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Introduction: Dictamnus dasycarpus Turcz., a critical traditional medicinal plant 
in Northeast China, faces challenges of habitat degradation and unstable quality 
in cultivated populations. 

Methods: This study systematically analyzed the key environmental drivers of its 
distribution and quality formation in Liaoning Province through an integrative 
framework combining the Maximum Entropy model (MaxEnt), High-

Performance Liquid Chromatography (HPLC), and geodetector analysis. 

Results: July precipitation (Prec7), temperature seasonality (Bio4), May solar 
radiation (Srad5), March maximum temperature (Tmax3), and March minimum 
temperature (Tmin3) were core variables influencing distribution patterns. The 
quality of cultivated populations was primarily regulated by February mean 
temperature (Tmean2) and May precipitation (Prec5), while that of wild 
populations were predominantly affected by January mean temperature (Tmean1). 
By overlaying ecological suitability zones, quality partitions, and existing planting 
areas, Chaoyang, Huludao, Jinzhou, Liaoyang, and Dandong were identified as ideal 
regions combining ecological adaptability and quality advantages. 

Discussion: The study revealed that precipitation and temperature are key 
factors affecting both distribution and quality. Geodetector analysis confirmed 
significant interactions among environmental variables influencing both 
distribution and quality. The multi-model framework established in this study 
provides a scientific basis for precision cultivation zoning and wild resource 
conservation of medicinal plants. The identified high-quality planting regions can 
promote the sustainable development of the D. dasycarpus industry, and the 
methodological approach provides a reference for similar studies. 
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1 Introduction 

Traditional Chinese Medicine (TCM) encompasses a class of 
therapeutic agents applied under the guidance of TCM theory for 
the prevention, treatment and diagnosis of diseases, as well as for 
rehabilitation and health care (Liu et al., 2016). TCM has been 
continuously developed and utilized by Chinese people over 
thousands of years as a fundamental approach to prevent and 
treat diseases (Guo et al., 2012). Nevertheless, the complexity and 
diversity of TCM components present significant challenges to 
quality control (Xing et al., 2023). The quality of TCM can be 
influenced by multiple factors and is not only generated by the 
expression of intrinsic genes that govern the metabolic pathways of 
active ingredients (Yang et al., 2022), but also by the ecological 
environment (Camina et al., 2023). In particular, the ecological 
environment plays a crucial role in influencing the growth and 
development of medicinal plants and the production of secondary 
metabolites (Neugart et al., 2018; Sha et al., 2023; Cheng et al., 
2024). However, excessive stress can cause adverse effects, 
potentially leading to the death of medicinal plants (Prasch and 
Sonnewald, 2013; Suzuki et al., 2016; Srivastava et al., 2009; Pant 
et al., 2021). Consequently, investigating the relationship between 
medicinal plants and ecological factors is indispensable if we are to 
achieve comprehensive levels of quality control in TCM. By 
understanding how ecological factors interact with medicinal 
plants, we can better regulate and optimize cultivation conditions 
to ensure the stable quality of TCM materials. 

Dictamnus dasycarpus Turcz. (hereafter D. dasycarpus), a 
member of the Rutaceae family and the genus Dictamnus L., is a 
perennial herb characterized by its pungent odor. This herb serves 
as the base plant for Dictamni Cortex, a well-known TCM in the 
northeast of China (Lv et al., 2015; Bai et al., 2011). The root bark of 
D. dasycarpus, which is the sole authentic source of Dictamni 
Cortex, possesses significant therapeutic properties, including the 
ability to clear heat, dry dampness, dispel wind, and detoxify (Qin 
et al., 2021). Modern pharmacological studies have revealed that D. 
dasycarpus exerts multiple beneficial effects, with remarkable 
efficacy particularly evident in its anti-inflammatory actions (Choi 
et al., 2016; Gao et al., 2021; Jung et al., 2024). For instance, both 
Choi et al. (2019) and Kim et al. (2013) provided compelling 
evidence of the potent anti-inflammatory properties of this herb. 
In addition to its anti-inflammatory effects, D. dasycarpus also 
exhibits notable antioxidant potential. In a previous study, Guo 
et al. (2016) reported significant antioxidant effects, contributing to 
the mitigation of oxidative stress within the body. D. dasycarpus has 
also yielded promising results in terms of cancer research. Park et al. 
(2015); Zhang et al. (2022) and Zuo et al. (2024) documented the 
ability of D. dasycarpus to inhibit the growth of certain cancer cell 
lines. Furthermore, D. dasycarpus possesses antihyperglycemic and 
anti-allergic properties (Lv et al., 2015). In addition to its 
pharmacological effects, D. dasycarpus holds an abundance of 
active compounds, including quinoline alkaloids, limonoids, 
sesquiterpenes, coumarins, flavonoids and steroids (Gao et al., 
2022). Of these chemical constituents, quinoline alkaloids and 
limonoids play a pivotal role in terms of medicinal value (Chen 
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et al., 2020). Overall, these diverse pharmacological effects and 
compounds highlight the significant value of D. dasycarpus in the 
field of medicine and warrant further exploration and utilization. 

D. dasycarpus is widely distributed in Liaoning Province, and is 
characterized by abundant resources and strong adaptability (Bai 
et al., 2011; Zhi et al., 2022). This herb commonly grows on sunny 
hilly slopes, forest edges, low shrublands, grasslands, sparse forests 
and limestone mountains (Jia et al., 2022). D. dasycarpus prefers a 
humid and warm climate, and is tolerant to light cold and drought 
conditions but intolerant of waterlogging or flooding. D. dasycarpus 
thrives best in fertile, loose and well-drained sandy loam soils on flat 
or gentle slopes. However, D. dasycarpus cannot grow readily in 
low-lying areas prone to waterlogging, saline-alkali soils, or heavy 
clay soils (Wang et al., 2023). Despite its medical significance, wild 
D. dasycarpus resources have been severely depleted due to 
urbanization and agricultural expansion, while cultivated varieties 
often exhibit inconsistent quality (Wang et al., 2023; Zhi et al., 
2022), necessitating systematic research on its ecological suitability 
and quality formation mechanisms. 

