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Citrus ranks among the most widely cultivated and economically vital fruit crops 
globally, with southern China being a major production area. In recent years, 
global warming has intensified extreme weather events, such as prolonged high 
temperature and strong solar radiation, posing increasing risks to citrus 
production,leading to significant economic losses. Existing identification 
methods struggle with accuracy and generalization in complex environments, 
limiting their real-time application. This study presents an improved, lightweight 
citrus sunburn recognition model, YOLOv8-Scm, based on the YOLOv8n 
architecture. Three key enhancements are introduced: (1) DSConv module 
replaces the standard convolution for a more efficient and lightweight design, 
(2) Global Attention Mechanism (GAM) improves feature extraction for multi-

scale and occluded targets, and (3) EIoU loss function enhances detection 
precision and generalization. The YOLOv8-Scm model achieves improvements 
of 2.0% in mAP50 and 1.5% in Precision over the original YOLOv8n, with only a 
slight increase in computational parameters (0.182M). The model’s Recall rate 
decreases minimally by 0.01%. Compared to other models like SSD, Faster R
CNN, YOLOv5n, YOLOv7-tiny, YOLOv8n, and YOLOv10n, YOLOv8-Scm 
outperforms in mAP50, Precision, and Recall, and is significantly more efficient 
in terms of computational parameters. Specifically, the model achieves a mAP50 
of 92.7%, a Precision of 86.6%, and a Recall of 87.2%. These results validate the 
model’s superior capability in accurately detecting citrus sunburn across diverse 
and challenging natural scenarios. YOLOv8-Scm enables accurate, real-time 
citrus sunburn monitoring, providing strong technical support for smart orchard 
management and practical deployment. 
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1 Introduction 

Citrus is the most widely cultivated commercial fruit crop 
globally, with the highest yield among fruit species (Chen et al., 
2017). In recent years, due to global warming, the frequency and 
severity of extreme weather events have increased (Khumalo and 
Ngcamphalala, 2024). During summer and autumn, citrus fruits 
exposed to intense sunlight and high temperatures may suffer from 
sunburn damage (Zhang et al., 2024). This sunburn damages the 
epidermal tissue of the fruit, making the skin rough and thickened, 
and halting fruit development during the expansion phase (Kim 
et al., 2022). This phenomenon, known as citrus sunburn, reduces 
fruit yield and quality (Mohsen and Ibrahim, 2021; Fischer et al., 
2022). In agricultural practice, the rapid identification and 
classification of citrus sunburn are of great practical significance. 
It allows for the timely implementation of protective measures to 
reduce agricultural losses and is beneficial for their application in 
agricultural insurance disaster statistics (Campbell et al., 2004; 
Tarancón et al., 2021). 

Currently, there are four main methods for determining the 
degree of citrus sunburn damage. Firstly, human judgment by 
agricultural technicians or citrus growers. However, this method is 
highly subjective and inefficient (Molin et al., 2012; Londhe et al., 
2013; Naruka and Bhadauria, 2020). Secondly, using spectroscopic 
equipment to detect fruit (Gutiérrez et al., 2019; Moriya et al., 2021; 
Liu et al., 2024). Although it can monitor tissue damage both on and 
beneath the epidermis, the equipment is expensive (Xiu et al., 2021) 
and involves complicated procedures. Thirdly, conducting biological 
(Reetika et al., 2024) and molecular experiments (Zhang et al., 2020). 
This includes two aspects: (1) Anatomical observation and 
physiological experiments on the abiotic stress response. The 
results show that with the intensification of citrus sunburn, the 
fruit’s epidermal pigment increases, and the epidermal tissue and 
oil glands are damaged (Kim et al., 2022). (2) Determining proline 
and MDA (Malondialdehyde) (Vives-Peris et al., 2024), hydrogen 
peroxide and antioxidant enzyme activities, as well as chlorophyll 
analysis and phytohormone quantification (such as abscisic acid, 
salicylic acid, and auxins) under high-temperature stress (Balfagón 
et al., 2023) and UV-B-induced stress. However, this method can only 
determine changes in physiological indicators and the tolerance 
response of citrus fruits subjected to sunburn damage (Yun et al., 
2013). Fourthly, machine vision-based fruit identification (Mirhaji 
et al., 2021; Lyu et al., 2022) and maturity grading (Wang et al., 2024). 
This is an emerging technique. Although machine vision methods 
have shown promising results, their precision significantly declines 
when dealing with small, occluded targets and complex natural 
environments (Gao et al., 2022; Zhao et al., 2024). However, the 
identification and grading method based on machine vision can be an 
accurate and rapid means to assess the fruits of a citrus 
sunburn disaster. 

