate and is

therefore utilized in this paper for further investigation (Babajide

Mustapha and Saeed, 2016). To the best of our knowledge, this is

the first study to apply explainable tree-based models to predict CO2

uptake from fluorescence-based input data in C3 and C4 plants

under diverse light spectra.

The goal of this research is to combine PAM and gas exchange

data using machine learning algorithms, to achieve more accurate

photosynthesis predictions by PAM acquired data under varying

light spectra.
Materials and methods

Plant growth conditions

Seeds were pre-soaked in water for a duration of 3 hours, and 20

seeds were subsequently placed in 1 L pots for germination. The

plants were maintained in a greenhouse with a 12-hour light/dark

cycle, a light intensity of 300 μmol/(m²s), a controlled temperature

of 21°C, and 68% humidity. Illumination was provided by SANlight

LED lamps from 8:00 am to 8:00 pm, ensuring a constant photon

flux density of 300 PAR throughout the photo period. This setup

allowed for reproducible growth conditions independent of natural

daylight. Plants were watered daily at 12:00 pm. To ensure uniform

hydration before measurement, all plants received an additional

standardized watering of 100 ml on the day before their

introduction into the experimental setup. After a 5-day

germination period for maize or a 7-day germination period for

basil, the seedlings were transferred into 1 L pots with a 14 cm

diameter for maize or a 110 ml pot with a 7 cm diameter for basil

and grown for 20 days to reach the appropriate age. The basil plants

are repotted in pots with a diameter of 12 cm and a volume of 750

ml after 7 days. The plants used to study the influence of plant age

on photosynthesis were cultivated under the same conditions for 6

weeks. Shade plants were cultivated under a light intensity of 100

μmol/(m²s), respectively. All measurements and plant cultivation

procedures were carried out between March 2023 and

September 2024.
Experimental conditions and illumination

In this experiment, illumination was provided by Sevengines

chips from Chips4Light GmbH (Regensburg, Germany, Figure 1),

an advanced LED system with a narrow beam angle of ±10°. These
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state-of-the-art modules utilize total-internal-reflection (TIR) lens

technology, which minimizes light losses and delivers exceptional

light focus. In contrast to conventional LEDs with standard lenses,

the TIR lenses achieve an efficiency of 90% –95%, ensuring that

nearly all generated light is directed precisely to the target area.

The LEDs used represent the latest generation of chips, among

the brightest available worldwide. The system’s advanced thermal

management and optical design guarantee optimal performance for

each wavelength. The available modules cover a wide wavelength

range between 367 nm and 940 nm, providing flexibility in selecting

wavelengths critical for specific experimental requirements.
Measurements and calculations

Steady state gas exchange measurements
Gas exchange was assessed using a portable gas-exchange

system (GFS-3000, Heinz Walz GmbH, Germany). Measurement

conditions were set to 400 ppm CO2, 18000 ppm humidity, a

cuvette temperature of 25°C, and light intensities ranging from 0

μmol/(m²s) to 8500 μmol/(m²s). These conditions were chosen to

reflect a wide range from darkness to full sunlight conditions,

including stress levels under extreme irradiance up to 8500 μmol/

(m²s), thereby allowing analysis of both optimal and non-optimal

photosynthetic responses (Farquhar et al., 1980). Plants were dark-

adapted overnight (16 hours) and then exposed to 100 PAR white

light (4000 K) for 75 minutes to initiate photosynthesis before

increasing the light intensity. At each light intensity level, plants

were allowed to acclimate for 12 minutes to reach a steady-state

photosynthetic rate, based on prior observations that this duration

is sufficient to stabilize their gas exchange parameters after a change
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in irradiance. Data from the final 2 minutes of this acclimation

period were averaged to ensure steady state conditions

before analysis.

Steady state chlorophyll fluorescence
measurements

Prior to treatment, the plants were dark-adapted for 60 minutes,

after which the lowest light intensity (100 PAR) was applied for 60

minutes. Each subsequent light level was applied for 15 minutes,

allowing the plants to acclimate and reach a steady state.

