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Meloidogyne incognita (M. incognita) is a highly destructive species of 
Meloidogyne spp., characterized by its ability to cause root-knot nematode 
(RKN) disease, which is difficult to control and severely inhibits plant growth. 
Temperature is one of the primary factors affecting M. incognita infection. 
However, the precise underlying mechanisms have not yet been clarified. The 
present study aims is to further explore the temperature-influenced resistance 
mechanisms to M. incognita. Antioxidant enzyme activities, osmotic regulation 
substance contents, tissue structure changes, and expression of the resistance 
gene (Rk) in the roots of two tobacco varieties were analyzed under three 
temperatures (15°C, 25°C, and 35°C) via artificial inoculation. A M. incognita-
resistant variety (NC95) and a susceptible variety (CBH) was selected as 
experimental materials. The results showed that the activities of peroxidase 
(POD) and catalase (CAT), as well as the contents of soluble sugar, proline, and 
hydroxyproline-rich glycoprotein (HRGP), increased to varying degrees under M. 
incognita infection, while superoxide dismutase (SOD) activity decreased. 
Notably, the activities of POD and CAT, along with the contents of soluble 
sugar, proline, and HRGP, were all higher in NC95 than in CBH. Meanwhile, 
antioxidant enzyme activities and osmotic substance contents in both varieties 
varied most at 25°C and least at 35°C. No giant cells or oocysts were observed in 
the root tissues of NC95 at any temperature, whereas numerous giant cells and 
oocysts were present in CBH. The number of giant cells in CBH was highest at 25° 
C compared to 15°C and 35°C, and the degree of lignification in NC95 was also 
greater at 25°C. In addition, M. incognita infection induced the expression of Rk 
gene in NC95, with expression levels at 25°C and 15°C higher than at 35°C. The 
results indicated that SOD activity and osmotic regulatory substance contents 
decreased in the roots of the susceptible variety under M. incognita infection, 
accompanied by the appearance of numerous giant cells in the xylem, 
contributing to susceptibility. Conversely, the resistant tobacco variety 
exhibited stronger capabilities in reactive oxygen species (ROS) scavenging and 
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osmotic regulation, no significant changes in root tissue structure, and 
upregulated expression of the Rk gene, all of which contributed to infection 
inhibition. Compared with the observations at 25°C, M. incognita infectivity on 
tobacco roots was effectively reduced by 35°C due to increased antioxidant 
enzyme activities, enhanced osmotic regulatory substance contents, and well-

maintained root tissue structure. Additionally, Rk gene expression was not 
inactivated but only reduced at 35 °C, and it remained effective in inhibiting M. 
incognita infection. 
KEYWORDS 

Meloidogyne incognita, temperature, tobacco, root, physiological characteristics, 
resistance gene 
1 Introduction 

Meloidogyne spp. is one of the most destructive plant-parasites, 
causing root-knot nematode (RKN) disease and infecting more than 
5,500 plant species, including food crops, cash crops, oil crops, 
vegetables, and fruits (Kaloshian and Teixeira, 2019; Yuan et al., 
2023). It also exhibits notable characteristics such as large population 
variation, strong pathogenicity, a diverse array of hosts, wide 
distribution range, and concealed damage (Niu et al., 2022; 
Siddique et al., 2022). Once Meloidogyne spp. infection occurs, 
giant cells are induced from root tissue cells, leading to the 
formation of root knots, followed by root atrophy and deformity, 
and ultimately inhibiting the absorption of water and nutrients by 
plants (Holbein et al., 2016). In addition, the aboveground parts show 
slow growth and development, yellowing of leaves, yield reduction by 
10%–20%, and, in severe cases, losses exceeding 75% or even 
complete crop failure, ultimately resulting in significant economic 
losses (Bird and Kaloshian, 2003; Tapia-Vázquez et al., 2022). With 
adjustments to the agricultural planting structure in China, the area 
devoted to high-value-added cash crops has expanded, and the 
multiple cropping index has also increased, leading to a year-by­
year aggravation of Meloidogyne spp. occurrence and damage 
(Vestergård, 2019). To date, there is no particularly effective 
method for the prevention and control of Meloidogyne spp. 

Chemical methods are widely used in agricultural production 
due to their fast-acting protective effects (Wang et al., 2024a). 
However, the use of highly toxic chemical agents not only 
seriously affects plant quality (Kanwar et al., 2021), but also 
pollutes the ecological environment (Abd-Elgawad and Askary, 
2020; Hu et al., 2023). Therefore, pollution-free control of 
Meloidogyne spp. has become a current research hotspot 
(Vashisth et al., 2024). 