As deep learning and image processing technologies advance, 
machine vision has found increasingly widespread applications in 
agriculture (Ghazal et al., 2024; Padhiary and Kumar, 2024). One of 
its applications in agriculture is object recognition, which is 
frequently used to identify sunburn-related damage in fruits such 
Frontiers in Plant Science 02 
as pomegranates (Rezaei et al., 2018), apples (Amogi et al., 2022), 
cranberries (Akiva et al., 2021), and citrus (Dhiman, 2022). Rezaei 
et al (Rezaei. et al., 2024). used the ANN (Artificial Neural Network) 
and SVM (Support Vector Machine) methods to automatically 
classify sunburned pomegranate fruits based on features extracted 
by the algorithm. However, these two methods mainly focus on 
classification tasks. Although they show high efficiency, their 
performance in multi-object detection tasks are suboptimal. Akiva 
et al (Akiva et al., 2021). proposed the Triple-S Network model. 
This model uses machine vision technology to segment and count 
the cranberry damaged part caused by thermal radiation. It has a 
mean absolute error (MAE) of 13.46 and a MIoU (mean 
intersection over union) of 62.54%. Although this study achieved 
the expected goals, the model’s accuracy and detection efficiency 
still have significant potential for further enhancement. Amogi et al 
(Amogi et al., 2023). trained the Mask R-CNN model and combined 
it with the color-based K-means clustering method to evaluate 
sunburned apples. The average precision was 91.4%, and the 
calculation time was 37s, which improved the monitoring speed. 
However, this model consumes a large amount of computing 
resources and has strict requirements for device hardware. 
Although it has high detection precision, its processing efficiency 
is low, and it is challenging to be light-weightly deployed on low-
resource-overhead devices. The AG-YOLO algorithm was proposed 
to solve the problems of low detection precision and a high missed 
detection Rate in identifying citrus fruit (Lin et al., 2024). In 
occlusion scenes, it can provide fast and accurate technical means 
for citrus yield estimation (Zhang et al., 2024a). However, the 
purpose of these experiments was only to improve the 
identification and monitoring abilities of citrus fruits in complex 
environments (Xu et al., 2023; Zhang et al., 2024b) and the feature 
acquisition of the overall unit of citrus fruits, without classifying the 
local characteristics of the fruits. Mirhaji et al (Mirhaji et al., 2021). 
used the YOLO model for fruit detection and yield in citrus 
orchards via a simple method under image and lighting 
conditions. The precision rate, recall rate, F1 score and mAP of 
the model were 91.23%, 92.8%, 92% and 90.8%, respectively. This 
study was able to detect and identify fruits under different lighting 
environments but did not divide the grades and categories of navel 
citrus, and the model was unable to acquire specific differences in 
fruit surface characteristics. To address the deficiencies in previous 
studies, we conducted a study on the classification and 
identification of citrus sunburn fruits based on the YOLO 
algorithm (Jocher et al., 2023) and set five different labels. YOLO 
(You Only Look Once) is an efficient and precise algorithm for 
object detection. It converts the task of object detection into a single 
inference problem and utilizes a unified neural network to predict 
both the locations and categories of objects within an image 
simultaneously. The  focus of this study  was on the  size,
proportion and severity of the sunburned area of the fruit 
epidermis, classifying sunburned fruits into five levels (0-4) to 
obtain more detailed information on the outer surface 
characteristics of the fruit skin. 

To address the above-mentioned issues, we propose a sunburn 
citrus level identification model based on an improved YOLO v8n 
frontiersin.org 
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algorithm. This model centers on the relationship between the 
surface damage degree of citrus fruits and the severity of citrus 
sunburn. Given the complex environmental conditions, the model 
mainly extracts the sunburn damage characteristics on citrus fruit 
surfaces. It detects citrus fruits at different scales, extracts the 
surface features of citrus fruits of different grades, and develops a 
high-precision, lightweight machine vision model (Lu et al., 2023). 
In particular, the identification of phenotypic traits related to 
different levels of sunburn provides faster and more accurate 
technical means for disaster assessment and statistics in citrus 
orchards. We enhanced the baseline YOLOv8n architecture by 
introducing three key modules: 

Specifically: (1) The DSConv module replaces standard 
convolution to significantly reduce computational load while 
maintaining feature extraction capacity, thereby enabling the 
model’s deployment on lightweight agricultural devices. (2) The 
Global Attention Mechanism (GAM) is introduced to enhance the 
model’s sensitivity to sunburn-affected regions by capturing both 
global and spatial contextual cues, improving robustness against 
occlusion, background clutter, and target size variability. (3) The 
EIoU loss function refines bounding box regression by optimizing 
aspect ratio alignment and convergence speed, addressing the issue 
of inaccurate localization caused by scale and shape variations in 
citrus fruits. Collectively, these modules not only improve the 
detection precision and generalization ability of the model but 
also ensure its applicability in real-time, resource-constrained 
agricultural scenarios. 

The primary objective of this study is to achieve a practical 
trade-off between classification precision and computational 
efficiency, enabling real-time inference and potential deployment 
on mobile or embedded agricultural platforms. While this work 
explores the deployment potential of YOLOv8-Scm on edge devices 
and panoramic orchard cameras, we emphasize that such 
deployment scenarios remain hypothetical at this stage. The 
model is expected to be deployed in practical production 
applications in the near future. Nevertheless, the deployment 
considerations are grounded in real-world demands for in-
Frontiers in Plant Science 03 
orchard monitoring, serving as a foundation for future 
engineering efforts toward lightweight, mobile-compatible 
agricultural stress detection tools. 

The subsequent sections of this paper are arranged as follows. 
Section 1 centers on image acquisition, sample division, and 
dataset preparation. In Section 2, the baseline model is selected 
via preliminary experiments, and the architecture of the 
YOLOv8-Scm model along with the introduction of each 
module is presented. Section 3 presents the comparison results 
of the model before and after improvement and analyzes the 
model by means of ablation experiments and comparison tests. 
Section 4 discusses the limitations of the current study, 
proposes future research directions, and summarizes the 
main conclusions. 
2 Materials and methods 

The overall workflow of this study consists of four main stages: 
image data acquisition under natural orchard conditions, dataset 
construction with sunburn level labeling and preprocessing, model 
development and optimization based on YOLOv8n incorporating 
DSConv, GAM, and EIoU modules, and finally, model evaluation 
and validation using standard metrics such as mAP50, Precision, 
and Recall (Figure 1). This structured process ensures both 
effectiveness and applicability of the proposed method in real-
world citrus sunburn detection scenarios. Each step is detailed in 
Sections 2.1 through 2.5. 

This study was conducted in an Orah mandarin orchard located 
in Wuming District, Nanning City, Guangxi Zhuang Autonomous 
Region, China (22°59′58″ N, 108°37′22″ E). The orchard is located 
in the subtropical monsoon region (Figure 2). It covers an area of 
approximately 50 hectares with a row spacing of 4.5 m and plant 
spacing of 3.0 m. 

Regarding citrus sunburn, although researchers from various 
countries have extensively studied it, few specific standards for 
grading citrus sunburn have been formulated. In this study, based 
FIGURE 1 

Structured workflow for citrus sunburn classification based on improved YOLOv8n. 
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on the actual experimental collection data, following Wang et al 
(Wang et al., 2020). and Hu et al (Hu., 2020), we divided the citrus 
sunburn damage grades into five categories: Hfruits (Healthy fruit), 
ODB-fruit (sunburning level 1 fruit), SDB-fruit (sunburning level 2 
fruit), TDB-fruit (sunburning level 3 fruit), and FDB-fruit 
(sunburning level 4 fruit). Figure 3 shows the samples of sun
burning fruit for each level. 
2.1 Image acquisition 