Chlorophyll fluorescence was assessed using two PAM

fluorometers from Heinz Walz GmbH (Effeltrich, Germany). For

image-based measurements, the Imaging-PAM MAXI system

(IMAG-MAX/L) was used. Saturation pulses were applied every 30

seconds at a wavelength of 650 nm, with an intensity of 5800 μmol/

(m²s) and a pulse duration of 720ms. For portable measurements, the

Junior-PAM fluorometer (CFMG 0225) was employed. Saturation

pulses were generated using a 445 nm LED at a typical intensity of

approximately 6000 μmol/(m²s). Chlorophyll fluorescence

parameters were calculated, including the maximum quantum

efficiency of PSII (Fv/Fm), quantum yield of photosynthetic

electron transport [FPSII = (Fm’ – F)/Fm’], electron transport rate

[ETR = FPSII * PAR * 0.84 * 0.5], and the quantum yield of energy

loss related to non-photochemical quenching [YNPQ = (F/Fm’) – (F/

Fm)] from the Chl fluorescence measurements.
Measurement repetitions

A minimum of ten plants were tested per condition for all

chlorophyll fluorescence and gas exchange experiments. When

multiple conditions were assessed on the same plant, the order of

these conditions was randomized. In total, 360 plants were analyzed

in this study.
Machine learning

Two machine learning models, Random Forest and XGBoost,

were adapted to link chlorophyll fluorescence measurements to

plant gas exchange measurements. These tree-based models were

selected due to their robustness in handling non-linear

relationships, high interpretability, and successful application in

plant physiological modeling (Singh et al., 2023; Zhang et al., 2020).

The hyperparameters of the utilized models are optimized to

enhance their predictive performance. The Randomized Search

Cross-Validation (Bergstra and Bengio, 2012) technique was

implemented to improve the hyperparameters. Due to the high

number of interacting features, randomized hyperparameter tuning

was used to avoid overfitting and ensure generalizability of the

models. This approach employs a random selection process to

choose hyperparameter combinations and subsequently performs

cross-validation. The optimized hyperparameter types for the

Random Forest Regressor are: the number of trees in the forest

(n_estimators), the maximum number of features considered for
FIGURE 1

Sevenengine LED modules with total-internal-reflection (TIR) lens
technology used for precise illumination in photosynthesis
experiments. The modules deliver highly focused light with minimal
loss, ensuring efficient targeting of the experimental area
(Chips4Light GmbH, Regensburg, Germany).
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splitting at each node (max_features), the maximum depth of the tree

(max_depth), the minimum number of samples required to split an

internal node (min_samples_split), and the minimum number of

samples required to be at a leaf node (min_samples_leaf). We

implemented the Random Forest model and conducted 100

iterations, sampling the specified hyperparameters. The following

search ranges were applied:
Fron
• n_estimators = [100,200,300,400,500,800,1000],

• max_features = [None, “sqrt”, “log2”],

• [5 <= max_depth <= 20] with step size 1,

• [0.1 <= min_samples_split <= 0.3] with step size 0.02 and.

• [0.05 <= min_samples_leaf <= 0.2] with step size 0.02.
for the Random Forest Regressor. The hyperparameter search

interval for the XGBoost Regressor are:
• n_estimators = [100, 200, 350, 500, 600, 700, 1000],

• max_depth = [4, 6, 8, 10, 12],

• learning_rate = [0.01, 0.1],

• min_child_weight = [50, 100, 150, 200, 250, 300, 350],

• gamma = [100, 200, 500, 1000, 1500, 2000, 2500, 3000,

3500] and

• colsample_bytree = [0.8, 0.9, 1.0].
Whereas the the learning_rate specifies the step size shrinkage

used in updates to prevent overfitting, the min_child_weight

describe the minimum sum of instance hessian-weight needed in

a child, gamma is the minimum loss reduction required to make a

further partition on a leaf node of the tree and colsample_bytree is a

family of parameters for subsampling of columns.

To provide a reliable evaluation with hyperparameter

optimization a 5-fold cross-validation was employed.
Results

The machine learning model input parameters must comprise

factors with significant impact on photosynthesis rates, as these are

critical for generating accurate predictions. It comprises environmental

conditions such as photon density, temperature, and humidity, as well

as plant-specific traits such as species, developmental stage, or leaf

position, all contributing to the overall photosynthetic performance.

The following sections are structured in two parts: The first part (Input-

Parameter) elucidates the need and the significance of the features

whereas the second part (Machine Learning) employs data of these

features in the machine learning models to predict the assimilation rate

by Random Forest or XGBoost.
Input-parameter

Cultivation under different light conditions
Cultivation of plants under varying light intensities results in

the development of so-called sun and shade plants, with distinct

physiological characteristics. When maize was exposed to 2000
tiers in Plant Science 05
PAR, plants grown under 300 PAR white light (3500K) showed an

assimilation rate of 19.7 ± 1.007 μmol/(m²s) whereas plants grown

under 100 PAR white light exhibit a significantly lower assimilation

rate of 13.9 ± 1.10 μmol/(m²s) under the same conditions (Figure 2).

Sun leaves, cultivated under high light intensities, exhibit

significantly higher CO2 assimilation rates compared to shade

leaves, which developed under lower light intensities. This disparity

in assimilation rates under identical light conditions highlights the

critical influence of light intensity during cultivation. Therefore, it is

essential to include light intensity during plant growth as a variable in

any model predicting CO2 assimilation, as it directly impacts the

current photosynthetic performance of sun or shade leaves even if

data were obtained under significantly higher light irradiation than

those used for plant cultivation.