Field investigations have revealed that commercial Dictamni 
Cortex in Liaoning Province is predominantly sourced from 
cultivated plants. However, due to the relatively long growth 
cycle, of this plant, large-scale cultivation has yet to be fully 
achieved. Approximately 25% of the annual supply continues to 
originate from wild sources. This variability in origin results in 
inconsistent product quality (Huang and Guo, 2007), thus creating 
a significant hinderance on the industrial development of D. 
dasycarpus. Consequently, to better understand and address these 
challenges related to quality and industrial development, it is 
imperative that we gain a comprehensive understanding of the 
distribution of D. dasycarpus in ecologically suitable and high-
quality areas within Liaoning Province. Regrettably, there is 
currently a paucity of systematic reports on this topic, making it 
challenging for relevant stakeholders to formulate effective 
strategies for cultivation and industrial promotion. 

Species Distribution Models (SDMs) have emerged as critical tools 
for predicting plant community distributions through species-
environment relationship quantification (Qian et al., 2024; Zhang 
et al., 2016). These models evaluate habitat suitability via ecological 
indicator systems, enabling comprehensive assessment of species’ 
environmental requirements and distribution patterns under varying 
ecological conditions (Borthakur et al., 2018; Yang et al., 2013).Widely 
adopted platforms including Climate Explorer (CLIMEX) (Sutherst 
and Maywald, 1985), Biogeographical Mapping and modelling 
(BIOMAPPER) (Hirzel and Guisan, 2002), and Maximum Entropy 
(MaxEnt) (Phillips et al., 2006) each demonstrate distinct advantages. 
Among these, however, the MaxEnt algorithm has gained particular 
prominence due to its computational efficiency and robust 
performance with sparse datasets (Marini et al., 2010; Hengl et al., 
2009). These characteristics have established MaxEnt as a preferred 
modeling approach for global-scale habitat suitability predictions in 
contemporary ecology. 

Spatial differentiation is a fundamental research topic in 
geography (Wang and Xu, 2017). Geodetector is a comprehensive 
tool that is used to detect and analyze spatial differentiation, 
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incorporating a suite of statistical methods that can reveal the 
driving forces underlying such differentiation (Liang and Xu, 
2023; Wang and Xu, 2017). Geodetector features successive 
detection ability for factors, interactions, risk and ecology (Zhang 
et al., 2021). During the growth and development of medicinal 
plants, the ecological environment plays a crucial role in 
determining the quality of medicinal materials (Ma W. et al., 
2021). Wild and cultivated medicinal plants experience different 
environmental conditions during their period of growth, thus 
leaving plants vulnerable to varying impacts from environmental 
variables. Therefore, when investigating the ecological suitability 
zones of TCM and the accumulation of key medicinal components, 
it is essential to consider not only the influence of dominant 
environmental variables but also the combined effects of these 
variables (Yu et al., 2023). Geodetector has been widely applied in 
analyzing the spatial differentiation characteristics of medicinal 
plant indicators (Wu et al., 2020; Wang and Hu, 2012; Lin et al., 
2022) to elucidate the specific effects of environmental variables on 
the growth and quality of medicinal plants (Shi et al., 2017; Li et al., 
2019; Xi et al., 2021). 

Over recent years, the increasing demand for Dictamni Cortex 
has led to a decline in wild D. dasycarpus reserves and a steady rise in 
market prices. To protect wild resources and cultivate high-quality D. 
dasycarpus, it is crucial that we identify suitable areas and sthe patial 
distribution patterns of D. dasycarpus in Liaoning Province. In the 
present study, we employed the Maxent model combined with 
geographic information system techniques to analyze the 
distribution of D. dasycarpus in Liaoning Province, considering 
climate, topography and soil factors. Using this approach, we 
aimed to identify the dominant environmental factors influencing 
the potential distribution of D. dasycarpus (Xu et al., 2023). We also 
used HPLC to determine the predominant active components of 
Dictamni Cortex, establish a regression model between 
environmental variables and active components, and create a 
quality partition map for D. dasycarpus using ArcGIS software (Xu 
et al., 2021). In addition, we used Geodetector to analyze the 
environmental variables affecting the ecological suitability and 
quality of D. dasycarpus. Our study innovatively integrates the 
MaxEnt model, HPLC, and geographical detector to establish a 
comprehensive research framework capable of predicting species’ 
ecological suitability and quality distribution, elucidating the 
mechanisms driving their spatial patterns, and providing a 
reference for related studies on other species. The results visually 
explained the distribution of high-quality D. dasycarpus in Liaoning 
Province, predicted potential planting areas, and provided a scientific 
basis for quality control, wild resource protection, and the selection of 
optimal planting areas both currently and in the future. 
2 Materials and methods 

2.1 Sample and data collection 

Liaoning Province, situated in the southern sector of Northeast 
China (41°43′30″N to  38°43′00″N, 118°53′00″E to 125°46′01″E), 
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constitutes a unique geopolitical entity within the Northeast region 
as  the sole provincial administrative unit possessing dual coastal and 
border advantages. The province encompasses a total territorial area of 
148,600 km², complemented by a maritime jurisdiction spanning 
41,300 km² within the Bohai and Yellow Sea basins.The provincial 
terrain exhibits a gradual southward descent, with elevation decreasing 
from the eastern and western peripheries toward the central lowlands, 
forming a tiered geomorphological structure characterized by 
mountainous-hilly landscapes in the east/west and alluvial plains in 
the central corridor (Wang et al., 2022). Under a temperate monsoon 
climatic regime, the province experiences pronounced seasonality, 
featuring cold winters, hot summers, and a synoptic pattern of 
coinciding precipitation and thermal maxima. 