The data were gathered during the fruit expansion stage from 
June to September 2023, when the fruit was green. At this stage, the 
citrus fruits had not yet ripened or undergone color change, 
ensuring that natural ripening processes did not interfere with the 
assessment of sunburn. After sunburn, the fruit showed 
discolouration, turning yellow and brown, which was in clear 
contrast to the green fruit. 
Frontiers in Plant Science 04
The data collection was conducted every three days at three 
fixed time intervals: 07:00–09:00, 12:00–14:00, and 16:00–18:00, 
under different lighting conditions. The acquisition device was an 
iPhone 14 Pro Max mobile phone with a pixel resolution of 
4536×8064 and a shooting distance of 0.5-2.0m. The pictures 
were saved in JPG and PNG formats. To ensure that the 
experimental data were extensive and representative, the data 
were collected from Orah mandarin orchards in a natural 
environment. This environment included various complex 
conditions such as direct sunlight, shade obstruction, and rainy 
and sunny days. 
2.2 Dataset creation 

To create a dataset to facilitate the processing and analysis of 
collected data in subsequent experiments, 2,099 pictures of citrus 
sunburn fruits at different levels were used. First, the original images 
FIGURE 2 

Geographical diagram of the citrus fruit collection areas. 
FIGURE 3 

Sample images of citrus sunburn at different degrees. The criteria for this 5-level division are as follows: (a) Hfruits: The fruit is pure green without 
any color difference, categorized as normal and healthy. (b) ODB-fruit: The fruit has a slight yellowing, or a small part of it turns yellow, which 
indicates that the fruit was already green and had a trend of discolouration due to burns. (c) SDB-fruit: The fruit has obvious discolouration, but the 
proportion of the discolored area is relatively small, usually less than 25% of the light-facing area. (d) TDB-fruit: The fruit has a relatively large area of 
burns, but dry scars and scabs have not yet formed, accounting for 25%-66.7% of the area. (e) FDB-fruit: The fruit has severe burns, and dry scars 
and scabs have formed, or the area of abnormal discolouration caused by the burns exceeds 66.7%. 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1591989
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http:0.5-2.0m


Cong et al. 10.3389/fpls.2025.1591989 
were uniformly cropped to two sizes, 1280×1280 and 640×640 
pixels. Then, LabelImg software was utilized for labeling. According 
to the different levels of citrus sunburn, a total of five labels (Hfruits, 
ODB-fruit, SDB-fruit, TDB-fruit, FDB-fruit) were set, with a total of 
5390 boxes. The dataset was partitioned into three subsets: a 
training set, a validation set, and a test set, in a ratio of 7:2:1. A 
summary of the dataset properties, annotation methods, and 
preprocessing steps is presented in Table 1.The numbers of citrus 
fruits with different levels of damage in each dataset are presented 
in Table 2. 

The dataset used in this study will be publicly released upon the 
acceptance and publication of this article. It will be made available for 
academic research and educational purposes only. In addition, we plan 
to continuously expand the dataset by including more citrus varieties, 
sunburn levels, and images captured under different environmental 
and lighting conditions. Future versions of the dataset will be uploaded 
to the same repository to support ongoing research in fruit stress 
identification and precision agriculture. 
2.3 YOLO v8 model structure and 
preliminary test 

2.3.1 YOLO v8 model structure 
YOLO v8 is one of the most widely used object detection models 

(Jocher et al., 2023). It consists of three parts: the backbone network, 
the head network, and the neck network. Compared with earlier 
versions, YOLOv8 has several advantages. It has a better CSPNet 
model architecture and an improved loss function CIoU. Moreover, 
it supports detection, segmentation, and classification tasks. For 
different goals and usage scenarios, YOLOv8 is divided into five 
different versions: YOLOv8n, s, m, l, and x. 

This study mainly focuses on citrus orchards in complex natural 
environments (Xu et al., 2023). To meet the need for accurately and 
rapidly detecting citrus sunburn in orchards, YOLOv8n, which has 
the least amount of parameter calculation, was selected as the 
baseline model for subsequent improvement and optimization, 
considering the subsequent lightweight deployment of the model. 
Frontiers in Plant Science 05 
2.3.2 Preliminary test 
In this study, We conducted a pre-test to evaluate the 

performance of five versions of YOLOv8 on the established 
dataset. This was done to verify the rationality and effectiveness 
of the selected model. The experimental results are presented in 
Table 3. It also presents the overall model mAP50, precision rate 
(P), and recall rate (R). Among these evaluation indicators, 
YOLOv8m performs the best, with mAP50, P, and R scores of 
93.2%, 90.3% and 87.6%, respectively. In this study, the selected 
YOLOv8n model is lightly inferior to the other versions of the 
model in terms of the evaluation indicators of mAP50, Precision 
(P), and Recall (R). However, it can fully meet the monitoring 
requirements in the experiment and application. Moreover, the 
number of model parameters of YOLOv8n is 3.01M, far lower than 
those of other models. This gives it a great advantage in achieving 
weight reduction improvement. The objective of this study is not 
merely to pursue optimal detection precision but, more 
importantly, to ensure the model’s lightweight design and 
enhanced real-time performance within a reasonable precision 
range. Therefore, this study selects YOLOv8n as the baseline 
model for subsequent improvement and optimization. 
 

2.4 Model improvement 

The YOLOv8n baseline model performs well in terms of its 
lightweight design and real-time capabilities. However, in natural 
and complex scenes such as those with strong light and chaotic 
backgrounds, its recognition precision and effective detection 
cannot be guaranteed, and missed detection and false detection 
may occur (Zhang et al., 2024b). To endow the model with 
lightweight and accurate real-time monitoring performance and 
enhance its ability to identify and classify citrus sunburn fruits in 
complex environments, an improved model based on YOLOv8n, 
named YOLOv8-Scm (YOU ONLY LOOK ONCE v8-Sunburn 
citrus monitoring), is proposed. We selected DSConv, GAM, and 
EIoU after evaluating several candidate modules for balancing 
model precision and computational efficiency.The details are as 
follows. As shown in Figure 3, according to the application 
requirements of the scenario, three improvements are made to 
the original YOLOv8n model. First, We replaced the Conv module 
with the DSConv module (Nascimento et al., 2019). This 
replacement aims to achieve lightweight and efficient calculations 
of the model and reduce the consumption of computing resources. 
Second, the global attention mechanism (GAM) (Liu et al., 2021) is  
introduced. It helps improve the focus on global context 
information, filter complex background interference, and improve 
the detection precision and robustness of the model for sunburning 
fruits of various sizes. Finally, to reduce the problem of large 
detection errors caused by the inconsistent sizes and diverse 
distributions of citrus fruits in the natural environment, the EIoU 
bounding box regression loss function (Zhang et al., 2022) is

introduced. This function improves the ability of surface feature 
extraction and identifying citrus fruits in challenging environments. 
The model can more precisely adjust the object box, accelerate 
TABLE 1 Dataset details and preprocessing pipeline for citrus 
sunburn detection. 