Plant species: diverse pathways and their impact
Incorporating both C3 and C4 plants into a model examining

the relationship between PAM and gas exchange is supportive for

capturing a broader range of photosynthetic responses across

different environmental conditions. C3 plants, such as basil, rely

on the Calvin cycle for carbon fixation, where CO2 is directly

incorporated into a three-carbon compound. These plants perform

better under cooler, moist conditions with moderate light. In

contrast, C4 plants, such as maize, utilize a specialized carbon

fixation pathway that concentrates CO2 in specific cells, reducing

photorespiration. This adaptation makes C4 plants more efficient

under high light intensity, elevated temperatures, and

dry conditions.

The photosynthetic rates of maize (C4) and basil (C3) under

varying light intensities (PAR, white light) clearly reflect their

distinct photosynthetic efficiencies. At 500 PAR, maize exhibits an

assimilation rate of 12.35 ± 1.309 μmol/(m²s), while basil reaches

7.613 ± 0.916 μmol/(m²s). As light intensity increases to 1000 PAR,
FIGURE 2

Effect of light intensity during cultivation on photosynthesis. The
figure illustrates the assimilation rate (μmol/(m²s)) at 2000 PAR
white light (4000 K) of 21-day old maize plants grown under two
different light intensities: 300 PAR and 100 PAR. n=10 for each
treatment. Error bars indicate standard deviation of the
measurements. p(A;B) < 0,01.
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maize achieves 16.981 ± 1.439 μmol/(m²s) compared to basil’s 8.376

± 0.961 μmol/(m²s). At the highest light intensity (2000 PAR),

maize reaches 19.635 ± 1.362 μmol/(m²s), whereas basil only shows

a slight increase to 8.702 ± 0.969 μmol/(m²s) (Figure 3).

By including data from both C3 and C4 plants, the model can

more accurately simulate photosynthetic responses under varying

environmental conditions. This broader approach enables a more

comprehensive understanding of the factors influencing the

relationship between PAM measurements and gas exchange,

accounting for the distinct physiological strategies of these plant types.

Plant age: evaluating its impact on
photosynthetic rate

We conducted experiments to assess the effect of maize plant

age on photosynthesis rates. To ensure consistency, photosynthesis

was measured at the same location for six consecutive weeks.

The assimilation rates increased from week 1 (17.937 ± 0.376

μmol/(m²s)) to a peak in week 2 (22.805 ± 2.480 μmol/(m²s)) and

week 3 (21.862 ± 0.942 μmol/(m²s)), before gradually declining in

week 4 (17.337 ± 1.767 μmol/(m²s)) and week 5 (17.972 ± 0.721

μmol/(m²s)). Notably, a significant reduction in assimilation rates

was observed in week 6 (6.695 ± 0.579 μmol/(m²s)), marking a

sharp decline in photosynthesis rates (Figure 4).

This suggests that while photosynthesis rates remain relatively

stable during early developmental stages a notable reduction occurs

as the plant matures beyond the fifth week.

Measurement location: influencing
photosynthetic performance

The photosynthetic rate is not uniform across different

locations in the leaf or plant. Our data indicate that older leaf

tissues exhibit higher photosynthetic rates compared to younger leaf

areas. Measurements taken at different locations on the maize plant

(Figure 5A) reveal significant variation. The photosynthetic rate at
Frontiers in Plant Science 06
the leaf tip was 19.760 ± 2.337 μmol/(m²s), while the center of the

leaf showed a lower rate of 13.251 ± 0.990 μmol/(m²s), and the base

had the lowest rate of 12.322 ± 1.108 μmol/(m²s) (Figure 5B). This

variability suggests that age-related changes within individual leaves

influence photosynthetic performance, with older tissues being

more efficient in carbon assimilation. Consequently, spatial

differences across the leaf must be considered when assessing and

comparing photosynthetic rates of different plants, as tissue age can

significantly impact the overall measurement.

Photosynthesis as a function of leaf position
The photosynthetic rate is also not uniform along the shoot axis

in different leaf layers of a single plant, and this variability is species

dependent (Figures 6A, B).

For maize, the middle leaf-layer exhibited the highest

photosynthetic rate at 21.795 ± 0.421 μmol/(m²s), followed by the

upper layer at 19.247 ± 1.004 μmol/(m²s), with no significant difference

between these two layers. The lowest photosynthetic rate was observed

in the lower leaf layer, with a mean rate of 13.941 ± 1.050 μmol/(m²s).

