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Introduction: Anthracnose poses a significant threat to the sustainable

development of the Camellia oleifera industry. In this study, we aimed to assess

the efficacy of melatonin-induced Bacillus tequilensis DZY6715 (MT-DZY 6715) in

controlling C. oleifera anthracnose caused by Colletotrichum siamense.

Methods: The antifungal activity of MT-DZY6715 against C. siamense was

systematically evaluated in vitro dual-culture assays and in planta infection

trials. Furthermore, we analyzed the impact of MT-DZY 6715 on the anatomical

features of C. oleifera leaves using histological sectioning. Additionally,

transcriptome and enzymatic assays were employed to assess the expression

of secondary metabolism-related genes and the activity of cell wall-

degrading enzymes.

Results: The application of MT-DZY 6715 effectively controls the growth of C.

siamense, markedly reducing the incidence of C. oleifera anthracnose and

delaying the spread of pathogens on the leaves. Furthermore, MT-DZY 6715

treatment enhanced leaf thickness, palisade mesophyll, as well as elevated the

ratio of palisade mesophyll to spongy mesophyll (PS) and tissue compactness

(CTR), while simultaneously decreasing tissue looseness (SR). Meanwhile, the leaf

stomata undergo a reduction in size and a decrease in their openness. In addition,

MT-DZY 6715 promoted the expression of secondary metabolism-related genes,

such as PAL, CAL, Laccase, HCT, and CHI, and inhibited the activity of enzymes

related to cell wall degradation (pectinase and cellulase), thereby coordinating

and enhancing the accumulation of secondary metabolites and strengthening

the mechanical properties of the cell wall.
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Discussion: The results of this study demonstrate that MT-DZY 6715 enhances

the resistance of C. oleifera to anthracnose by modulating leaf morphology,

regulating stomatal function, and promoting the accumulation of secondary

metabolites. These findings provides a scientific foundation for deploying MT-

DZY6715 as an eco-friendly alternative to chemical fungicides in

anthracnose management.
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1 Introduction

Camellia oleifera, widely known as the tea oil tree, is an

evergreen shrub or small tree of the genus Camellia in the

Theaceae family. It stands out as one of the four primary woody

oil seed plants, earning the esteemed title of “Oriental Olive Oil”

owing to its remarkable economic and culinary value (Yang et al.,

2024). Additionally, C. oleifera is acclaimed for its medicinal

benefits and holds vital ecological significance. However, as the

cultivation area of C. oleifera expands, anthracnose has gradually

emerged as a major obstacle to the industry’s development.

Anthracnose, caused by Colletotrichum species (Hao et al., 2023;

Jeyaraj et al., 2023), is characterized by its rapid spread, wide

incidence, and high virulence, posing a grave threat to the health

of C. oleifera (Chen et al., 2023). In the field, leaves infected by the

anthracnose pathogen initially exhibit dark brown or yellowish-

brown semicircular spots. As the disease advances, these spots

gradually expand and turn into grayish-white patches adorned

with black fruiting bodies (Jiang and Li, 2018). The damage of

anthracnose is not limited to leaves, it also impacts fruits, branches,

and other parts of the plant, ultimately leading to defoliation, fruit

drop, and even the death of the entire plant (Muntala et al., 2020).

These severe consequences not only significantly impact the yield

and quality of C. oleifera but also result in huge economic losses.

In the face of this challenge, although traditional chemical

control methods can provide some suppression of the disease,

they also bring drawbacks such as pathogen resistance, chemical

residues, and ecological impacts that cannot be overlooked ignored

(Martinez et al., 2020; Xia et al., 2023). Thus, the pursuit of green,

safe, and eco-friendly biological control measures has become a

primary focus (Kumar Ahirwar et al., 2019). Microbial preparations

are known for their low toxicity, minimal residue, and

environmental friendliness (Ashraf et al., 2014), making them an

ideal alternative to chemical pesticides for controlling diseases in

the C. oleifera industry. Their application may promote the green

and sustainable development of the C. oleifera industry, helping to

achieve a harmonious balance of economic, ecological, and social

benefits. Bacillus species is often regarded as ideal candidates for

biological control due to their ability to enhance plant resistance by

producing antagonistic compounds that inhibit pathogen growth
02
and inducing systemic resistance, as reported in several studies (Fira

et al., 2018; Miljaković et al., 2020; Ongena et al., 2007; Wang et al.,

2018). However, the efficacy of Bacillus is inferior to that of

chemical fungicides, so it is necessary to develop methods to

improve its biological efficiency.

Melatonin (N-acetyl-5-methoxytryptamine, MT) is a versatile

small molecule substance widely distributed in both animals and

plants. It is a natural compound, serving as a potent antioxidant and

free radical scavenger, playing a crucial role in enhancing plant

disease resistance (Hernández-Ruiz et al., 2023). Bisquert et al.