The D. dasycarpus samples used in this study were collected 
between August 2023 and September 2024 across Liaoning 
Province. A total of 25 batches of cultivated samples and 24 
batches of wild samples were gathered, with each batch 
containing no fewer than five plants. Plant samples were 
identified as D. dasycarpus by Professor Yin Haibo, Director of 
the TCM Resources Teaching and Research Section at Liaoning 
University  of  Traditional  Chinese  Medicine  (Figure  1; 
Supplementary Table S1). After collection, the samples were 
washed to remove sediment, and the wood core was extracted 
and stored naturally in the shade. Additionally, we obtained 
distribution records of D. dasycarpus in Liaoning Province from 
multiple sources: the China Virtual Herbaria (www.cvh.ac.cn), the 
Global Biodiversity Information Facility (https://www.gbif.org/), 
and the results of the Fourth National Survey of TCM Resources. 
The map of Liaoning Province used in this study was downloaded 
from the National Fundamental Geographic Information System 
Network (http://nfgis.nsdi.gov.cn/). During the course of data 
processing, we used the ENMTools R package (GitHub: 
danlwarren/ENMTools) to filter the distribution records 
meticulously. Points characterized by ambiguous geographic 
information, duplicates and outliers were all rigorously excluded. 
Finally, we retained 237 distribution points of D. dasycarpu for 
subsequent research. 
2.2 Environmental variables 

A total of 106 environmental variables (Supplementary Table 
S2) were selected based on the growth and biological characteristics 
of D. dasycarpus. These variables were chosen from the TCM 
Resources  Spatial  Information  Grid  Database  (http://  
www.tcmresources.com/), including vegetation types, Kira index, 
topography and soil data. In addition, climate data, including 
precipitation, temperature, radiation intensity and water vapor 
pressure were obtained from WorldClim2.1 (www.worldclim.org) 
at a spatial resolution of 30 arc seconds. DEM (digital elevation 
model) data were acquired from the Geospatial Data Cloud 
Platform of the Computer Network Information Center, Chinese 
Academy of Sciences (http://www.gscloud.cn). We utilized these 
environmental variables to investigate the ecological suitability and 
quality distribution of D. dasycarpus. 
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2.3 Generation of a species distribution 
model 

The MaxEnt model, grounded in the maximum entropy principle, 
predicts species distributions by integrating records with 
environmental variables to generate the most uniform probability 
distribution constrained by observed data (Tang et al., 2021; Liu 
et al., 2021). Key procedures include data standardization, nonlinear 
feature transformations, training-test set partitioning, and AUC (Area 
Under the Curve) validation (Halvorsen et al., 2015). The model 
outputs probability-based suitability maps, predictor importance 
metrics, and single-variable response curves, while employing 
regularization to prevent overfitting (Feng et al., 2019). 

In this study, the maximum number of iterations was set to 105 

and the convergence threshold was set to 0.0005, with 15% of the 
distribution points designated as the test set and 85% as the training 
set. The accuracy of the model was evaluated using the area under 
the ROC (receiver operating characteristic) curve (Vanagas, 2004; 
Parodi et al., 2022; Wang et al., 2019; Ma D. et al., 2021). The 
Jackknife method was employed to assess the importance of each 
ecological variable, and response curves were used to evaluate the 
suitability range of environmental variables (Li et al., 2024). Other 
parameters were set to default values. 

To avoid overfitting caused  by multicollinearity  and
autocorrelation among environmental variables (Burgos et al., 
2020), a two-step selection process was implemented for 
environmental variables. First, 106 environmental variables were 
analyzed using the MaxEnt model, and those with zero contribution 
were eliminated iteratively until no such variables remained. 
Second, correlation analysis was conducted on the remaining 
variables, and those with high correlation (|r| ≥ 0.8) were 
excluded. For highly correlated factors, only those with greater 
ecological significance were retained. Finally, we performed 10 
repeated modeling operations to ensure robustness. 
Frontiers in Plant Science 04
2.4 Analysis of the ecological suitability of 
D. dasycarpus 

Based on the MaxEnt model results, we next used ArcGIS 10.7 
software to visually output the findings and applied the natural 
breakpoint classification method (Jenks) to divide the results into 
four suitability categories: unsuitable (0–0.2), low suitability (0.2– 
0.4), moderate suitability (0.4–0.6), and high suitability (0.6–1) 
(Yan et al., 2021; Zhao et al., 2021; Wang et al., 2024a). Using 
this classification principle, we delineated the ecological suitability 
zones of D. dasycarpus under the current climate change scenario. 
2.5 Quality zoning analysis of D. 
dasycarpus 

The medicinal value of D. dasycarpus is primarily attributed to 
its diverse bioactive constituents, with quinoline alkaloids and 
limonoids identified as the key bioactive compounds (Gao et al., 
2022; Chen et al., 2020). These components exhibit multifaceted 
pharmacological activities and serve as critical markers for quality 
assessment of D. dasycarpus. 

Quality zoning analysis utilized a method that was adapted 
from Cao et al. (2018) and optimized for the detection of limonin, 
dictamnine, obacunone, and fraxinellone in 49 batches of D. 
dasycarpus samples. To determine the specific content, we first 
weighed 1.0 g of sample powder and placed this into a 100 mL 
round-bottom flask. Next, we added 25 mL of 100% methanol and 
performed extraction by refluxing in a water bath for 60 minutes. 
After cooling, any weight loss was made up with 100% methanol; 
the resulting sample was then shaken well and filtered through a 
0.22 mm microporous membrane to generate a test solution. Next, 
we accurately weighed an appropriate amount of each standard 
reference substance and dissolved this in 100% methanol to prepare 
FIGURE 1 

Sampling points for D. dasycarpus within the study area. 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1591921
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiang et al. 10.3389/fpls.2025.1591921 
standard solutions. The conditions used for chromatography were 
as follows: column: Waters Symmetry® C18 (250 × 4.6 mm, 5 mm); 
mobile phase: acetonitrile (A) and pure water (B); gradient elution 
program: (0~8min, 45%A~55%A; 8~20min, 55%A); detection 
wavelength: 228 nm; flow rate: 0.8 mL/min; column temperature: 
35°C; injection volume: 5 mL. Under these chromatographic 
conditions, the chromatographic peaks of each component are 
well separated. 