Dataset 
Property 

Description 

Total images 2099 

Number of labels 5390 

Sunburn classes 5(levels 0-4) 

Annotation tool Labelimg 

Preprocessing 
Resize to 640×640, 1280×1280 

normalization, augmentation (flip, rotate, 
brightness adjust) 

Data split ratio Train: 70%, Val: 20%, Test: 10% 
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model convergence, and reduce the occurrence of missed detection 
and false detection, thereby improving the model’s overall

performance. The YOLOv8-Scm network structure is based on 
the above improvements, as shown in Figure 4. 

2.4.1 Distribution-shifted convolution 
The DSConv, an efficient variant of the convolutional layer 

proposed by Nascimento et al (Nascimento et al., 2019), can lead to 
lower memory consumption overhead and higher computation 
speed. To ensure the light weight  and high-speed operation

performance of the model, this paper selects DSConv to replace 
the Conv module as the backbone feature extraction network of 
YOLOv8n. The structure of the module is illustrated in Figure 5. 

DSConv consists of two main components: a variable quantized 
kernel (VQK) and a kernel distribution shift (KDS). In VQK, only 
the quantized integer values are stored. By applying the distribution 
offset mechanism based on kernels and channels, to retain the 
output characteristics as closely as possible to those of the original 
convolution operation, are retained as much as possible. The 
distribution shifter is implemented by two tensors: a KDS and a 
channel distribution shifter (CDS). The structural characteristic of 
DSConv lies in its capacity to effectively optimize the quantized 
feature distribution. That is, it can reduce computational 
consumption as much as possible while ensuring the precision of 
the model. This enables it to adapt to the complex lighting 
conditions and the appearance characteristics of fruit in the 
natural environment, thereby obtaining more accurate models. In 
this way, a network model with higher speed, greater robustness, 
and better real-time performance can be achieved. 
Frontiers in Plant Science 06
2.4.2 Global attention mechanism 
Under natural conditions, citrus plants have a low degree 

of differentiation from their surroundings. Some citrus fruits are 
obscured by branches and leaves, making them difficult to 
identify and locate. When monitoring small targets and objects 
with high feature similarity in natural and complex scenes, the 
traditional YOLOv8n model performs unsatisfactorily. Woo et al 
(Woo et al., 2018). proposed the convolutional block attention 
module (CBAM)to improve the performance of Convolutional 
Neural Networks (CNNs). CBAM combines channel attention and 
spatial attention mechanisms and can concentrate on and acquire 
features, for example, the shape, color, and texture of citrus fruits. 
However, although the attention mechanism can improve the 
model’s monitoring performance, an increased number of 
parameters leads to greater computational overhead, which affects 
the performance of the model. Liu et al (Liu et al., 2021). proposed an 
improved GAM built upon the CBAM. GAM captures the global 
information of the channel, width, and height through 3D feature 
arrangement to enhance the ability of cross-dimensional information 
expression. It also optimizes computation efficiency through group 
convolution of channel shuffling. A lightweight design is used to 
reduce the increase in the additional parameters introduced by the 
spatial attention module, significantly improving the model’s 
performance in relation of weight reduction and computational 
efficiency. For this reason, this study introduced GAM into the 
YOLOv8n model to globally optimize the performance and 
precision of citrus identification in complex environments. 

The GAM consists of two main parts: the channel attention 
submodule and the spatial attention submodule. It continues to use 
TABLE 3 Pre-experiment results of the baseline model of different versions of YOLOv8. 

Models 
Single-label accuracy 

mAP50/% P/% R/% Params/M 
Hfruits ODB-fruit SDB-fruit TDB-fruit FDB-fruit 

YOLO v8n 87.1 78.6 85.3 88.4 85.8 90.7 85.1 87.1 3.01 

YOLO v8s 93.2 85.6 88.0 91.2 90.5 91.9 89.7 85.3 11.12 

YOLO v8m 92.4 86.5 86.7 90.1 95.7 93.2 90.3 87.6 26.58 

YOLO v8l 92.1 84.5 86.7 86.3 89.0 92.2 87.7 87.2 44.92 

YOLO v8x 92.3 85.0 88.1 86.4 91.4 91.9 88.6 86.1 70.18 
 

Bolded values represent the highest performance among all models for the corresponding evaluation metric. 
TABLE 2 Detailed composition of the citrus fruit sunburn identification, division and detection datasets. 

Sample name Training set/box Validation set/box Test set/box Total/box 

Hfruits 1325 245 83 1653 

ODB-fruit 852 244 121 1217 

SDB-fruit 751 215 108 1074 

TDB-fruit 446 128 64 638 

FDB-fruit 566 161 81 808 

Total 3940 993 457 5390 
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FIGURE 5 

DSConv module structure. 
FIGURE 4 

Frame structure of the YOLOv8-Scm model. 
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the sequential processing method of CBAM. The difference is that it 
introduces the modelling of global context information by globally 
performing on the entire feature map. Pooling is used to capture the 
global information of the entire image. The workflow and formula 
steps are as follows: 

2.4.2.1 Channel attention module 
Global pooling: Global average pooling is applied to each 

channel. The detailed process formula is as shown in Equation 1: 

H W1 
Favg = F1(i, j) (1)

H x W oo 
i=1 j=1 

where Favg represents the pooled feature vector, F1 ∈ RCxHxW 

stands for the input feature map, c is the channel index (i.e., the 
channel count of the input feature map), H is the feature map 
height, W is the width of the channels, and i and j are the row index 
and column index of the feature map, respectively. 