Temperature is a key factor affecting Meloidogyne spp. infection 
(Qin, 2022), and the optimal temperature for its growth and 
development ranges from 15°C to 30°C (Liu, 2000). Devaney 
(2006) found that warming had a positive enhanced effect on 
Meloidogyne spp. in a suitable environment but became lethal 
02 
when the temperature exceeded the optimal range. Matute (2013) 
indicated that Meloidogyne  spp.  exhibited  pronounced  
thermophobia, and nearly all Meloidogyne spp. were killed at 49°C 
within 10 min–15 min (Jiang, 2006). An increase in temperature can 
enhance plant transpiration, reduce soil moisture content, and 
ultimately alter the growth microenvironment of Meloidogyne spp 
(Briones et al., 1999). At the same time, it also clearly promotes root 
growth and increases the substrate supply for heterotrophic 
respiration, thereby influencing the Meloidogyne spp. community 
(Kardol et al., 2011). Bakonyi and Nagy (2000) confirmed that 
increasing soil temperature reduced the richness and density of the 
Meloidogyne spp. community and significantly influenced its 
diversity and trophic structure. Meloidogyne spp. is a type of pest 
that spreads through soil as its medium. Therefore, controlling soil 
temperature can effectively alter the living environment, influence 
infection, reduce plants damage, and ultimately contribute to the 
prevention and control of Meloidogyne spp. Katan et al. (1976) 
proposed using the insulating effect of plastic film covering the soil 
surface to warm the soil and thereby kill Meloidogyne spp. India has 
made remarkable progress in controlling Meloidogyne spp., benefiting 
from a climate characterized by high temperature and arid conditions 
(Ros et al., 2008). In addition, treating soil with high-temperature 
water can reduce the incidence of Meloidogyne spp. infection, 
achieving a control rate of over 60% in China (He et al., 2009). 

Tobacco (Nicotiana tabacum L.) is an important economic crop 
worldwide. Since the discovery in 1892, Meloidogyne spp. have been 
among the main pathogens affecting tobacco production worldwide 
(Tong et al., 2022). The dominant species, Meloidogyne incognita 
(M. incognita), has caused significant damage and substantial losses 
in tobacco due to its widespread occurrence, severe pathogenicity, 
and difficulty of control (Sang et al., 2024; Shakeel et al., 2020; 
Sikandar et al., 2020). Currently, several studies have examined the 
physiological and biochemical responses of tobacco to M. incognita 
infection (Li et al., 2018a, b; Lu et al., 2023). Each species within 
Meloidogyne spp. has an optimal growth temperature, but studies 
on the effects of temperature on the infectivity of M. incognita 
remain limited. 
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To date, no resistance genes to Meloidogyne spp. related to 
tobacco have been cloned, and the resistance mechanism remains 
unknown. Different resistance genes to Meloidogyne spp. infection 
exist in resistant varieties, and resistance in tobacco is complex and 
diverse (Xu et al., 2023). The Rk gene is the only known resistance 
gene to Meloidogyne spp. in tobacco. It was first discovered in 
Nicotiana tomentosa (Yi et al., 1998) and confers resistance to 
Meloidogyne spp., particularly to M. incognita (Adamo et al., 2021). 
However, to date, this gene has not been cloned, which limits its 
application potential. In addition, plants can regulate their internal 
metabolic activity under pathogen infection through a series of 
physiological and biochemical responses, including antioxidant 
enzyme activities and osmotic regulation substance content, to 
adapt and resist infection, minimize damage, and maintain 
normal physiological functions. Therefore, this study investigated 
changes in physiological characteristics—including antioxidant 
enzyme activities, osmotic regulatory substance contents, tissue 
structure, and expression of the resistance gene Rk—in roots of 
two tobacco varieties with differing resistance, infected by M. 
incognita at different temperatures The aim was to further clarify 
the effects of temperature on M. incognita infectivity and promote a 
theoretical basis for pollution-free control and the cultivation of 
resistant varieties. 
 

2 Materials and methods 

2.1 Experimental materials 

Two tobacco varieties with contrasting responses to M. 
incognita were selected in the experiments—NC95 (resistant) (Xu 
et al., 2019) and CBH (susceptible) (Li et al., 2017). Seeds of both 
varieties were cultivated using the floating seedling method and 
then transplanted into plastic pots ((27 × 33 × 21 cm, height × 
caliber × bottom diameter) containing high-temperature-sterilized 
sand soil (sand-to-soil ratio of 1:3) when five leaves emerged (55 
days post-germination), with an average plant height of 
approximately 12 cm. Each pot contained a single plant. 