To investigate the large number of environmental variables used 
in this study, we first applied preliminary screening. Grey relational 
analysis (Suo et al., 2024) was  first employed to analyze the 
relationship between the content of chemical components and the 
extracted values of environmental variables. Based on the variables 
ranked by Grey Relational Analysis, we analyzed their correlation 
with chemical components using SPSS version 27.0. (IBM, Chicago, 
IL, USA). When the correlation coefficient between two 
environmental variables reached or exceeded 0.8, one of them was 
discarded (Kumar et al., 2014). Finally, stepwise regression was used 
to establish the relationship model between chemical components 
and environmental variables. This model was then imported into 
ArcGIS software to create distribution maps for single components 
and the comprehensive quality of D. dasycarpus. 
2.6 Geodetector analysis of significant 
environmental variables 

The Geodetector is a specialized statistical tool designed to 
identify and interpret spatial heterogeneity (). Its core function lies 
in quantifying the explanatory power of environmental factors on 
spatial distribution patterns (quantified by the q-statistic). The 
unique  strengths  of  the  Geodetector  include:  precise  
quantification of dominant drivers underlying spatial divergence, 
effective analysis of variable interactions, compatibility with both 
continuous  and  categorical  data,  and  methodological  
complementarity with ecological models such as MaxEnt. These 
Frontiers in Plant Science 05 
features collectively establish it as an optimal tool for elucidating the 
complex environmental influences on the distribution and quality 
of medicinal plants. 

Based on ecological suitability and comprehensive quality 
distribution maps, we next performed factor analysis and 
interaction analysis using the GD package in R (Song et al., 2020; 
Wang et al., 2010, 2016). Spatially differentiated environmental 
variables that exerted significant influence on the ecological 
suitability and quality of medicinal materials (p < 0.05) were then 
identified. The contribution rates of the leading environmental 
variables to the ecological suitability and quality of medicinal 
materials, as well as the combined effects of other variables, were 
also determined. 
3 Results 

3.1 Evaluation of the accuracy of the 
MaxEnt model and the identification of 
important environmental variables 

First, the ROC curve of the MaxEnt model was used to evaluate 
the accuracy of prediction. We used AUC values as a quantitative 
measure of model performance; AUC values of 0.5–0.6 indicated 
failed predictions, 0.6–0.7 indicated poor performance, 0.7–0.8 
indicated moderate performance, 0.8–0.9 indicated good 
performance, and > 0.9 indicated excellent performance (Zheng 
et al., 2022; Swets, 1988). High AUC values reflected the reliability 
of the model to predict species distribution (Zhang et al., 2023). The 
mean AUC of the ROC curve generated by the MaxEnt model after 
10 runs was 0.991 (Figure 2A), indicating high model accuracy and 
reliable prediction results for classifying the ecological suitability of 
D. dasycarpus in Liaoning Province. 

According to results derived from the MaxEnt model, we 
identified a total of 10 main ecological factors with non-zero 
contribution rates (Table 1). Of these, precipitation in July 
FIGURE 2 

Model accuracy evaluation and the importance of the variables for MaxEnt. (A) ROC analysis of Maxent model for predicting the distribution of D. 
dasycarpus. (B) Jackknife test results for ecological factors on D. dasycarpus. 
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(Prec7), temperature seasonality (Bio4), solar radiation in May 
(Srad5), maximum temperature in March (Tmax3), and 
minimum temperature in March (Tmin3) cumulatively 
contributed 95% to the model, thus indicating their dominance in 
influencing the ecological distribution of D. dasycarpus. The

Jackknife test further revealed that Bio4 provided the highest 
regularization gain when used as a single variable, followed by 
Tmax3 and Prec7 (Figure 2B), thus suggesting the critical role of 
these factors in model performance. Based on response curves, we 
determined the thresholds for several key environmental variables: 
precipitation in July (Prec7) ranged from 180 mm to 360 mm, 
temperature seasonality (Bio4) ranged from 110 to 140, solar 
radiation in May (Srad5) ranged from 20,000 kJ·m-2·d-1 to 22,000 
kJ·m-2·d-1, maximum temperature in March (Tmax3) ranged from 
4°C to 7°C, and minimum temperature in March (Tmin3) ranged 
from -8°C to -4°C (Figure 3). 

These results demonstrated that precipitation and temperature 
were the primary environmental variables affecting the distribution 
of D. dasycarpus. Finally, combining the contribution rate table and 
correlation analysis, we selected Prec7, Bio4, Srad5 and Tmax3 for 
further analysis. 
3.2 Prediction of the most suitable 
ecological areas of D. dasycarpus in 
Liaoning province 

Based on MaxEnt predictions for D. dasycarpus distribution, we 
next used ArcGIS software to perform reclassification and 
determine the most suitable potential areas for the distribution of 
D. dasycarpus in Liaoning Province (Figure 4). Analysis revealed 
that the total area of highly suitable and moderately suitable regions 
for D. dasycarpus was 7.082 × 104 km2, accounting for 47.66% of the 
total area of Liaoning Province. The highly suitable area covered 
3.468 × 104 km2, and was primarily located in Tieling, Fushun, 
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Liaoyang, Benxi, Anshan, Yingkou and the northern region of 
Dandong. The moderately suitable area spanned 3.614 × 104 km2, 
encompassing Chaoyang, Huludao, Jinzhou, and other regions. The 
generally suitable area measured 3.873 × 104 km2 and was 
distributed in Fuxin, the northern region of Dalian, and other 
areas. The unsuitable area amounted to 3.905 × 104 km2 and was 
located in Panjin and Shenyang. Overall, several areas within 
Liaoning Province were identified to be suitable for the growth of 
D. dasycarpus, with the most suitable regions predominantly 
situated in the eastern part of the province. A smaller portion of 
suitable areas was identified in the western part of Liaoning 
Province. These findings indicated that the modern potential 
distribution areas predicted by the MaxEnt model were largely 
consistent with contemporary distribution records. 
3.3 Geodetector analysis of the ecological 
suitability of D. dasycarpus 

During the factor detection phase of Geodetector analysis, the 
q-value reflected the explanatory power of environmental variables 
on the ecological suitability of D. dasycarpus. A larger q-value 
indicated a stronger explanatory power. In this study, p<0.05 was 
used as the threshold to indicate that environmental variables had a 
significant effect on habitat suitability. Of these variables, Prec7 
(July precipitation) exerted the largest impact on the spatial 
differentiation of ecological suitability in Liaoning Province, 
followed by Srad5 (May solar radiation) and Tmax3 (March 
maximum temperature). Bio4 (temperature seasonality) had the 
smallest impact (Supplementary Table S3). 