Multi-layer perceptron (MLP): The pooled channel description 
is sent through a two-layer MLP, after which the weight of each 
channel is output. The process formula is as shown in Equation 2: 

MC (F1) =  s (W2 · ReLU(W1 · Favg)) (2) 

Where W1 and W2 represent the MLP weights, and where s 
represents the sigmoid activation function which compresses the 
output value to the range between 0 and 1 Calculate and take MC ( 
F1) along with the input features F1. Then perform channel-by
channel multiplication to generate the enhanced feature maps. The 
workflow diagram of channel attention is as follows: Figure 6: 

2.4.2.2 Spatial attention module 
Fron
1. Pooling operation: First, global average pooling and max 
pooling are applied to the input features. Subsequently, the 
two pooling results are spliced along the channel dimension 
to generate a fused feature representation and a 
spatial description; 

2. 7 x 7 Convolution operation: The spliced pooled results are 
passed through 7 x 7 convolutional layers to generate 
spatial attention maps Equation 3: 
Ms(F2) = s (f 7x7(½AvgPool(F2); MaxPool(F2) )) (3) 

where f 7x7 the convolution operation of 7 x 7, []; represents 
channel splicing and where is the sigmoid activation function. 
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The spatial attention MS(F2) is generated, and the characteristics 
F2 ∈ RCxHxW are also formed. The final output features are obtained 
by multiplying each element. The workflow diagram of the spatial 
attention module is as follows: Figure 7: 

In summary, the process and structure diagram of the GAM are 
as follows: Figure 7 and Equation 4 show the following: 

F2 = MC (F1) ⊗ F1 (4) 

where MC(F1) is the channel attention map, ⊗ represents the 
operation of multiplying the element-by-channel, and F2 ∈ 
RCxHxW is a feature of the channel after enhancement. 

F3 = MS(F2) ⊗ F2 (5) 

where F2 ∈ RCxHxW is the channel-enhanced feature, MS(F2) is  
the spatial attention map, ⊗ represents element-by-channel 
multiplication, and the final output features can be obtained after 
the above steps F3 See Equation 5 and Figure 8 for details. 
2.4.3 Enhanced Intersection over Union loss 
function 

In the recognition detection algorithm, the loss function 
measures the model’s bounding box positioning accuracy, 
prediction confidence, and object classification and identification 
precision. By calculating the difference between the predicted value 
and the actual value (i.e., the weighted sum), it guides the 
optimization of model parameters. This helps to minimize the 
error, improve the model’s generalization ability, and prevent 
over fitting during the training process. 

The selection and design of the loss function directly affect the 
model’s performance. Regarding this, the original CIoU 
(Complete Intersection over Union) loss function (Du et al., 
2021) is improved based on the EIoU loss function (Zhang 
et al., 2022). This improvement is mainly reflected in the 
following aspects: refined constraint on the difference in the 
length and width of the bounding box, enhanced convergence 
speed and detection precision, and enhanced optimization for 
small object ability and more balanced loss distribution. The 
specific formula is as shown in Equation 6: 

LEIOU = LIOU + Ldis + Lasp 

r2(b,bgt ) gt ) r2(h,hgt ) 
(6) 

r2(w,w= 1  − IOU + + +
(wc )2+(hc )2 (wc )2 (hc )2 
FIGURE 6 

GAM-Channel attention submodule. 
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where w, h represent the width and height of the prediction box, 
respectively; wgt , hgt represent the width and height of the target box, 

crespectively; w , hc represent the width and height of the minimum 
bounding box containing the prediction box and the target box, 
respectively; and r2(b, bgt ) represents the squared difference between 
two values, usually the square of the Euclidean distance. 
3 Results and analysis 

3.1 Experimental platform and training 
parameter settings 

In this study, the following experimental equipment was used. The 
operating system was Ubuntu20.04. The processor was an Intel Xeon 
(R) Silver4314 CPU@2.40 Hz×64, and the graphics card was NVIDIA 
A10 24G. The compilation language was Python 3.8.5, with Pycharm. 
2023 as the compilation software. The deep learning framework was 
torch-2.0.0, and CUDA was utilized to accelerate the training. 

During the experiments, for each iterative training of the model, 
the number of samples was set to 16. The number of iterative training 
rounds (epochs) was set to 300, and the Adam optimizer was used as 
the optimizer. The experimental results are presented in Table 4. 

3.1.1 Algorithm performance evaluation 
In this study, for the achievement of classification and ranking 

of citrus fruits with varying degrees of sunburn under complex 
natural conditions, it is necessary to identify and classify the citrus 
fruits with different levels of sunburn and perform quantitative 
calculations. To assess the performance of the YOLOv8-Scm model 
in identifying citrus sunburn fruit damage levels, three quantitative 
indicators were used as performance indicators: mAP50, Precision 
(P), Recall (R), as reference bases for the evaluation. Additionally, 
Params (model parameters) was used to evaluate the parameter 
complexity of the model to measure the model’s weight reduction. 

The “Precision (P) is used to evaluate the prediction precision of 
the model, which is the ratio of the samples predicted by the model 
to be in the positive category to the samples actually in the positive 
category. The calculation formula is as shown in Equation 7: 

Tp
P = x 100 % (7)

Tp + Fp 
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The Recall (R) measures the proportion of all actual positive 
samples correctly predicted by the model. The formula for its 
calculation is as shown in Equation 8: 

TP 
R = x 100 % (8)

Tp + Fn 

The F1-score is the harmonic mean of precision and recall, 
reflecting the overall performance of a model by balancing its 
accuracy and completeness in classification tasks; a higher value 
indicates better detection capability.The formula for its calculation 
is as shown in Equation 9: 

P x R 
F1 = 2  x (9)

P + R 

The mAP50 refers to calculating the average precision (AP) for 
each category when the IoU threshold is 0.5, and then averaging all 
the categories. (IoU = 0.5 means that the detection is considered 
correct when the overlap area between the predicted bounding box 
and the ground-truth bounding box accounts for at least half of the 
area of their union, i.e., A∩B>0.5). A larger value represents a higher 
average precision of the model, that is, better detection 
performance. The calculation process is shown in Equations 10–12. 

A ∩ B 
IOU = (10)

A ∪ B 

Z 1 

AP = P · RdR (11) 
0 

N1 
mAP @50  =  APi (12)

N o 
i=1 

A∩B denotes the overlapping area between the predicted and 
ground-truth bounding boxes, while A∪B stands for the union area 
of these two. 

Tp (True positives) refers to true examples, specifically, the count 
of samples where the model correctly predicts as the positive category. 