M. incognita were propagated from roots of greenhouse-grown 
susceptible tomato plants (Solanum lycopersicum L. ‘Rutgers’) that 
had been inoculated with the nematode 90 days earlier. After 
propagation, the infected tomato roots were harvested, and the 
second-stage juvenile (J2) of M. incognita were extracted using 0.5% 
NaOCl, following the method described by Tan and Wu (2003), and 
then hatched at 26 °C in a constant-temperature incubator. Freshly 
hatched J2 were preserved in deionized water for further 
inoculation. In addition, Peter’s counting slides were used to

quantify the nematodes under a light microscope (XSM-20, 
China) (Fraher et al., 2024). 
2.2 Experimental design 

Seedling of two tobacco varieties at the 10-leaf stage were 
inoculated at the roots with approximately 1,000 J2 in 5 mL of 
Frontiers in Plant Science 03 
deionized water, while control seedlings were mock-inoculated with 
the same volume of deionized water. 

Temperature treatments were applied after inoculation with M. 
incognita. Based on studies on temperature during the tobacco 
growth period in the field (Liu, 2003) and the effects of different 
temperatures on M. incognita activity (Cao et al., 2012), the 
temperatures in the present experiment were set to 15°C, 25°C, 
and 35°C. The experiment was conducted in growth chambers with 
a photosynthetic photon flux density of 350 mmol m−2 s−1. Relative 
humidity (RH) was maintained at 70% under a 14-h photoperiod. A 
randomized complete block design was used with three replicates, 
and 80 plants per treatment were included for each tobacco variety. 
2.3 Test sampling 

According to the method described by Wang et al. (2006), 
samples were collected at 0 d, 14 d, and 28 d after inoculation with 
M. incognita. For each treatment, three tobacco plants of similar 
size from each variety were randomly selected. The sampled roots 
were combined, washed with distilled water, immediately frozen in 
liquid nitrogen, and stored at −80°C until further analysis. 

Three plants from each tobacco variety were randomly selected 
for each treatment at 28 d after inoculation. The roots were cleaned 
with distilled water, and small knotted roots were selected and 
stored in formaldehyde–alcohol–acetic acid (FAA) fixative for 
paraffin sectioning. Paraffin sections were observed using a Leica 
301-185.104–00 microscope (Germany), and images were captured 
with an Olympus DP70 camera (Japan). 

Three NC95 plants from each treatment were sampled at 0 d, 2 
d, 7 d, 14 d, 21 d, and 28 d after inoculation. The roots were washed 
with distilled water, immediately frozen in liquid nitrogen, and 
stored at −80°C to determine the relative expression levels of the 
resistance gene (Rk). 
2.4 Indicators and methods for 
determination 

Superoxide dismutase (SOD) activity was measured as 
described by Wang et al. (2024b). Peroxidase (POD) activity was 
assayed according to Yingsanga et al. (2008). Catalase (CAT) 
activity was determined using the method of Lu et al. (2017). 
Proline and soluble sugar were measured as described by Zhai 
et al. (2016) and Li (2000), respectively. Hydroxyproline-rich 
glycoprotein (HRGP) content was measured according to the 
method of Kivirikko et al. (1967). 

Primer sequence information for the Rk gene is listed in Table 1, 
and the Actin gene was used as an internal control (Zhang et al., 
2023). Total RNA was extracted using RNAiso Reagent (TaKaRa 
Inc., Japan). After confirming an OD260/OD280 ratio of 
approximately 2.0, cDNA was synthesized using a TaKaRa reverse 
transcription kit, and the resulting cDNA was used as a template for 
qRT-PCR amplification. The qRT-PCR reaction conditions were as 
follows: one cycle at 94°C for 5 min (initial denaturation), followed 
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by 40 cycles of denaturation at 94°C for 15 s, annealing at 60°C for 
15 s, and extension at 72°C for 30 s, with a final extension at 72°C 
for 10 min (Li et al., 2018b). Each amplification reaction was 
repeated four times. Data were analyzed using the 2−DDCT method 
to calculate relative gene expression levels (Yang et al., 2022). 
2.5 Statistical analysis 

The relative increase of each physiological indicator was 
calculated according to the method of Xu et al. (2008), using the 
formula: relative increase = (measured value in treatment group/ 
measured value in control group) × 100%. The relative increase 
reflects the ability of each physiological indicator in roots under M. 
incognita inoculation to maintain normal growth. In addition, a 
greater the deviation from a value from “1” indicates a stronger 
influence of M. incognita, whereas, a smaller deviation indicates a 
lesser degree of influence. 