In contrast, basil showed a different pattern, with the upper leaf

layer having the highest photosynthetic rate at 11.618 ± 0.923 μmol/

(m²s), followed by the middle layer at 8.614 ± 0.760 μmol/(m²s).

The lower leaf layer exhibited the lowest rate, with 5.104 ± 0.513

μmol/(m²s) (Figure 6C). This data highlights species-specific

differences in the spatial distribution of photosynthetic activity

within the canopy.

Photosynthetic rates of corn and basil under
various intensities of white and monochromatic
light

We collected data to analyze the photosynthetic rates of maize

(Zea mays) and basil (Ocimum basilicum) under different intensities
FIGURE 3

Photosynthesis in different plant species under varying light
intensities. The graph compares the assimilation rate (μmol/(m²s)) of
the C3 plant basil and the C4 plant maize under light intensities of
500 PAR, 1000 PAR, and 2000 PAR (White light, 4000 K). n=10 for
each treatment. Error bars indicate standard deviation of the
measurements. p(Maize;Basil) < 0,001. *** indicates a statistically
significant difference between species at p < 0.001.
FIGURE 4

Dependence of photosynthesis on plant age. The graph depicts the
assimilation rate (μmol/(m²s)) under 2000 PAR (white light, 4000 K),
measured weekly from the first to the sixth week after sowing. The
highest rates are observed in the second and third weeks, with a
marked decline in the following weeks, reaching the lowest value by
the sixth week. A, B, and C indicate the significance groups. The
error bars represent the standard deviation of the measurements.
Groups A, B, and C differ significantly (p < 0.001).
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FIGURE 5

Dependence of photosynthesis on the measuring point of 3 weeks old maize plants. (A) Schematic representation of the three analyzed leaf
segments relative to the light source during maize cultivation. (B) The graph illustrates the assimilation rate (μmol/(m²s)) under 2000 PAR (white light,
4000 K), measured at three locations: the tip, center, and leaf base. n=10 for each treatment. The error bars indicate the standard deviation of the
measurements. p(Leaf;Center) < 0.01, p(Leaf;Shoot) < 0.01, p(Shoot;Center) = 0.534. Groups A and B differ significantly (p < 0.001).
FIGURE 6

Dependence of photosynthesis on the leaf position of 3 weeks old plants. (A) Schematic representation of the three analyzed leaf positions relative to
the light source during maize cultivation and (B) during basil cultivation. (C) The graph illustrates the assimilation rate (μmol/(m²s)) under 2000 PAR
(white light, 4000 K), measured at three leaf positions: the lowest, middle, and upper for basil and maize. Maize: p(upper; middle) = 0.015, p(upper;
lower) = 0.003, p(middle; lower) < 0.001. Groups A and B differ significantly (p < 0.001). Basil: Groups a, b, and c differ significantly (p < 0.001).
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of white light and monochromatic light (Figure 7). We investigated

500 PAR, 1000 PAR, and 2000 PAR under white (2600 K), red (630

nm), blue (450 nm), and green light (527 nm).

At a PAR of 500 μmol/(m²s), the photosynthetic rates of basil

were relatively consistent across all light treatments, while maize

showed the highest photosynthetic rate under red light (16.620

μmol/(m²s)), which was notably higher than the rates under blue,

green, or white light. At 1000 μmol/(m²s), basil exhibited higher

rates under red and green light, with the red light reaching 9.076

μmol/(m²s), compared to lower rates under blue and white light.

Similarly, maize showed improved assimilation under green light

(23.655 μmol/(m²s)) and red light, which were both higher than the

blue and white light conditions. At the highest light intensity of

2000 μmol/(m²s), basil continued to show enhanced photosynthetic

rates under red and green light, with the highest rate of 10.557

μmol/(m²s) under red light. For maize, green light produced

the highest photosynthetic rate (30.992 μmol/(m²s)), followed

closely by red light, with both outperforming blue and white

light significantly.

Therefore, it is essential to incorporate both light spectrum and

light intensity as important variables in the predictive model, as

they significantly influence photosynthetic performance and thus

impact the accuracy of CO2 assimilation rate predictions.
Feature definition

To establish a connection between chlorophyll fluorescence and

gas exchange parameters, machine learning algorithms were

applied. These algorithms operate on datasets composed of

individual features (Table 1).

Machine learning - input feature set
The input data processing for the tree algorithms were

structured into the following four steps: (1) data cleaning, (2)

data transformation, (3) model training and (4) model evaluation.

Initially, in the data cleaning step the input dataset is prepared

for further evaluation. First the non-numeric features that were only
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provided for the human description of the data were removed. This

includes the textual described condition and the name of the light

source. Furthermore, duplicated data as well as rows which contain

missing values were dropped (Lee et al., 2021).