During the interaction detection phase, the interactions 
between environmental variables exhibited an enhancement effect. 
The interaction between Prec7 and other environmental variables 
had the greatest impact on the spatial differentiation of habitat 
suitability (Supplementary Table S4). The combined effects of 
multiple variables were stronger than the individual effects of 
single variables. The interaction between Srad5 and Tmax3 also 
influenced the spatial differentiation of habitat suitability but to a 
lesser extent compared to the interaction between Prec7 and Bio4. 
All environmental variables intersected across different grading 
levels of ecologically suitable zones. Generally, the precipitation 
factor and comprehensive climate factors followed an upwards 
trend, while the temperature factor and radiation factor exhibited 
a downwards trend (Table 2). This pattern was consistent with the 
preference of D. dasycarpus for a warm and humid climate, its 
tolerance to cold, and its sensitivity to strong light. 
3.4 Correlation analysis between 
environmental variables and chemical 
components 

Results arising from the component analysis of D. dasycarpus 
are presented in Supplementary Table S5. Methodological 
TABLE 1 The contribution rate and importance rate of 
environmental variables. 

Environment 
variables 

Percent 
contribution (%) 

Permutation 
importance (%) 

Prec7 47.5 79.3 

Bio4 31.9 4.3 

Srad5 6.4 1.0 

Tmax3 5.1 0.4 

Tmin3 4.1 0.6 

index_ci 1.8 8.5 

Srad10 1.8 1.6 

Slope 1.2 3.7 

Tmin11 0.2 0.3 

SoilType 0.6 0.2 
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validation revealed that the linear correlation coefficients (r) for 
limonin, dictamnine, obacunone, and fraxinellon were 0.9999, 
0.9997, 0.9997 and 0.9999, respectively (Supplementary Table S6). 
The relative standard deviations (RSDs) for precision were 1.3%, 
1.2%, 2.7%, and 1.2%, respectively; for stability, the RSDs were 2.5%, 
2.9%, 2.9% and 2.8%; and for repeatability, the RSDs were 1.9%, 
1.1%, 1.6% and 2.9%. The recovery rates were 98.53%, 97.26%, 
98.83% and 96.37%, with corresponding RSDs of 2.8%, 1.3%, 2.3% 
and 2.1%. The results arising from grey correlation analysis are 
provided in Supplementary Table S7. Pearson correlation analysis 
(Supplementary Table S8) identified the environmental variables 
that exerted significant influence on pharmacodynamic 
components, and could be used to construct subsequent 
regression equations. Analysis revealed differences in the 
environmental variables affecting cultivated in comparison to 
wild samples. 
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3.5 Analysis of quality zoning for D. 
dasycarpus 

Quality zoning analysis of limonin, dictamnine, obacunone, and 
fraxinellon in D. dasycarpus was conducted to investigate the spatial 
distribution and quality variations of these important bioactive 
compounds.  Our  findings  indicated  significant  spatial  
heterogeneity in the concentration of these active components 
across different regions, with specific environmental factors 
playing a crucial role. 

3.5.1 Quality zoning analysis of limonin 
The regression equation for limonin content (Y) in cultivated D. 

dasycarpus with respect to environmental variables was Y=0.717
0.009 Bio1-0.032 Tmean7 + 0.001 Srad3 + 0.082 Tmin3. Limonin 
content exhibited negative correlations with Tmean7 and Tmin3, 
FIGURE 3 

Response curve of D. dasycarpu existence probability to the dominant environmental variables: (A) Average precipitation in July. (B) Temperature 
Seasonality. (C) Solar radiation in May. (D) Maximum temperature in March. (E) Minimum temperature in March. 
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and positive correlations with Bio1 and Srad3. This implies that 
limonin content in cultivated D. dasycarpus increases with higher 
annual mean temperature (Bio1) and greater solar radiation in 
March (Srad3), while it decreases as the mean temperature in July 
(Tmean7) or the minimum temperature in March (Tmin3) rises. 
High-quality zones were predominantly  identified in the 
southwestern part of Liaoning Province, while the central region 
generally exhibited medium quality. Overall, limonin content 
decreased from the southwestern to the northeastern parts of 
Liaoning Province (Figure 5A). 

The regression equation for limonin content (Y) in wild D. 
dasycarpus with respect to environmental variables was Y=3.692
0.029 Prec3 + 0.007 Tmean1. Limonin content exhibited a negative 
correlation with Prec3 and a positive correlation with Tmean1. This 
implies that limonin content in wild D. dasycarpus increases with 
higher mean temperature in January (Tmean1) and decreases with 
greater precipitation in March (Prec3). High-quality zones were 
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mainly located in the western part of Liaoning Province, while 
medium-quality zones were distributed in the eastern regions. 
Overall, limonin content decreased from the western to the 
eastern parts of Liaoning Province (Figure 5B). 

3.5.2 Quality zoning analysis of obacunone 
The regression equation for obacunone content (Y) in

cultivated D. dasycarpus with respect to environmental variables 
was Y=-14.733 + 0.42 Bio1 + 0.105 index_wi-0.401 Tmax3 + 0.032 
Bio15 + 0.083 Bio10 + 0.083 Bio16. Obacunone content exhibited a 
negative correlation with Bio16 and positive correlations with the 
other environmental variables. This implies that obacunone content 
in cultivated D. dasycarpus increases with higher annual mean 
temperature (Bio1), higher warmth index (index_wi), and more 
favorable values of Bio15 (precipitation seasonality), Bio10 (mean 
temperature of the warmest quarter), and Bio16 (precipitation of 
the warmest quarter), while it decreases as the maximum 
temperature in March (Tmax3) rises. High-quality zones were 
predominantly found in the western and southeastern parts of 
Liaoning Province, while the eastern and central regions generally 
exhibited medium quality. Overall, quality decreased from west to 
east in Liaoning Province (Figure 5C). 

The regression equation for obacunone content (Y) in wild D. 
dasycarpus with respect to environmental variables was Y=4.544 + 
0.024 Tmean12. Obacunone content exhibited a significant positive 
correlation with Tmean12. This implies that obacunone content in 
wild D. dasycarpus increases significantly with higher mean 
temperature in December (Tmean12). High-quality zones were 
mainly located in the southern and western parts of Liaoning 
FIGURE 4 

Predicted distribution of D. dasycarpus in Liaoning Province under current climate conditions. 
TABLE 2 Information relating to the environmental variables 
corresponding to different ecological suitability levels. 