All the measurements were conducted with three independent 
biological replicates per determination, and mean values were 
presented with standard errors. Data were analyzed using SPSS 
21.0 (Statistical Software Package) with one-way ANOVA, and 
differences between means were separated using the least 
significant difference (LSD) test at a 0.05 probability level, 
following the method of Hosseini et al. (2022). 
3 Results 

3.1 Effects of M. incognita infection on 
POD activity at different temperatures 

The relative increase in POD activity in NC95 roots gradually 
increased at 25°C under M. incognita infection and showed similar 
trends at 15°C and 35°C, with peaks appearing at 14 d (Figure 1A). The 
relative increase in NC95 was highest at 25°C and lowest at 35°C 
throughout the infection period. Compared with NC95 at the same 
temperatures, the relative increase in POD activity in CBH roots 
showed a similar trend but remained significantly lower (p ≤0.05). 
3.2 The effects of M. incognita infection on 
CAT activity at different temperatures 

As shown in Figure 1B, the relative increase in CAT activity in the 
roots of both varieties peaked at 14 d and declined by 28 d across all 
temperatures, respectively, with the largest change observed at 25°C. 
In contrast, no significant difference was observed at 15°C and 35°C. 
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Furthermore, the relative increase in CAT activity in NC95 roots was 
significantly higher than that in CBH at the same temperature 
throughout the M. incognita infection period (p ≤0.05). 
3.3 Effects of M. incognita infection on 
SOD activity at different temperatures 

As illustrated in Figure 1C, the relative increase in SOD activity 
in NC95 roots decreased over time at 25°C, while it was the lowest at 
14 d and increased again at 28 d at both 15°C and 35°C. During the 
M. incognita infection period, the relative increase in NC95 was 
lowest at 25°C, with no significant difference observed between 15°C 
and 35°C. The relative increase in SOD activity in CBH followed a 
similar trend to that in NC95 at the same temperatures but showed 
a greater variation during the same period (p ≤0.05). 
3.4 Effects of M. incognita infection on 
soluble sugar content at different 
temperatures 

As shown in Figure 2A, the relative increase in soluble sugar 
content in both NC95 and CBH roots rose rapidly during the 0–14 d 
infection period, then declined, with the greatest change observed at 25° 
C.  At  0 d, 14 d, and  28  d,  the differences  in  relative  increase  between  the  
two varieties at 15°C and 35°C were not significant. Moreover, 
throughout the entire M. incognita infection period, the relative 
increase in soluble sugar content in NC95 roots was significantly 
higher than that in CBH at the same temperatures (p ≤0.05). 
3.5 Effects of M. incognita infection on 
proline content at different temperatures 

Under M. incognita infection (Figure 2B), the relative increase 
in proline content in NC95 roots was highest at 25°C, with no 
significant difference between 15°C and 35°C. The trend in CBH 
roots was similar to that in NC95 at the same temperatures; 
however, the relative increase in proline content was significantly 
lower during the same period (p ≤0.05). 
3.6 Effects of M. incognita infection on 
HRGP content at different temperatures 

Under M. incognita infection (Figure 2C), the relative increase 
in HRGP content in the roots of both varieties was highest at 25°C 
TABLE 1 Primer sequence of the target gene Rk for qRT-PCR analysis. 

Gene name Accession 
number 

Sequence of primers Products 
length(bp) 

NtRk KP164989 5’-ATGCACAACGCCACAGTGAT-3’ 5’-CCTGCAATGACTCCAGCAATC-3’ 190 

NtActin X63603 5’-CCACACAGGTGTGATGGTTG-3’ 5’-GTGGCTAACACCATCACCAG-3’ 367 
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and lowest at 35°C Additionally, the relative increase in CBH was 
significantly lower than that in NC95 (p ≤0.05). Specifically, the 
relative increase in content in both NC95 and CBH increased 
gradually at 25°C, whereas at 15°C and 35°C, peaks occurred at 
14 d, followed by a decline. 
3.7 Effects of M. incognita infection on root 
tissue structure at different temperatures 

As shown in Figures 3A, C, E, G, I, K, there were no differences 
in the root tissue structure of NC95 and CBH uninoculated with M. 
incognita at different temperatures at 28 d post-inoculation. 
Additionally, vascular bundle tissues showed normal growth and 
development, with closely arranged xylem and phloem parenchyma 
and intact cell morphology. 

Under M. incognita infection, the root tissue structure of NC95 
showed minimal changes compared with the CK at the same 
temperature. However, the degree of lignification increased, with 
the most pronounced lignification observed at 25°C compared to 
15°C and 35°C (Figures 3B, F, J). 