Fp (False-Positives) are false-positive examples, meaning the 
amount of samples in which the model wrongly predicts the 
negative category as the positive category. 

FN (False-Negatives) refer to instances where the model 
incorrectly classifies a sample that actually belongs to the positive 
category as negative. 
FIGURE 7 

GAM-Spatial attention submodule. 
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3.2 Training results of the YOLOv8-Scm 
model 

As illustrated in Figure 9, the improved YOLOv8-Scm model 
outperforms the initial YOLOv8n model in all indicators, 
demonstrating higher detection performance and robustness. 
Firstly, regarding the model convergence speed, YOLOv8-Scm is 
slightly faster than YOLOv8n and has a lower loss value in the 
middle and late stages. This implies that the improved model is 
more accurate in the predicting of object bounding boxes and it has 
better object classification ability and model generalizability. 
Secondly, in terms of P, the average value of YOLOv8-Scm is 
75.25%, with a maximum value of 91.92%. In contrast, the average 
value and maximum P of YOLOv8n are 74.43% and 89.62%, 
respectively. This shows that YOLOv8-Scm has a stronger ability 
to avoid false detection and can produce more accurate 
identification results. Thirdly, regarding the recall rate, the 
average value of YOLOv8-Scm is 79.05%, with a maximum of 
90.50%, both of which are higher than those of YOLOv8n (78.52% 
and 87.96%, respectively). This reflects that YOLOv8-Scm has a 
more accurate Recall rate and better target identification ability. In 
addition, the average mAP50 value is 81.16% with a maximum 
value of 92.91%, while YOLOv8n achieves an average mAP50 of 
80.04% and a maximum of 90.81%. For the more stringent mAP50– 
95 indicator, the average value of YOLOv8-Scm is 69.96% and the 
maximum value is 83.75%, which are higher than those of the 
original YOLOv8n model (with an average value of 68.62% and a 
maximum value of 81.59% respectively). 
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In summary, YOLOv8-Scm has been comprehensively 
improved in terms of P, R and generalization ability, especially 
for the key indicator mAP50. This result demonstrates the 
effectiveness of the model improvements proposed in this study. 
The YOLOv8-Scm model, which can complete multi-target 
detection tasks in complex natural environments, has even greater 
application potential and advantages. 
 

3.3 Ablation experiment 

In this study, the aim is to develop a lightweight detection 
algorithm for identifying sunburned citrus fruits in orchards by 
improving the original YOLO v8n model. The primary 
improvements are as follows: Firstly, replacing the Backbone 
feature extraction and compression input Conv module with the 
DSConv module. Second, the EIoU loss function is used to replace 
the CIoU loss function. Third, introduce the GAM global attention 
mechanism. To comprehensively evaluate the model’s performance, 
four groups of ablation experiments were carried out. These include 
the original model without any module improvements, the model 
with a single module added, the model with two modules added, 
and finally, the model with all improvements incorporated. 

All ablation experiments were performed under identical 
training conditions, using the same dataset and training 
parameters. This was done to investigate the impact of adding 
different modules on the performance of the baseline mode and 
effectively clarify the effectiveness of each module improvement in 
the model. 

Table 5 shows that adding different modules and their 
combinations can improve all the evaluation indicators of the 
model. When using the combination of DSConv+EIoU+GAM, 
the model’s performance reaches the optimal balance. The 
mAP50 increases to 92.7%, which is 2.0% higher than the base 
model’s 90.7%. Moreover, the P reaches 86.6% and the R reaches 
87.2%, which are significantly better than the base model’s 85.1% 
and 87.1% respectively. This indicates that the model’s classification 
ability and bounding box positioning ability for citrus sunburn fruit 
have been significantly improved. In addition, the amount of 
parameters of the improved model only slightly increases by 
0.182M from the original model’s 3.01 M. Although the

computational complexity is increased slightly, the overall 
FIGURE 8 

Overview of the GAM. 
TABLE 4 Hyperparameter configuration of the deep 
learning experiment. 

Training parameters Details 

Epochs 300 

Batch_Size 16 

Input 640*640 

OPtimizer_Type Adam 

Momentum 0.937 

Weight decay 0.0005 
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performance is significantly improved, which ensures the 
model’s lightness. 

Based on the above results, the synergy of module combinations 
effectively improves the precision of classifying and identifying 
citrus sunburn fruits in complex natural scenes, enhances the 
model’s light weight and robustness. This advantage is especially 
well-suited for deployment on resource-limited hardware devices 
and mobile phones in actual field applications. 
3.4 Comparative test 

To better demonstrate the model’s overall performance through 
comparison, the proposed YOLOv8-Scm model was compared with 
mainstream models for state-of-the-art (SOTA) results, thus proving 
the superiority of its performance. The mainstream lightweight object 
detection models for comparison are SSD (Liu et al., 2016), FasterR-
CNN (Ren et al., 2016), YOLOv5n (Wu et al., 2021), YOLOv7-tiny 
(Cheng et al., 2023), YOLOv8n, and YOLOv10n (Wang et al., 2024). 
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Throughout the training phase, the default input image resolution 
was used, the training parameters were kept the same, and the same 
hardware environment and dataset were employed for training. This 
ensured fairness by minimizing interference of other non-human 
factors and controlling variables to make the training results more 
informative. For specific results, please refer to the table below. 

To comprehensively evaluate the performance and computational 
efficiency of the proposed YOLOv8-Scm model, Table 6 presents a 
comparison with several mainstream object detection algorithms 
commonly used in fruit detection tasks. Traditional models such as 
SSD and Faster R-CNN achieve reasonable accuracy but are 
computationally intensive and unsuitable for real-time deployment. 
Lightweight models like YOLOv5n and YOLOv7-tiny offer faster 
inference but are generally limited to binary or low-level classification 
and perform less reliably under complex conditions such as occlusion 
and variable lighting. 

Compared with these models, YOLOv8-Scm supports fine-
grained five-level classification and demonstrates superior 
robustness and stability in real orchard environments. 
TABLE 5 Ablation experiments based on the YOLO v8n model. 