(2018) suggested under oxidative stress conditions, Saccharomyces

cerevisiae treated with MT exhibited significantly modulated gene

expression related to stress protection, leading to an increased cell

viability of up to 35% compared to control group. Peter et al. (2024)

discovered that MT and Bacillus sp. IPR-4 co-inoculation

significantly enhanced soybean resistance to drought stress by

promoting growth, optimizing nutrient absorption, regulating

redox homeostasis, and upregulating drought-responsive genes.

Furthermore, studies have confirmed that melatonin can enhance

resistance in litchi fruit cell walls by modulating membrane lipid

and energy metabolisms, thereby retarding browning, senescence,

and lesion expansion caused by pathogens (Wang et al., 2020a;

Zhang et al., 2021). Plant-produced secondary metabolites,

including phenolics, flavonoids, and lignin, work together with

the cell wall to construct a defensive system, while melatonin

further promotes the synthesis of these disease-resistant

metabolites, significantly boosting the plant’s disease resistance

(Anjali et al., 2023). Additionally, Liu et al. (2019) reported that

melatonin enhances tomato fruit resistance to Botrytis cinerea by

modulating H2O2 levels and the jasmonic acid (JA) signaling

pathway. MT enhances plants’ disease resistance by activating

defense signaling pathways, such as ROS scavenging, MAPK

activation, and crosstalk with SA/JA (Tiwari et al., 2022). Song

et al. (2022) discovered that Melatonin improves the postharvest

quality of eggplant fruits by inhibiting the activity and gene

expression of cell wall-degrading enzymes (PME, PG, and Cel).

Currently, there is limited information available on the

application of melatonin induced Bacillus sp. in enhancing disease

resistance in C. oleifera, especially regarding the mechanisms

underlying the induction of physical defense at both genetic and
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physiological levels. Thus, in this study, melatonin was employed to

induce B. tequilensis DZY 6715 (MT-DZY 6715), with the aims of

exploring: 1) the inhibitory effects of MT-DZY 6715 on

Colletotrichum siamense in vitro; 2) the influence of MT-DZY

6715 on the structural characteristics of C. oleifera leaves; 3) the

relevant disease-resistance genes through transcriptome analysis

following MT-DZY 6715 treatment; and 4) the enzymatic activities

associated with cell wall and phenylpropanoid metabolism in C.

oleifera plants induced by MT-DZY 6715 treatment. The findings of

this study offer novel insights into the molecular mechanisms that

enhance disease resistance in C. oleifera through the induction of

MT-DZY 6715.
2 Materials and methods

2.1 Plant, pathogen, bacterial strain and
melatonin

Two-year-old C. oleifera seedlings (‘Changlin No. 53’) sourced

from Yingjiang Linli Oil Tea Co., Ltd. in Yunnan, China, were housed

in a greenhouse at Southwest Forestry University. The greenhouse

conditions were maintained at a controlled temperature of 25°C and

humidity of 80%, with regular irrigation using sterile water.

The pathogenic fungus, C. siamense, was isolated from C.

oleifera leaves affected by anthracnose. Identification was

confirmed through sequencing of the Internal Transcribed Spacer

(ITS) region using universal primers ITS1 and ITS4. The pathogenic

fungus was maintained on the slope of a Potato Dextrose Agar

(PDA) medium at a temperature of 4°C for preservation.

The B. tequilensis DZY 6715 strain was isolated from C. oleifera

and cultured in Luria-Bertani (LB) medium at the College of

Forestry, Southwest Forestry University, located in Kunming,

Yunnan Province, China.

MT (CAS: 73-31-4) was obtained from Merck (Sigma-Aldrich

Shanghai Trading Co., Ltd.) and stored under 4°C conditions.
2.2 Preparation of MT-DZY 6715
suspension

Based on our previous research (Liu et al., 2023), an MT

concentration of 50 mmol L-1 was selected. Regarding the

determination of culture time, B. tequilensis DZY 6715 reaches its

peak viable cell count and biofilm-forming capability after being

cultured for 72 h when induced by MT at a concentration of 50

mmol L-1. Consequently, a culture period of 72 h was selected for

further investigation.
2.3 Effect of MT-DZY 6715 against C.
siamense in vitro

The antifungal test was conducted utilizing the plate

confrontation method (Zhou et al., 2022). Five-day-old viable
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cultures of C. siamense, each with a diameter of 6 mm, served as

the indicator pathogen and were placed at the center of 90 mm petri

dishes filled with PDA medium. Treatment groups were established

by injecting the following solutions 3 cm away from the center of

each dish: (1) 50 mmol L-1 MT, (2) 72-h DZY 6715 suspension at a

concentration of 1×107 CFU mL-1, and (3) DZY 6715 suspension

that had been induced with 50 mmol L-1 MT for 72 h (MT-DZY

6715), at a concentration of 1×107 CFU mL-1. The control group

consisted of petri dishes with the pathogen inoculated alone. All

petri dishes were then placed in an incubator at 28°C. Adopted from

Al Farraj and Elshikh (2023), the inhibition rate (R) was calculated

was calculated as follows: R = (R1 - R2)/R1, where R1 and R2

represent the diameters of the pathogen colonies in the control and

treatment groups, respectively. Each treatment was replicated three

times, and the experiment was conducted twice.
2.4 Effect of MT-DZY 6715 against C.
siamense on C. oleifera