Environment Ecological suitability level 

variables Marginal Moderate High 

Bio4 99.53~130.94 118.91~131.67 113.18~132.93 

Tmax3/°C 4.4~8.7 3.6~8.6 3.1~7.2 

Srad5/kJ·m-2·d-1 20268~22124 20115~22098 20109~22068 

Prec7/mm 158~228 161~258 179~317 
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Province, while medium-quality zones were distributed in the 
northeastern region. Overall, quality decreased from south to 
north in Liaoning Province (Figure 5D). 

3.5.3 Quality zoning analysis of fraxinellon 
For cultivated D. dasycarpus, the regression equation for 

fraxinellon content (Y) with respect to environmental variables was 
Y=1.136-0.171 Tmean2-0.045 Prec4 + 0.086 Bio9 + 0.086 Bio11 + 
0.068 Prec5. Fraxinellon content exhibited negative correlations with 
Bio9, Bio11 and Tmean2, but exhibited positive correlations with 
Prec4 and Prec5. This implies that fraxinellon content in cultivated D. 
dasycarpus increases with higher precipitation in April (Prec4) and 
May (Prec5) but decreases as the mean temperature in February 
(Tmean2), mean temperature of the driest quarter (Bio9), or mean 
temperature of the coldest quarter (Bio11) rises. High-quality zones 
were predominantly found in northeastern Liaoning Province, 
whereas central, southern, and western regions generally exhibited 
medium quality. Overall, quality decreased from the northeastern to 
the southwestern parts of Liaoning Province (Figure 5E). 

For wild D. dasycarpus, the regression equation for fraxinellon 
content (Y) with respect to environmental variables was Y=3.974 + 
0.04 Bio1 + 0.003 Prec7-0.03 Tmean6. Fraxinellon content 
exhibited negative correlations with Tmean6, but exhibited 
positive correlations with Prec7 and Bio1. This implies that 
fraxinellon content in wild D. dasycarpus increases with higher 
annual mean temperature (Bio1) and greater July precipitation 
(Prec7) but decreases as the mean temperature in June (Tmean6) 
rises. High-quality zones were mainly located in the southern and 
western parts of Liaoning Province, while medium-quality zones 
were distributed in the northern regions. Overall, quality decreased 
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from  the  southern  to  the  northern  parts  of  Liaoning  
Province (Figure 5F). 

3.5.4 Quality zoning analysis of dictamnine 
Following comprehensive analysis and calculation, no 

significant correlation was identified between the dictamnine 
content in both cultivated and wild D. dasycarpus and 
environmental variables. Consequently, it was not possible to 
construct a regression equation to model this relationship, 
indicating that environmental variables did not exert significant 
influence on the content of dictamnine. 
3.6 Comprehensive quality zoning of D. 
dasycarpus 

We detected variable correlations between the same 
environmental variable and different pharmacological components, 
as well as between different environmental variables and the same 
pharmacological component. We addressed this issue by overlaying 
the results of three single-index quality zoning analyses in ArcGIS 
software. This process yielded a comprehensive set of quality zoning 
results for D. dasycarpus in Liaoning Province. 

For cultivated D. dasycarpus, the high-quality zone covered an 
area of 3.710 × 104 km2, accounting for 24.97% of the total area of 
Liaoning Province. The high-quality zone was primarily 
concentrated in eastern regions, including Tieling, Fushun, and 
Benxi, as well as western regions, such as Chaoyang and Huludao. 
The medium-quality zone spanned 4.932 × 104 km2 and was 
distributed in parts of Dandong, Tieling, Benxi in the east, and 
FIGURE 5 

The spatial distribution of the content of D. dasycarpus. (A) Limonin content of cultivated samples. (B) Limonin content of wild samples. (C) Obacunone 
content of cultivated samples. (D) Obacunone content of wild samples. (E) Fraxinellon content of cultivated samples. (F) Fraxinellon content of wild samples. 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1591921
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http:Prec7-0.03


Jiang et al. 10.3389/fpls.2025.1591921 
Fuxin in the west. The general-quality zone occupied 4.405 × 104 

km2 and was mainly located in central areas such asShenyang, 
Liaoyang, and Anshan, as well as southern areas, including Yingkou 
and Dalian. Overall, quality decreased from the western and eastern 
parts towards the central part of Liaoning (Figure 6A). 

For wild D. dasycarpus, the high-quality zone covered 2.647 × 104 

km2, representing 17.82% of the total area of the province. This area 
was predominantly found in southern regions such as Dalian and 
western regions, including Huludao. The medium-quality zone 
spanned 6.167 × 104 km2 and was concentrated in areas such as 
Chaoyang, Jinzhou, Shenyang, Anshan, Liaoyang, and Dandong. The 
general-quality zone occupied 4.232 × 104 km2 and was mainly located 
in northern regions such as Tieling and Fushun. Overall, quality 
decreased from the south to the north of Liaoning (Figure 6B). 
3.7 Geodetector analysis for the 
comprehensive quality of D. dasycarpus 

Factor detection in Geodetector analysis demonstrated that 
Tmean2 and Prec5 were the environmental variables that had the 
greatest impact on the spatial heterogeneity of the quality of cultivated 
D. dasycarpus (Supplementary Table S9). For wild D. dasycarpus, 
Tmean1 had the most significant impact on spatial heterogeneity, 
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followed by Tmean12  and Bio1 (Supplementary Table S10). In terms of 
interaction detection, the interactions between environmental variables 
affecting the  quality of cultivated  D. dasycarpus all exhibited enhancing 
effects, with the interaction between Prec5 and Tmean2 being 
particularly significant (Supplementary Table S11). For wild D. 
dasycarpus, all interactions were two-factor enhancements, with the 
interaction between Tmean1 and Bio1 being significant. Other non-
primary environmental variables, such as the interaction between 
precipitation factors (Prec7) and temperature factors (Tmean1, 
Tmean12), also played a role (Supplementary Table S12). Each 
environmental variable overlapped across different quality grades. 
For cultivated D. dasycarpus, precipitation factors followed an 
increasing trend, while temperature factors followed a decreasing 
trend; for wild D. dasycarpus, temperature factors also followed a 
decreasing trend (Table 3). 
4 Discussion 