DSConv EIoU GAM 
Single-label accuracy 

mAP50% P/% R/% Params/M 
Hfruits ODB-fruit SDB-fruit TDB-fruit FDB-fruit 

× × × 87.1 78.6 85.3 88.4 85.8 90.7 85.1 87.1 3.010 

√ × × 89.2 81.9 82.3 86.5 86.3 91.1 85.2 86.2 3.007 

√ √ × 90.3 81.9 88.3 87.6 85.7 91.4 86.8 84.4 3.007 

√ √ √ 91.9 80.7 85.0 87.3 88.2 92.7 86.6 87.2 3.192 
Bolded values represent the highest performance among all models for the corresponding evaluation metric. 
FIGURE 9 

Comparison of the results of the YOLO v8n model before and after improvement. 
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Importantly, it achieves an mAP50 of 92.7% with only 3.2M 
parameters, and reaches a real-time inference speed of 117.647 
FPS on a standard GPU. These results highlight a favorable trade-off 
between detection accuracy and computational demand, making 
the model more applicable to real-time, mobile, or embedded 
deployment scenarios for precision agricultural stress monitoring. 

The task of identifying and detecting citrus sunburn fruit in 
natural scenes is complex, as it involves situations like fruit of 
different sizes and occlusions. By comprehensively comparing the 
indicators in the above table, we find that the YOLOv8-Scm model 
we propose has an edge in this task. Specifically, in terms of the 
mAP50, P, and R indicators, YOLOv8-Scm outperforms other 
mainstream detection models. When compared with the two 
traditional detection algorithms, SSD and Faster R CNN, the 
mAP50 of YOLOv8-Scm increases by 6.01% and 2.87% 
respectively; the P increases by 7.1% and 13.4%; the R increases 
by 4.2% and -2.2% respectively. Meanwhile, the amount of 
Params/M is reduced by 20.96 M and 133.58 M, respectively. 
This indicates that all the performance parameters of YOLOv8

Scm have been significantly improved and the number of model 
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parameters has been significantly reduced, ensuring its 
lightweight advantage. 

When compared with YOLO v5n, YOLO v7-tiny, and YOLO 
v8n, the mAP50 of YOLOv8-Scm is increased by 6.5%, 5.4%, and 
2%, respectively, and the P is increased by 3.8%, 4.5%, and 1.5%, 
respectively. The R of YOLOv8-Scm is 87.2%, which is slightly 
lower than those of these four models (ranging from -0.1% to 2.3%), 
but this does not lead to a significant loss in model performance. 
When compared with the newly released YOLOv10n model, 
YOLOv8-Scm has significant advantages. Also, the number of 
parameters of the YOLOv8-Scm model is 23.77 M lower than 
that of the YOLOv10n model. In summary, the findings fully 
indicate the advantages of the YOLOv8-Scm model. 
3.5 Model validation for visualization 

In citrus orchards, under natural conditions, high-precision 
detection for the identification and classification of citrus sunburn 
fruits is crucial for real-time monitoring with panoramic cameras. 
TABLE 6 Performance comparison experiment of mainstream object detection models. 

Models mAP50/% P/% R/% Params/M F1-score FPS 

SSD 86.7 79.5 83.0 24.2 81.21 93.299 

Faster R-CNN 89.8 73.2 89.4 136.8 80.48 22.962 

YOLO v5n 86.2 82.8 88.9 1.8 85.74 128.205 

YOLO v7-tiny 87.3 82.1 89.5 6.0 85.65 86.207 

YOLO v8n 90.7 85.1 87.1 3.0 86.10 135.14 

YOLO v10n 90.9 84.7 85.7 26.96 85.20 89.286 

Ours 92.7 86.6 87.2 3.2 86.90 117.647 
Bolded values represent the highest performance among all models for the corresponding evaluation metric. 
FIGURE 10 

Test results for each grade of sunburn fruit. 
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To evaluate the performance of the improved YOLOv8n, 2 groups 
of experimental pictures of citrus sunburn fruits (five pictures in 
each group) were used for testing and evaluation. The first group of 
pictures was utilized to identify a small number of fruits, aiming to 
test the detection precision of different-level labels (Figure 9). The 
second group of pictures was used for the identification and grading 
of multiple fruits and sun-burned fruits under various complex 
environmental disturbances (Figure 10). This was to test the multi-

object classification and identifcation capabilities of algorithms with 
different sizes and different labels, as well as the detection precision 
in complex environments. For the improved model, the precision 
rate (P) was 86.6%, the recall rate (R) was 87.2%, the mAP50 was 
92.7%, and the model parameter size was 3.192 M. 

Representative images of the identifcation labels for each grade 
of citrus sunburn fruit selected from the first group are shown 
in Figure 10. 

The Figure above illustrates a visual comparison of the detection 
and recognition outcomes between the enhanced YOLOv8-Scm 
model and the original YOLOv8n model. The main detection 
method is for a single fruit or a small amount of fruit. Compared 
with the YOLO v8n model, the latter has problems such as false 
detection and low dentinfication precision. For example, it may 
identify a leaf as a green and healthy fruit. However, on the same set 
of picture data, the YOLOv8-Scm model performs better. There is 
no missed detection or false detection, and it has a high confidence 
level. This indicates that the YOLOv8-Scm model has a greater 
effect on citrus sunburn in the natural environment and has 
accurate identification ability when grading fruit. 

Citrus plants are mainly in the open air, so the conditions are 
complex. It is necessary to accurately monitor and identify multiple 
citrus fruits of different sizes and degrees of sunburn. There are 
problems like multilevel citrus sunburn interference identification, 
shading of branches and leaves, and light interference. After 
achieving accurate identification of single fruit labels, the second 
group of tests is carried out. Based on five conditions namely fruit 
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mixing with multiple citrus sunburn levels, shadow and backlight, 
low light conditions, strong light irradiation, and branch and leaf 
obstruction, the second set of pictures is used for visualization 
comparison tests. Taking the fruit test results with multiple citrus 
sunburn levels in Figure 11 as an example, citrus can be accurately 
identified and graded from healthy fruit to four levels of citrus 
sunburn regardless of the existence of obstruction, light 
interference, and fruits of different sizes. The results are effective, 
missed detection can be effectively avoided, and the identification 
and detection tasks can be completed quickly and accurately. 

As shown in Figure 11, in a complex natural environment (with 
interference such as occlusion, strong light, branch and leaf 
obstruction), when identification is based on YOLO v8n, the 
models attention to citrus sunburn fruits and identification 
precision are slightly reduced, which leads to false detection and 
missed detection. 