The tissue structure of CBH was seriously disrupted throughout 
the M. incognita infection period, exhibiting irregularly arranged 
xylem and phloem parenchyma and incomplete cell morphology. 
Meanwhile, oocysts appeared in the xylem (as indicated by the red 
arrows in Figures 3D, H, L), surrounded by giant cells with multiple 
Frontiers in Plant Science 05 
nuclei (black arrows in Figures 3D, H, L), thickened cell walls, 
darker cytoplasm, and highly irregular morphology and chaotic 
arrangement. These changes led to severe deformation of xylem 
structure and ultimately to the formation of root knots, as the local 
root diameter became abnormally large. In addition, the number of 
giant cells and oocysts in CBH root tissues was greater at 25°C than 
at 15°C or 35°C. Fewer giant cells and oocysts were observed at 15°C 
and 35°C, with no significant difference in their numbers. 
3.8 Effects of M. incognita infection on Rk 
gene expression at different temperatures 

The results in Figure 4 indicate that at 15°C under M. incognita 
infection, the expression level of the Rk gene in NC95 roots first 
increased and then decreased, reaching a peak at 2 d, which was 
108.28 times higher than at 0 d. Furthermore, expression gradually 
declined from 21 d to 28 d and returned to the initial level by the 
end of the experiment. 

The expression of the Rk gene in NC95 was upregulated under 
infection at 25°C, reaching its highest level at 2 d—220.31 times that 
at 0 d—before declining under M. incognita infection. 

The expression trend of the Rk gene in NC95 at 35°C was 
similar to that at both 15°C and 25°C under M. incognita infection. 
The expression level peaked at 2 d—63.30 times that at 0 d—and 
then continued to decline. However, under normal growth 
FIGURE 1 

Effects of Meloidogyne incognita infection on antioxidant enzyme activities in the roots of two resistant and susceptible tobacco varieties at different 
temperatures. (A) Peroxidase (POD); (B) Catalase (CAT); and (C) Superoxide dismutase (SOD). Bars with different letters indicate significant 
differences at p ≤0.05. 
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conditions, the expression level in NC95 remained relatively stable 
around “1” across all temperatures. 

These results indicate that M. incognita infection led to the 
upregulation of Rk gene expression in NC95 roots, with the greatest 
increase observed at 2 d. Meanwhile, gene expression was highest at 
25°C and lowest at 35°C (Figure 5), indicating that 35 °C exerts an 
inhibitory effect on Rk gene expression. 
4 Discussion 

4.1 High temperatures attenuate 
M. incognita infection by increasing 
antioxidant enzyme activities and osmotic 
regulation substance contents 

Pathogen infection can increase the levels of reactive oxygen 
species (ROS) in host cells, making them more vulnerable to 
oxidative damage. However, the antioxidant enzyme system—of 
which SOD, POD, and CAT are key components—plays an 
essential role in scavenging ROS toxicity (Choudhury et al., 2013; 
Wei et al., 2022a). Normally, these three enzymes function in 
equilibrium, maintaining ROS production and scavenging at 
levels that do not harm the plants (Jiang and Huang, 2001; 
Sugimoto et al., 2014; Zhang et al., 2017). Under pathogen 
infection, host equilibrium is disrupted, reducing ROS scavenging 
Frontiers in Plant Science 06
capacity and resulting in the excessive accumulation of O2 
•− and 

H2O2. SOD catalyzes the reaction of O2 
•− with H+ to generate O2 

and H2O2 (Bafana et al., 2011; Nathan and Ding, 2010) The

resulting H2O2 is then catalyzed by POD and CAT to form O2 

and H2O (Gill and Tuteja, 2010; Khan et al., 2023), thereby reducing 
the reaction of H2O2 a O2 

•−, a highly reactive species that can 
damage all cell membranes (Schmitt et al., 2014; Sewelam et al., 
2016). In Dimocarpus longan infected by Lasiodiplodia theobromae 
(Pat.) Griff. & Maubl. (L. theobromae), SOD and CAT activities 
initially increased and then decreased, leading to ROS accumulation 
and the loss of resistance (Sun et al., 2018a). Furthermore, in 
resistant wheat cultivars, SOD and CAT activities increased under 
Pyricularia oryzae infection, and symptoms remained mild 
(Debona et al., 2012). In addition, tobacco strains overexpressing 
the ScCAT2 gene, which encodes CAT from sugarcane, exhibited 
enhanced resistance to Ralstonia solanacearum and Fusarium solani 
var. coeruleum (Sun et al., 2018b). Therefore, the activities of SOD, 
POD, and CAT is closely related to plants stress resistance 
(Dumanović et al., 2011; Najafi et al., 2024). 