In the remaining data each feature with less than three distinct

values was also removed since this attribute would provide only

little valuable information (Ilyas and Chu, 2019). In this stage, the

initial dataset of 1783 data with 36 features was optimized to 1739

and 26 features.

Following the initial data preparation, additional functions were

developed in the second step - the data transformation - to improve

the strength of the prediction models. This included the creation of

additional 20 interaction features, to map the domain knowledge of

the researchers into data. This was achieved by combining the

features for specifying the light with the recorded intensities per

wavelength in pairs (Hornung and Boulesteix, 2022). The following

wavelengths were considered: 405 nm, 430 nm, 450 nm, 465 nm, 485

nm, 500 nm, 527 nm, 550 nm, 590 nm, 630 nm, 660 nm, 730 nm and

are pairwise multiplied. By capturing the precise interaction between

two wavelengths, the model can gain a better understanding, that

these features are related and can thus make more accurate

predictions (Hornung and Boulesteix, 2022). Furthermore, the

depth of the tree can be reduced since this correlation must not be

learned by the tree.

As the evaluation date is a non-numeric feature, a new feature

was created by counting the months from the year of the first

measurement with the equation: ((year – first_year)*12 + month)

(Heaton, 2016). This was necessary to analyze the time dependencies

and seasonal patterns in greater detail. In combination with the

month the temporal course and seasonal fluctuations that could affect

the physiological processes in a plant are considered. Since tree-based

algorithms will be utilized as models the absolute features were

further processed and no standardization or normalization process

is required (Breiman, 2001).

Several feature sets were created utilizing different models to

determine the optimal set of input parameters for the model. During

the analysis, the development of so called minimal and interaction-

based feature sets are considered and are subsequently explained.
FIGURE 7

Photosynthesis depends on light intensity and wavelength. The chart shows plant assimilation (μmol/(m²s)) under different light intensities and
wavelengths for Basil (A) and Maize (B). PAR levels of photosynthetic radiation were 500, 1000, and 2000 μmol/(m²s). Light treatments included red
light (630 nm), white light (2600 K), blue light (450 nm), and green light (527 nm). n=10 for each treatment. For a PAR of 500 μmol/(m²s),
assimilation rates were similar across all light treatments. Groups A, B, C and D differ significantly (p < 0.001).
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The minimal feature set comprised a core selection of

characteristics believed to be relevant. The crucial feature subset

comprised Y(II), ETR, par_total and plant age. The Interaction data

set extends the Minimal set by incorporating additional variables,

including plant_id, month and year. Furthermore, specific spectral

light components (430 nm, 450 nm, 485 nm, 500 nm, 527 nm, 550

nm, 590 nm, 630 nm, 660 nm, as well as various white light sources at

2600 K, 3200 K, and 4000 K) are considered. To enhance

predictability, a feature set is developed based on interactions

between two wavelengths at a time as explained before. Additional

factors also include tleaf, e, gH2O, leaf_level, and m_segment.

Using these two different sets, the influence of diverse

combinations of features on the model was systematically

evaluated. The minimal set provided insight into the basic and

essential predictors, while the interaction term-based set focused on

capturing high-order complex interactions and determining their

additional value and included all provided features.

These features are further evaluated by two machine learning

tree-algorithms: Random Forest Regressor (Breiman, 2001) and

XGBoost Regressor (Chen and Guestrin, 2016).

The utilized data set was split into two subsets for training and

testing with 80% train and 20% test data. The divide assures that the

model’s accuracy and ability to generalize is determined by evaluating

its performance on data that were not used for training. This ensures

that the performance of the trained models is evaluated on data that

has not been previously observed during the training phase, thereby

yielding a transferable and generalized model.

Machine learning - hyperparameter search
The previous section stated the importance of light intensity,

plant age, measuring point, leaf position as well as different

wavelengths. Further on, the results of the tree-based machine
Frontiers in Plant Science 09
learning models XGBoost and Random Forest are stated. Overall,

1739 data points with a maximum of 46 features are utilized

as input.

The goal of this model is to achieve the highest level of

performance as well as a minimal difference in the training and

test data set for predicting the assimilation rate based on the input

features. As a first step of the model creation process, the impact of

modifications in a solitary hyperparameter on the accuracy of the

model were closely examined. The model performance was assessed

involving two primary metrics: the Mean Squared Error (MSE) and

the R-squared (R²) Score whereas the R² Score is the main metric.

The mentioned hyperparameter ranges were therefore obtained

by a visual evaluation of these parameters over the R-squared (R²)

score. A selected number of plots can be inspected in Figure 8.