For instance, in Shaded environments, missed detections and 
erroneous detections occurs. When there is strong light or low-light 
interference, some small objects missed detection obscures the fruit. 
In comparison, the YOLOv8-Scm optimization model, which is 
obtained on the basis of the improved YOLOv8n, performed well in 
the above tests. There were no missed or false detections of citrus 
fruits, and the model had a high degree of confidence and high 
identification precision, as well as accurate grading ability. This 
result indicates that the optimized model is superior in identifying 
citrus sun-burning fruits and can efectively improve the monitoring 
ability and identification precision of citrus sun-burning fruits. 
4 Discussion and conclusions 

4.1 Discussion 

Most existing monitoring and identification models for citrus 
trees mainly focus on two aspects: the identification of fruit number 
FIGURE 11 

Detection results for complex environments and mixtures of diferent levels. 
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(Mirhaji et al., 2021; Cheng et al., 2023)and the identification of 
single ripe and immature fruits (Wang et al., 2024) (Lyu et al., 
2022). Moreover, their identification labels are mostly divided into 
1–3 classification labels. Currently, limited research has been 
conducted on identify- ing the disaster status of citrus sunburn 
fruits, and limited research on the identification of citrus sunburn 
damage. In addition, studies that combine machine vision 
technology and grading standards to classify citrus sunburn into 
five identification labels (0, 1, 2, 3, 4), have not been reported or 
conducted yet. When the same research object is subdivided into 
multiple classifications, many problems will occur, such as high 
similarity and difficulty in feature extraction. In this experiment, the 
improved YOLOv8-Scm model based on the YOLO v8n model can 
achieve identification and classification. It can accurately identify 
multiple grades of citrus sunburn fruits in natural scenes, and has 
high precision, strong robustness, and the ability to simultaneously 
target large and small objects, which are the characteristics of the 
monitoring. At the same time, this improved model can be deployed 
to the orchard panoramic camera to realize real-time monitoring 
and intelligent management of large orchard areas. 

In the experiments, grading and labeling were susceptible to 
subjective judgment. The main reason was that the appearance 
features of the labels are similar, which afected the precision of 
feature extraction at different levels during model training to a 
certain extent. Regarding the citrus sunburn, it mainly occurs 
between June and September. During this period, when collecting 
and monitoring citrus sunburn, the citrus is in the fruit expansion 
stage and the target is easier to identify. At this time, the fruit is 
immature and green appearance, so it is easy to observe the citrus 
fruit that has been discolored due to sunburn. Moreover, the 
observations and data collection are not afected by the 
discolouration period in late October, thus avoiding the 
interference of certain natural factors. In follow-up research, 
deploying the model to more vectors is considered to achieve 
multivariate and multidimensional monitoring.The potential 
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application scenarios for the future installation and deployment 
of this model in orchard production are illustrated in Figure 12. 

Beyond citrus, the modular design of YOLOv8-Scm offers 
scalability for other plant stress detection tasks, such as apple and 
grape diseases. Similar challenges of fine-grained feature extraction 
and classification under complex backgrounds are prevalent in 
various agricultural applications.In addition, studies in other 
fields have explored related solutions to fine-grained classification 
problems. For instance, Chen et al. proposed a feature 
reconstruction method based on CBCT imaging combined with 
machine learning for cleft lip and palate classification, effectively 
addressing multi-scale structural variations and enhancing 
recognition accuracy (Chen et al., 2025). Although applied in 
medical imaging, their approach provides valuable insights into 
improving feature extraction and classification precision under 
challenging conditions. This aligns with the strategies adopted in 
YOLOv8-Scm, further supporting the effectiveness of attention 
mechanisms  and  optimized  loss  functions  in  complex  
recognition tasks. 

Although the proposed YOLOv8-Scm model effectively 
identifies citrus sunburn fruits under complex orchard conditions, 
limitations remain due to the dataset’s limited variety and 
challenges in detecting severely occluded fruits. Future work will 
focus on expanding the dataset across varieties, stages, and 
environments, enhancing feature extraction, and integrating 
depth cameras to improve robustness. These efforts aim to 
support large-scale monitoring, disaster assessment, and early 
warning applications in smart orchard management. 
4.2 Conclusions 

In this study, citrus sunburn fruit in complex natural scenes was 
taken as the research object. Based on the YOLOv8n model, an 
identification and classification model for citrus sunburn named 
FIGURE 12 

Deployment of a citrus sunburn panoramic camera based on the YOLOv8-Scm model in an orchard. 
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YOLOv8-Scm was constructed. Problems such as low detection 
precision and inaccurate recognition results are caused by the 
similarity in adjacent grading features, occlusion by branches and 
leaves, and inconsistent detection object sizes. To tackle these issues, 
this study created a dataset of citrus sunburn of diferent grades. 
Firstly, the Conv module was replaced with the DSConv module to 
reduce the quantity of model calculation parameters. Secondly, the 
GAM global attention mechanism was introduced to improve the 
precise monitoring capability of complex environment and citrus 
fruits of diferent sizes. Thirdly, we replaced the CIoU loss function 
with the EIoU loss function to enhance the model’s generalization 
capability, reduce errors, and mitigate over fitting during training. 
After comparing the YOLOv8-Scm model’s results with the state
of-the-art (SOTA) performance of mainstream identification 
modelsthe main conclusions are as follows: 

Compared with the SSD, Faster R-CNN, YOLOv5n, YOLOv7
tiny, YOLOv8n, and YOLOv10n models, the mAP50 is increased by 
6.01%, 2.87%, 6.5%, 5.3%, 2%, and 1.8%, respectively, and the 
precision P is increased by 7.1%, 13.4%, 3.8%, 4.5%, 1.5% and 
1.9%, respectively. These findings clearly illustrate that the 
performance of the YOLOv8-Scm method is better than those of 
the above mainstream models and that its ability to detect the 
degree of damage to citrus sunburn fruit is feasible. In addition, the 
number of Params of this model is less than that of the other four 
versions of YOLOv8 (s, m, l, and x), and it is 23.77 M lower than the 
number of parameters of the newly released YOLOv10n network 
model. The reduction in the models weight is conductive to its 
deployment on the orchard panoramic camera platform, which is of 
practical significance in promoting smart orchard management. 
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