Tomato responded to stress through the production of ROS 12 
h after M. incognita infection (Melillo et al., 2006). Zacheo and 
Bleve-Zacheo (1988) also found that SOD activity was negatively 
correlated with resistance to Meloidogyne spp. in tomato. 
Furthermore, resistant varieties showed reduced SOD activity 
under Meloidogyne spp. infection, whereas susceptible varieties 
exhiited higher activity with an upward trend. However, POD 
FIGURE 2 

Effects of Meloidogyne incognita infection on osmotic regulation substance contents in the roots of two resistant and susceptible tobacco varieties 
at different temperatures. (A) Soluble sugar; (B) Proline; (C) Hydroxyproline-rich glycoprotein (HRGP). Bars with different letters indicate significant 
differences at p ≤0.05. 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1592335
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1592335 
activity increased in both resistant and susceptible varieties 
(Rajasekhar et al., 1997). In contrast, Montes et al. (2004) 
reported that POD activity significantly increased in resistant 
wheat varieties under cereal cyst nematode (CCN) infection, 
accompanied by lower SOD and POD activities in susceptible 
Frontiers in Plant Science 07 
varieties. In the present study, SOD activity decreased in both 
tobacco varieties with differing resistance under M. incognita 
infection at all tested temperatures. By contrast, POD and CAT 
activities showed an upward trend, with greater increases in the 
resistant variety than in the susceptible one, consistent with the 
findings of Ye et al. (2009). This may be because the increase in O2 

• 

−, influenced by lower SOD activity under M. incognita infection, 
triggered hypersensitive responses and ultimately produced toxic 
effects on M. incognita (Kerchev and Breusegem, 2022). Meanwhile, 
higher POD and CAT activities catalyzed H2O2 into O2 and H2O, 
which helped reduce ROS accumulation. Furthermore, increased 
POD activity contributed to cell wall thickening and lignification, 
thereby enhancing resistance to M. incognita infection in roots. 
Compared to the susceptible variety, POD and CAT activities were 
higher in the roots of the resistant variety under M. incognita 
infection, while SOD activity was lower, indicating stronger ROS 
scavenging capacity. This contributed to the preservation of root 
cell structure and function and help maintain physiological balance, 
ultimately alleviating the damage caused by M. incognita. 

Osmoregulation is an important physiological mechanism by 
which plants adapt to adverse stress, reducing cellular osmotic 
potential through the accumulation of osmotic regulatory 
substances to alleviate dehydration damage to enzymes, 
organelles, and cell membranes, thereby improving plant 
resistance (Munns et al., 2022). Soluble sugars and proline are 
important osmotic regulatory substances in plants (Bai et al., 2019; 
Su et al., 2021). Furthermore, soluble sugars serve as carbon 
FIGURE 3 

Effects of Meloidogyne incognita infection on the root tissue structure of two resistant and susceptible tobacco varieties at different temperatures. 
(A) 15°C–NC95–Control. (B) 15°C–NC95–T. (C) 15°C–CBH–Control. (D) 15°C–CBH–T. (E) 25°C–NC95–Control. (F) 25°C–NC95–T. (G) 25°C– 
CBH–Control. (H) 25°C–CBH–T. (I) 35°C–NC95–Control. (J) 35°C–NC95–T. (K) 35°C–CBH–Control. (L) 35°C–CBH–T. 
FIGURE 4 

Effects of Meloidogyne incognita infection on Rk gene expression in 
the roots of the resistant tobacco variety NC95 at different 
temperatures. 
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skeletons and energy sources for the synthesis of organic solutes and 
play a protective role under high concentrations of inorganic ions in 
cells (Dai, 2020). In addition, proline is an important component of 
proteins and often exists in a free state. Under external 
environmental stress, protein synthesis is inhibited while protein 
decomposition is promoted, leading to an increase in free proline 
content to regulate osmotic balance between the cytoplasm and 
vacuoles (Wei et al., 2022b). Jia (2012) found that proline and 
soluble sugar contents increased in the roots of different tomato 
rootstock varieties under M. incognita infection, with a higher 
growth rate observed in the resistant variety. HRGP is a major 
structural component of the cell wall and is closely associated with 
lignin formation. When infected by pathogens, plants often 
accumulate large amounts of HRGP to repair the cell wall 
structure and prevent pathogen penetration, thereby enhancing 
resistance (Xu et al., 2011; Zeng et al., 2003). Lu (2009) reported 
that HRGP content in resistant banana varieties was higher than in 
susceptible ones after M. incognita inoculation. The present study 
showed that the contents of soluble sugars, proline, and HRGP in 
NC95 roots were all significantly higher than in CBH under M. 
incognita infection, indicating that root damage induced by M. 
incognita could be mitigated by increasing osmotic regulatory 
substances and strengthening cell wall structure in resistant 
tobacco varieties. 