D. dasycarpus is one of the principal medicinal herbs cultivated 
in Liaoning Province. Because its medicinal value has increasingly 
been recognized, wild resources of D. dasycarpus have been 
extensively exploited. Concurrently, rapid industrial development 
has led to habitat destruction, resulting in a year-on-year decline in 
FIGURE 6 

Comprehensive quality zoning and ecological suitability overlay maps of D. dasycarpus. (A) Cultivated D. dasycarpus. (B) Wild D. dasycarpus. (C) Overlay of 
high-quality and highly suitable areas for cultivated D. dasycarpus. (D) Overlay of high-quality and highly suitable areas for wild D. dasycarpus. 
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wild resources and production, coupled with rising prices (Zhi et al., 
2022). Under these circumstances, enhancing the quality of 
cultivated D. dasycarpus is of paramount importance. Therefore, 
conducting research on the ecological suitability and quality 
distribution of D. dasycarpus in Liaoning Province holds 
significant practical implications for identifying potential areas 
suitable for artificial cultivation and promoting the development 
of the medicinal herb industry. 

D. dasycarpus exhibits biological characteristics that favor warm 
and humid climates, being cold-tolerant but intolerant to drought, 
waterlogging, and strong light. This herb typically grows on slopes 
with a certain gradient, in shrublands, grasslands, or under sparse 
forests, preferring higher altitudes with sufficient sunlight, well-
drained soil rich in humus, and sandy loam or loam soils (Wang 
et al., 2023). Previous studies demonstrated that the optimal growth 
temperature for D. dasycarpus was between 12°C and 18°C (Wang, 
2021). Extreme temperatures could reduce plant photosynthetic 
activity, affect protein stability, lead to the excessive accumulation of 
reactive oxygen species (ROS), and disrupt the production of plant 
hormones and signal transmission, thereby exerting adverse effects 
on the growth, development and quality of plants (Li et al., 2018; 
Ohama et al., 2017; Huang et al., 2023). In addition, water 
availability can exert significant effects on the emergence and 
growth of seedlings (Khaeim et al., 2022). Long-term drought 
could limit the growth and development, of plants, reduce 
photosynthetic intensity, and reduce the accumulation of 
secondary metabolites (Yang et al., 2007; Chaves et al., 2009; He 
et al., 2021). The climate of Liaoning Province is characterized by a 
temperate monsoon climate, marked by warm and rainy summers, 
cold and dry winters, distinct seasons, and significant temperature 
differences between the north and south. Field investigations have 
revealed that the central part of Liaoning Province has lower terrain 
and predominantly black soil and saline-alkali soil, making it less 
suitable for cultivating D. dasycarpus. In contrast, the western and 
eastern parts of Liaoning Province, with higher altitudes, ample 
sunlight and sandy loam soil, are more conducive to its growth. 

We consulted information on iplant (www.iPlant.cn) which 
indicated that D. dasycarpus is distributed in certain cities, 
including Shenyang, Dalian, Anshan, Fushun, Jinzhou, Tieling 
and Chaoyang. Combining this information with results arising 
from the fourth national survey of TCM resources, our findings 
align with the predicted distribution of areas with ecological 
suitability for D. dasycarpus, thus validating the accuracy and 
rationality of our study. 
Frontiers in Plant Science 11 
The seeds of D. dasycarpus exhibit physiological after-ripening 
characteristics (Fu and Yang, 2021), and therefore requires 
vernalization for germination. The optimal sowing time is in 
April, coinciding with the transition of the Northern Hemisphere 
from winter to spring when temperatures gradually rise. In the most 
suitable areas, Tmax3 ranges from 3.1°C to 7.2°C, meeting the 
temperature requirements for seed germination and seedling 
growth. The flowering period occurs around May, during which 
light sensitivity is highest, making Srad5 a significant environmental 
variable. The fruiting period, which extends from July to August, 
requires substantial water. During this critical phase, Prec7 plays a 
pivotal role in ensuring sufficient moisture and nutrients for the 
development of vegetative organs such as the stems and leaves, as 
well as for the formation of fully mature fruits. 

After comparing and analyzing the distribution results for 
ecological suitability and comprehensive quality, it is evident that 
low-quality areas do not align with ecological suitability zones. This 
indicates that environmental factors that are unfavorable to the 
growth of D. dasycarpus also inhibit the accumulation of medicinal 
components. However, this does not imply that all suitable areas are 
necessarily high-quality areas. The current distribution of cultivated 
D. dasycarpus quality largely corresponds to the areas that were 
predicted to be suitable. Variations in water, temperature and soil 
fertilizer management practices across different regions contribute 
to inconsistencies in the quality of medicinal material. In contrast, 
there are notable differences between the high-quality areas of wild 
D. dasycarpus and the suitable areas. 

Studies have shown that the optimal conditions for the growth 
and development of medicinal plants and the accumulation of 
secondary metabolites may differ (Cheng et al., 2024). This 
discrepancy can be attributed to the complex nature of secondary 
metabolite synthesis and accumulation in medicinal plants. Since 
active compounds in medicinal plants are primarily secondary 
metabolites, these are often considered adaptations to adverse 
environmental stressors (Al-Khayri et al., 2023). Therefore, we 
hypothesize that the formation and accumulation of effective 
components occur under different environmental conditions than 
those required for optimal growth. 

Field investigations have revealed that cultivated D. dasycarpus 
exhibits regular morphology, enlarged main roots, numerous lateral 
and fibrous roots, light color, smooth skin, firm texture, a strong 
powdered structure in cross-section, and a mild, sweet taste. In 
contrast, wild D. dasycarpus exhibits uneven main roots, twisted 
morphology, dark color, rough skin, spongy texture, strong 
TABLE 3 Information relating to environmental variables corresponding to different quality levels of cultivated D. dasycarpus and wild D. dasycarpus. 