These plots were selected since they illustrate the greatest change

over the parameter in the R² Score. For a generalized model the R²

difference between the train and test data set must be minimized.

The final parameters for Random Forest are:
• Interaction data set:
◦ max_d e p t h=6 , m i n _ s amp l e _ l e a f s = 0 . 0 5 ,

min_sample_split=0.1, n_estimators=800.
• Minimal data set:
◦ max_d e p t h=6 , m i n _ s amp l e _ l e a f s = 0 . 0 5 ,

min_sample_split=0.1, n_estimators=800.
and the parameters for XGBoost are:
• Interaction data set:
◦ c o l s a m p l e s _ b y t r e e = 0 . 9 , g a mm a = 1 0 0 ,

l e a r n i n g _ r a t e = 0 . 1 , m a x _ d e p t h = 4 ,

min_child_weight=50, n_estimators=500.
TABLE 1 Overview of the features used for model training and evaluation, including environmental conditions, physiological parameters, and
spectral components.

Feature Meaning

par_total Total light intensity (400–730 nm), measured in μmol/(m²s).

2600K, 3200K, 4000K Light intensity contributed by the respective white light (2600K, 3200K, 4000K), measured in μmol/(m²s).

405_nm – 730_nm Light intensity contributed by the respective monochromatic light at each wavelength, measured in μmol/(m²s).

plant age Age of the plant since sowing, measured in days.

plant_id Unique sequential identifier assigned to each plant to ensure traceability of measurements.

month The month in which the measurements were conducted.

year The year in which the measurements were conducted.

e Transpiration rate measured using the gas exchange system, expressed in mmol H2O/(m²s).

g Stomatal conductance to water vapor, measured in μmol H2O/(m²s).

tleaf Leaf temperature measured using the gas exchange system, expressed in °C.

Y(II), ETR, NPQ Quantum yield of photosystem II, Electron transport rate, Non photochemical quenching, measured using the PAM fluorometer.

leaf_level Indicates the leaf layer within the plant where the measurements were conducted.

m_segment Specifies the measured segment of the leaf: proximal (near the stem), middle, or distal (leaf tip).

species Categorical variable indicating whether the plant is Zea mays (C4) or Ocimum basilicum (C3)
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Fron
• Minimal data set:
tiers in
◦ c o l s a m p l e s _ b y t r e e = 1 . 0 , g a mm a = 1 0 0 ,

l e a r n i n g _ r a t e = 0 . 1 , m a x _ d e p t h = 8 ,
min_child_weight=50, n_estimators=600.
Machine learning – feature importance
In addition to assessing the overall performance of the model, it

is crucial to evaluate the significance of a feature in predicting the

target variable. The analysis in Figure 9 highlights the key features

that have a significant impact on the model’s predictions, offers

insight into their biological interpretation and were obtained by the

best model after hyperparameter optimization. The importance of a

feature in the model indicates its contribution to the final prediction

and the sum of the relative importance is 1.0.

From Figure 9 and the interaction data set the features g, e,

par_total, etr and yii have the highest importance, whereas in the

minimal data set likewise par_total, etr and yii are revealed to have

the highest impact on the model to predict the chlorophyll

fluorescence measurements.
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Machine learning – model performance
The model performance results for Random Forest (A and B)

and XGBoost (C and D) algorithms are evaluated based on

predicted vs. true values scatter plots and error frequency

distributions (Figure 10).

The scatter plot indicates that the Random Forest (Figure 10A)

demonstrates a correlation between predicted and true values. The

dispersion around the regression line is considerable and

occasionally reaches a maximum for elevated assimilation rates

(>15 μmol/(m²s)). The R² score of 0.752, and an MSE of 8.5

indicates favorable outcomes for the test dataset. Nevertheless, the

fitted values for elevated assimilation rates tend to be slightly

underestimated, resulting in systematic discrepancies. The error

frequency figure (Figure 10B) exhibits a somewhat centralized

distribution with a peak near 0, indicating that the model

predominantly yields unbiased predictions for most observations.

Nevertheless, the distribution of errors is extensive, particularly on

the positive side, suggesting occasional underestimation of

higher values.
FIGURE 8

Evaluation of two parameters of the Random Forest Regressor (A, B) and two parameters for XGBoost (C, D) with the largest spread and decrease
between training and test data set with regards to the R-squared Score R². All diagrams show the interaction (X_interactions) data set. A similar
course is revealed for the minimal data set. The used non-default values are displayed on the top of each plot.
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The scatter plot for the XGBoost model (Figure 10C)

demonstrates a significantly tighter clustering around the

regression line, particularly for values below 20 μmol/(m²s). The

enhanced alignment is evidenced by the elevated R² score of 0.847

and the reduced MSE of 5.24 for the test dataset. The variances are

reduced, and the model predictions align more closely with the true

values throughout the range. Most of the errors are concentrated

near zero, signifying that this model more successfully minimizes

both bias and variation (Figure 10D).