Temperature is an important climatic factor that affects the 
growth and development, survival, reproduction, and other life 
activities of pathogens (Velloso et al., 2022). In addition, 
appropriate temperature support the normal growth of pathogens, 
while excessively high or low temperatures are unfavorable for their 
growth and reproduction (Garbelotto et al., 2021). In our present 
study, comparison of antioxidant enzyme activities and osmotic 
regulatory substance contents in two tobacco varieties with 
different resistance levels under M. incognita infection at varying 
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temperatures showed that the relative increase of each physiological 
indicator was greatest at 25°C, while the smallest change occurred at 
35°C, indicating that these physiological responses in tobacco roots 
were less affected by M. incognita infection at 35°C compared to 25°C. 
This may be attributed to the increased antioxidant enzyme activities 
and osmotic regulatory substance contents at higher temperatures, 
which effectively suppressed M. incognita infection and reduced its 
pathogenicity. Conversely, the temperature of 25°C was more 
favorable for M. incognita infection in tobacco plants. M. incognita 
primarily inhabit the 5 cm–20 cm soil layer. The suitable temperature 
range for egg hatching and J2 infection is 15°C–30°C, with 27°C being 
optimal for hatching (Liu, 2000; Wang et al., 2016). Moreover, Chen 
et al. (2009) reported that temperatures above 35°C inhibited the 
growth and development of M. incognita (Chen et al., 2009). Within 
less than 1 h of treatment at 44°C–45°C, all J2 died, indicating that 
such high-temperature conditions are detrimental to M. incognita 
survival (Wang and McSorley, 2008). Therefore, using double-layer 
transparent film combined with the addition of organic matter can 
help increase soil temperature and inhibit M. incognita in tobacco 
production (Hou and Liu, 2007). This study offers a new direction for 
environmentally friendly and sustainable control strategies against 
M. incognita. 
4.2 High temperatures hinder M. incognita 
infection by maintaining root tissue 
structure 

Host tissue structure changes following pathogen infection. To 
some extent, this is an active adaptive response by plants to maintain 
normal physiological activities; however, it is also a passive reaction that 
inhibits plant growth and development (Kong et al., 2020). Meloidogyne 
spp. must first penetrate the outer protective layer of roots to infect 
plants and ultimately cause disease. However, most of J2 are unable to 
enter the pericycle and remain confined to the root cortical tissue in 
resistant peanut varieties under Meloidogyne hapla infection (Lu et al., 
2000). Bendezu and Starr (2003) found that Meloidogyne arenaria 
invaded only the epidermal tissue in resistant  varieties, while the 
susceptible varieties were completely invaded. In contrast, Vovlas 
et al. (2005) reported that giant cells formed in the roots of 
Cordyceps sinensis across varieties with different resistance levels 
under Meloidogyne spp. infection. Moreover, there was no difference 
in the number of giant cells. Therefore, it is suggested that the resistance 
mechanism in resistant varieties involves inhibiting the growth, 
development, and reproduction of Meloidogyne spp. in the roots. 

Our present study indicated that no hypersensitive necrosis 
occurred in the root apical area of either the resistant or susceptible 
tobacco varieties under M. incognita infection, showing that the 
hypersensitive response is not a unique feature of resistant varieties 
(Lukan et al., 2023). Additionally, there was no significant change in 
the root tissue structure of the resistant tobacco variety NC95, and 
no giant cells or oocysts were observed under infection. In contrast, 
a large number of giant cells and oocysts were observed around the 
root xylem of the susceptible variety CBH, clearly indicating that 
different defense mechanisms were present in the resistant and 
FIGURE 5 

Effects of Meloidogyne incognita infection for 2 d on Rk gene 
expression in the roots of the resistant tobacco variety NC95 at 
different temperatures. 
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susceptible tobacco varieties under M. incognita infection. The 
resistant varieties exhibited a certain degree of immunity to M. 
incognita infection, manifested as structural resistance that 
inhibited the formation of giant cells. This may be because 
substances secreted by the resistant varieties are toxic to M. 
incognita or repel the pathogen from the roots, thereby protecting 
the plants from infection. Alternatively, the emergence of giant cells 
and formation of feeding sites may be inhibited by resistant 
varieties, leading to the death of M. incognita invading the roots 
due to nutrients deficiency (Phan et al., 2018), which is consistent 
with the study by Fan (2020). However, Wang et al. (2006) found 
that the resistance mechanism in the resistant varieties involved 
inducing cavitation in giant cells under M. incognita infection. 
Additionally, paraffin section analysis of root knots formed by 
inoculation with M. hapla, M. javanica Treub, and M. arenaria 
Neal in the resistant wild cucumber variety ‘Hardwickii’ and the 
susceptible cultivar ‘Smuter’ revealed that elongation of giant cells 
in resistant varieties resulted in abnormal development of 
Meloidogyne spp (Walters et al., 2006). Collectively, further in-
depth research is needed on the root tissue resistance mechanism in 
the resistant varieties to M. incognita infection. Moreover, more 
giant cells and oocysts were observed in the root tissue of the 
susceptible variety CBH at 25°C than at 35°C. Meanwhile, the 
degree of lignification in the resistant variety NC95 was also greater 
at 25°C, indicating that roots maintain better tissue structure at 
higher temperatures, which may hinder M. incognita infection. 
4.3 High temperatures inhibit M. incognita 
infection by promoting upregulated 
expression of Rk gene 