Ecotype Environment 
variables 

Comprehensive quality level 

Low Mid High 

Cultivation 
Prec5/mm 35~58 40~67 62~73 

Tmean2/°C -8.4~-6.5 -9.6~-6.0 -11.7~-10.0 

Wild 
Bio1/°C 7.7~10.6 6.2~8.0 4.8~7.0 

Tmean1/°C -10.6~-4.8 -11.9~-10.6 -15.8~-11.8 
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fibrousness in cross-section, and a strong smell. Studies have 
indicated that wild medicinal plants experience more external 
stressors during growth. Salt stress and drought stress have been 
shown to slow plant growth, thicken the periderm to reduce water 
loss, and increase the xylem vessels to facilitate water distribution 
between above-ground and under-ground parts (Wang et al., 
2024b). Furthermore, salt and drought stress can cause collapse of 
the cell wall and shrinkage of the roots, thus resulting in the 
generation of cavities in the phloem of plant roots, damage to 
root hairs, and a reduced trend for the main roots to absorb water. 
These factors ultimately contribute to specific characteristics in wild 
medicinal plants, including thin and long roots, a spongy texture, 
and strong fibrousness. Stress and the growth of duration can jointly 
exert influence on the content or proportion of secondary 
metabolites in wild medicinal plants, thus leading to their 
distinctive or intense odors. 

In contrast, cultivated medicinal plants grow in artificially 
created suitable environments with weaker stress intensity than 
wild medicinal plants. Factors such as an abundance of water and 
fertilizer application, loose soil, and reduced ecological competition 
can promote vigorous primary metabolism, leading to the 
accumulation of large amounts of primary metabolites, including 
sucrose and starch. This results in certain characteristics, including 
enlarged main roots, uniform size, firm texture, flat cross-sections, 
weak fibrousness and an increased powdered texture (Wang 
et al., 2024a). 

In the present study, geographical detector analysis revealed 
that precipitation and temperature factors exerted joint influence on 
the ecological suitability and quality of D. dasycarpus. Precipitation 
is the dominant environmental variable for ecological suitability 
analysis, while temperature is the dominant variable for quality 
analysis. Based on our findings, we hypothesize that water affects 
the growth of D. dasycarpus, whereas temperature influences the 
accumulation of its effective components. 

Finally, by integrating the ecological suitability distribution area 
with the quality distribution area of wild D. dasycarpus and 
comparing this with current planting areas, we identified 
potential cultivation areas that were beyond the original planting 
zones. These included the southern part of Chaoyang, northern and 
western Huludao, western Jinzhou, eastern Liaoyang, and the 
contiguous eastern regions of Tieling, Fushun, and Benxi 
(Figure 6C), as well as western Dandong (Figure 6D). The 
ecological environment and quality of these areas are highly 
suitable, rendering these regions as highly likely candidates for 
potential cultivation. Nevertheless, in real cultivation scenarios, 
factors including pest infestations and inconsistencies in 
management strategies can give rise to discrepancies between 
predicted and observed results. Future research should prioritize 
expanding sampling coverage across diverse geographical and 
ecological gradients to enhance model generalizability. 
Additionally, integrating additional abiotic and biotic factors 
could substantially improve model precision (Comia-Geneta 
et al., 2024). We recommend validating model predictions 
through rigorous long-term monitoring and controlled field 
experiments, particularly in identified priority cultivation zones. 
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Furthermore, incorporating plant breeding advancements into 
species distribution models (Li et al., 2024) would enable more 
robust projections under climate change scenarios.  Such
multidisciplinary approaches will facilitate the development of 
adaptive spatial management strategies that simultaneously 
address ecological suitability, phytochemical optimization, and 
agricultural sustainability. 

The MaxEnt-HPLC-Geodetector integrated framework 
constructed in this study has the potential for cross-regional and 
cross-species application. The MaxEnt model, adept at handling the 
nonlinear species-environment relationship and adaptable to small 
sample data, can be transferred to predict ecological suitability in 
different regions; HPLC, as a standardized detection technology, has 
a component quantification method that can be directly applied to 
the quality assessment of other medicinal species; the Geodetector, 
by quantifying the contribution of environmental factors and their 
interaction effects, can analyze the spatial driving mechanism of 
quality formation. This framework, through the three-dimensional 
synergy of ecological distribution prediction (MaxEnt)–quality 
index correlation (HPLC)–driving factor analysis (Geodetector), 
provides a universal paradigm for the study of the authenticity of 
traditional Chinese medicinal materials and the protection of 
biological resources. In practical applications, the environmental 
variable set and chemical indicators need to be adjusted according 
to the target species, and model parameters need to be optimized to 
achieve regional adaptation and precise application of 
the methodology. 
5 Conclusion 

In this study, we utilized ArcGIS, the MaxEnt model, and HPLC 
techniques to analyze how environmental variables impact the 
ecologically suitable distribution and quality of D. dasycarpus. 
Analysis revealed that Prec7, Bio4, Srad5, Tmax3, and Tmin3 
were key variables for the ecological distribution of D. dasycarpus 
and could influence growth areas in Liaoning. Tmean2 and Prec5 
were identified as being important for the quality of cultivated D. 
dasycarpus, while Tmean1 was identified to be crucial for quality of 
the wild variety. Model analysis determined suitable distribution 
areas in Liaoning; eastern cities such as Tieling, Fushun, and 
Liaoyang were considered to be ideal. High-quality cultivated D. 
dasycarpus were found to be concentrated in Tieling (east) and 
Chaoyang (west), while wild plants were focussed in Dalian (south) 
and Huludao (west). Geodetector analysis demonstrated that 
environmental  variables  have  dominant ,  phased  and  
comprehensive effects on ecological suitability and quality, with 
variable interactions also significant. Integrating ecological and 
quality results provided theoretical support for selecting high-
quality planting areas, thus facilitating the protection on wild 
resources, optimizing planting layout, increasing both yield and 
quality, and promoting industry sustainability. Our study 
innovatively integrates the MaxEnt model, HPLC, and 
Geodetector to establish a comprehensive research framework 
capable of predicting species’ ecological suitability and quality 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1591921
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiang et al. 10.3389/fpls.2025.1591921 
distribution, providing a reference for related studies on other 
species and regions. This approach is expected to promote the 
transformation of this field from single-component research to 
comprehensive ecological pharmacology research, providing new 
ideas and methods for ecology-based quality control of medicinal 
materials and the sustainable utilization of resources. 
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