XGBoost surpasses Random Forest in both datasets, producing

superior R² scores and reduced MSE values (Table 2).
Discussion

Photosynthesis key insights from feature
importance analysis

Light intensity is the dominant factor influencing

photosynthetic assimilation rates in both datasets. In the minimal

dataset, it accounts for over 60% of the total importance, while in

the interaction-based dataset, it remains among the most significant
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features, particularly in combination with 4000 K. This is consistent

with the fundamental role of light as the energy source driving

photosynthesis, initiating chlorophyll excitation, electron transport,

and carbon fixation (Genty and Harbinson, 2004).

The importance of spectral properties further underscores that

photosynthesis is not solely governed by light quantity but also by

spectral quality. The spectral composition influences chlorophyll

and accessory pigment absorption, light capture efficiency, and

energy conversion (Simkin et al., 2022). This highlights the

necessity of incorporating both total light intensity and spectral

data into predictive models to enhance accuracy.

Chlorophyll fluorescence parameters, particularly Y(II) and

ETR, also emerge as key predictors. Y(II) reflects the

photochemical efficiency of Photosystem II (PSII), while ETR

represents electron transport activity, making them critical

indicators of photosynthetic function under varying light

conditions (Yousef et al., 2021). Their prominence underscores

the value of fluorescence-based metrics in assessing the

physiological state of the photosynthetic apparatus (Kalaji

et al., 2016).

In the interaction-based dataset, 4000 K and specific wavelength

interactions, such as 527 nm, further emphasize the role of spectral
FIGURE 9

Random Forest Regressor on the left plots (A, C) and XGBoost Regressor in the right plots (B, D). The upper plots A and B reveal the feature
importance for the interaction (X_interactions) data set whereas the lower plots C and D the minimal (X_min) data set represent.
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composition. The significance of these variables suggests that

certain wavelengths enhance assimilation efficiency, supporting

the notion that different pigment systems selectively respond to

specific spectral ranges (Kuleshova et al., 2018). Notably, green light

(e.g., 527 nm) is not merely reflected but actively contributes to

photosynthesis, challenging traditional assumptions about its

limited role (Arsenault et al., 2020; Brodersen and Vogelmann,

2010; Chen et al., 2024; Evans and Anderson, 1987; Kaiser et al.,

2019; Nishio, 2000; Smith et al., 2017; Sun et al., 1998; Terashima

et al., 2009; Virtanen et al., 2022).

Plant-specific traits, including plant age and leaf segment

(m_segment), also play a role in both models. Plant age is

particularly relevant in the minimal dataset, indicating age-related

variations in photosynthetic capacity. This confirms that

photosynthesis is not static but changes over a plant’s lifespan. The

importance of m_segment suggests that photosynthetic efficiency

varies within individual leaves, with older tissues generally exhibiting
Frontiers in Plant Science 12
higher assimilation rates than younger ones (Dwyer and Stewart,

1986; Jahan et al., 2023; Pick et al., 2011; Prochazkova et al., 2001;

Suzuki et al., 1987; Trouwborst et al., 2011). Consequently, spatial

variation within leaves must be considered in photosynthesis

measurements to avoid confounding effects (Kutıḱ et al., 2001). A

more physiological level of interpretation is provided by comparing

the intrinsic photosynthetic pathways of C3 and C4 species. Maize, a

C4 species, possesses a CO2-concentrating mechanism that

minimizes photorespiration and results in a more linear, efficient

relationship between light-driven electron transport (as assessed by

PAM) and net CO2 assimilation (Hatch, 1987). In contrast, C3 plants

like basil show a less direct correlation between these two processes,

especially at high light, due to higher photorespiratory losses (Lee and

Kim, 2024). Despite the described differences in the photosynthetic

pathways of the studied species, the feature indicating the

photosynthetic type (C3 vs. C4) does not appear among the top ten

predictors of assimilation rate in the machine learning model.
TABLE 2 The results for the two tree-algorithms Random Forest and XGBoost with the R2 score as well as with the MSE.