A complex gene regulatory network is involved in plant 
responses to adverse stress (Awlia et al., 2021). Under pathogen 
infection, host resistant responses are induced by the upregulated 
expression of resistance genes, thereby disrupting the living 
environment of pathogens and ultimately preventing their growth 
and development. It has been confirmed that the upregulated 
expression of resistance genes plays an essential role in the 
Meloidogyne spp.–plant interaction (Gheysen and Fenoll, 2002; 
Lambert et al., 1999; Vercauteren et al., 2001). To date, several 
Meloidogyne spp. resistance genes have been cloned from crops 
such as wheat, potato, and tomato. Lagudah et al. (1997) identified 
the wheat resistance gene of Cre3 to cereal cyst nematode (CNN). 
The Gpa2 gene confers resistance to potato cyst nematode (PCN) 
infection (van der Vossen et al., 2000). Numerous resistance genes 
to Meloidogyne spp. have been identified in tomato, among which 
the Mi gene family is the most important, capable of inhibiting 
nematode development and reproduction (Ernst et al., 2002; 
Jablonska et al., 2007; Padilla-Hurtado et al., 2022). In addition, 
the resistance gene Hs1Pro-1 was discovered in sugar beet by Cai 
et al. (1997). The expression levels of MAPK20, ICS1, NPR1, and 
PAD4 were upregulated in the rice resistant variety ‘Phule Radha’ 
upon infection with Meloidogyne spp., whereas no significant 
expression was observed in the susceptible variety (Hatzade et al., 
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2020). The combination of Hs1pro-1 and cZR3 in rapeseed 
enhances resistance to Heterodera schachtii Schm (Zhong et al., 
2019). Furthermore, Mex-1 from coffee, CaMi from pepper, and 
RKN1 from cotton had demonstrated effective resistance to 
Meloidogyne spp. infection (Chen et al., 2007; Silva et al., 2013; 
Wang et al., 2008). In our studies, the resistance gene Rk was 
derived from the M. incognita-resistant tobacco variety RK42, in 
which the resistance trait was controlled by a single dominant gene 
(Pollok et al., 2016; Rufty et al., 1983). 

Some resistance genes to Meloidogyne spp. exhibit temperature 
sensitivity, showing complete or partial loss of resistance at elevated 
temperatures (Hwang et al., 2000; Jablonska et al., 2007). Ammiraju 
et al. (2003) found that the relative expression of Mi-1, Mi-7, and  Mi-8 
were significantly reduced when resistant tomato varieties were 
exposed to high temperatures for 1–2 days after inoculation with 
Meloidogyne spp., whereas the expression levels of Mi-2, Mi-3, Mi-4, 
Mi-5, Mi-6, and  Mi-9 remain unchanged. The expression profiling of 
eight hsp genes (Mh-hsp90, Mh-hsp1, Mh-hsp4, Mh-hsp6, Mh-hsp60, 
Mh-dnj19, Mh-hsp43, and  Mh-hsp12.2) in  M. hapla at the egg and J2 
stages were highly upregulated under heat stress (at 35°C and 40°C) 
than under cold stress (at 5°C) (Flis et al., 2024). Consistent with the 
above studies, our results indicated that the expression of the Rk gene in 
the roots of the resistant tobacco variety roots showed no significant 
change across temperatures without M. incognita inoculation; however, 
its relative expression increased markedly at 2–7 d post infection, 
indicating that M. incognita infection promoted the upregulation of Rk 
expression. Moreover, under infection, the expression levels of the Rk 
gene at 25°C and 15°C were 3.36-fold and 1.62-fold higher, respectively 
than at 35°C. These findings suggest that Rk gene expression is 
temperature-dependent (Pollok et al., 2023), Although expression 
levels decreased at 35°C, the Rk gene was not inactivated and still 
retained the ability to inhibit M. incognita infection. Studies on the Rk 
gene remain in its early stages, and further studies are needed to explore 
how to enhance resistance to M. incognita infection in tobacco and how 
temperature affects Rk expression. 
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