Dataset Random Forest XGBoost

Train R2 (MSE) Test R2 (MSE) Train R2 (MSE) Test R2 (MSE)

minimal data set 0.737 (8.94) 0.741 (9.45) 0.776 (8.64) 0.762 (8.22)

interaction data set 0.756 (8.31) 0.752 (8.5) 0.87 (4.44) 0.847 (5.24)
Bold values highlight the best test performance (highest R2, lowest MSE) for each dataset.
FIGURE 10

(A, B) illustrate the results of the Random Forest algorithm whereas (C, D) shows the XGBoost algorithm. In (A, C), the predicted values are revealed
over the true values from the measurement. (B, D) show the absolute error as a histogram.
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XGBoost’s superiority in capturing complex
biological interactions

The XGBoost model outperforms Random Forest in predicting

photosynthetic assimilation rates, achieving a higher R² score of

0.847 and a lower mean squared error (MSE) of 5.24. These results

indicate that XGBoost captures a greater proportion of the

variability in photosynthesis rates and provides more accurate

predictions. The model did not regard the interaction features

being significant. Only particular spectral components, specifically

4000 K and 527 nm, were recognized as significantly relevant. This

highlights that individual wavelengths, rather than complex

spectrum relationships, directly affect photosynthetic performance.

A key advantage of XGBoost lies in its ability to model complex

feature interactions, particularly those associated with specific

wavelengths, which may be overlooked by Random Forest. This is

crucial, as photosynthesis involves nonlinear relationships between

light, temperature, gas exchange parameters, and plant-specific traits.

The ability of XGBoost to integrate diverse features, including

par_total, chlorophyll fluorescence parameters, spectral data, and

plant-specific characteristics, ensures biologically meaningful

predictions closely aligned with actual photosynthetic processes.

Additionally, XGBoost effectively manages feature interactions,

reducing both bias and variance, as evidenced by its tighter

distribution of values along the regression line compared to

Random Forest. This effect is particularly pronounced at higher

assimilation rates (>15 μmol/(m²s)), where Random Forest exhibits

systematic deviations. XGBoost’s improved accuracy and

robustness make it the preferred model for photosynthesis

prediction (Burdett and Wellen, 2022; Ha et al., 2024; Li et al.,

2021; Singh et al., 2023; Zhang et al., 2020).
Evaluation of our model

While the model demonstrates high predictive power (R² =

0.847), limitations remain. Studies by Ogren and Sjöström (1990)

and Sharma et al. (2015) indicate that Fv/Fm correlates well with

quantum yield under low to moderate light conditions (220 PAR –

500 PAR (Ogren and Sjöström, 1990; Sharma et al., 2015). Lakowicz

(2006) further demonstrated that fluorescence intensity reflects

photosynthesis quantum yield and chlorophyll concentration

(Lakowicz, 2006). This correlation is particularly strong in C4

plants due to their reduced photorespiration.

However, Bucher et al. (2018) found that Fv/Fm was not a

reliable predictor of assimilation rates in field conditions (Bucher

et al., 2018). This discrepancy may stem from the influence of

competing electron-consuming processes, such as photorespiration,

nitrogen metabolism, the Mehler reaction, and oxygen

photoreduction, which are not directly accounted for in

fluorescence-based measurements (Heber, 2002; Kalaji et al.,

2017; Maxwell and Johnson, 2000).

Another limitation arises from the depth of PAM fluorescence

measurements, which only capture the outermost leaf layers. If

measurements are restricted to the adaxial leaf surface, data reflect
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only chloroplast activity within the palisade parenchyma, neglecting

potential differences in spongy mesophyll layers (Troeng and

Linder, 1982).

Furthermore, photosynthesis and electron transport rates

fluctuate seasonally within a species (Holland et al., 2014; Lazár,

2006; Neuner and Pramsohler, 2006; Oquist and Huner, 2003).

These temporal variations must be considered in future model

refinements to enhance predictive accuracy under natural

conditions. Despite these limitations, our findings provide a

powerful tool for further optimizing photosynthesis modeling

using machine learning.

The integration of machine learning techniques into

photosynthesis modeling offers promising perspectives for future

research. A particularly valuable direction could involve combining

mechanistic models with machine learning approaches to leverage

the strengths of both. Specifically, the development of hybrid

models that integrate the physico-chemical foundations of

photosynthesis with the pattern-recognition capabilities of

machine learning algorithms would allow for the analysis of

complex relationships within large datasets.
Conclusion

The study demonstrates a significant advancement in data-

driven prediction of photosynthetic assimilation rates using

machine learning. We identified a biologically consistent

hierarchy of predictors. The results validate the selection of

features and their alignment with fundamental biological

processes. The XGBoost algorithm demonstrated superior

accuracy and reliability compared to Random Forest, particularly

in managing difficult relationships and interactions between

features. This highlights the potential of machine learning in

advancing our understanding of photosynthetic processes and

paving the way for further integration of data-driven approaches

into plant science. In future applications, such models could

support precision agriculture by enabling rapid, non-invasive

monitoring of plant performance under field conditions.

Especially under abiotic stress scenarios such as drought or high

temperatures, this approach may help to identify physiological

limitations and optimize crop management strategies.
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