Healthy, uniform, and mechanical damage-free C. oleifera

seedlings were selected. The leaves were sanitized with 75%

ethanol for 30 s, rinsed three times with sterile water. Then the

selected seedlings following treatments with MT, DZY 6715,

MT-DZY 6715, and sterile water as a control. Each seedling

received 20 mL of the respective solution applied evenly with a

spray bottle, ensuring no droplets fell off, and the leaves were

allowed to dry before reapplying. Twenty-four hours post-

inoculation, created on either side of the central vein of the

leaves using a sterile inoculation needle. Subsequently,10 mL of

conidial suspension of C. siamense, at a concentration of 1 × 105

CFU mL-1 was applied to the wounded area of each leaf. The

seedlings were cultivated at room temperature with a controlled

humidity of 80%. Finally, the lesion size on the leaves and the

incidence rate (M) were calculated based on the Xie et al. (2021)

‘s approach, as formulated:

M = (M1=M2)� 100%

where M1 and M2 represent the number of infected leaves and

the total number of leaves, respectively. Each treatment had nine

replicates, and the experiment was repeated twice.
2.5 Effects of MT-DZY 6715 on the leaf
structure of C. oleifera

The treatment for C. oleifera seedlings was conducted as

described in section 2.4. Each seedling received 20 mL of the

respective solution, which was applied evenly to ensure no

droplets fell off. Leaf samples from the C. oleifera seedlings were

collected 30 days post-treatment for further analysis.

2.5.1 Scanning electron microscopy
The method for the scanning electron microscope was adapted

from the previous description by Lubna et al. (2019) with
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appropriate modifications. Specifically, collected leaf samples were

promptly immersed in 2.5% glutaraldehyde for overnight fixation,

then rinsed with 0.1M phosphate-buffered saline (PBS) at a pH of

7.4, followed by dehydration with increasing concentrations of

ethanol. After freeze-drying, the surfaces of the samples were

coated with gold to enhance their visibility. Finally, the samples

were observed under a Hitachi Regulus 8100 SEM.

2.5.2 Stomata characteristics
The stomatal characteristics on the leaf surface were analyzed

based on the method described by Ayala-Ramos et al. (2024), with

slight modifications. Fully expanded and well-grown leaves were

selected, and samples were collected between 8–9 am to ensure

consistent physiological conditions. The lower epidermis of each

leaf was meticulously peeled off using a fine dissecting knife, gently

rinsed with sterile distilled water to remove any contaminants, and

promptly transfer to phosphate-buffered saline (PBS) solution to

maintain cell integrity. Stomatal characteristics, including the

horizontal axis of stomata (HAS), vertical axis of stomata (VAS),

stomatal area (SA), and stomatal perimeter (SP), were measured.

For each observation, ten random fields of view were examined to

ensure comprehensive assessment of the stomatal characteristics.

Each treatment was repeated three times.

2.5.3 Leaf tissue structure
The anatomical structure of the leaf was analyzed using the

paraffin sectioning method (Yao et al., 2023). Specifically, collected

samples were cut into 1x1 cm pieces using a dissecting knife and

preserved in FAA solution (a mixture of formaldehyde, acetic acid,

and 70% ethanol). Then, the samples were dehydrated in a series of

ethanol solutions and ethanol/xylene mixtures, embedded in

paraffin, and then sectioned using a Leica RM 2016 rotary

microtome (Leica, Nussloch, Germany), the sections were stained

with safranine O-fast green staining (Hu et al., 2022). Images of the

stained sections were captured using a Zeiss MC 80 Axiolab optical

microscope. The NDP view 2.9.22 RUO software was utilized to

measure anatomical structures, including leaf thickness (Ln), the

thickness of the upper (Tup) and lower epidermises (Tep), spongy

mesophyll (Tsp), palisade mesophyll (Tpa), the ratio of palisade

mesophyll to spongy mesophyll (PS). Additionally, tissue

compactness (CTR) was calculated as the ratio of leaf thickness to

palisade mesophyll thickness, and tissue looseness (SR) was assessed

by the ratio of spongy mesophyll thickness to leaf thickness. Each

treatment group consisted of three leaves, and the experiment was

repeated twice.
2.6 Transcriptome analysis of C. oleifera
induced by MT-DZY 6715

2.6.1 RNA extraction, RNA-sequencing and
differentially expressed gene identification

Samples of C. oleifera leaves, treated with MT, DZY 6715, and

MT-DZY 6715 for 24 h, as well as a control group (CK) treated with
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sterile water, were collected and promptly frozen in liquid nitrogen

for RNA extraction. The quality of the extracted RNA was evaluated

using an Agilent 2100 Bioanalyzer. Subsequently, sequencing of the

RNA libraries was conducted on the Illumina HiSeq platform. Low-

quality reads were excluded from the raw sequencing data, resulting

in a set of high-quality, filtered reads. These reads were then aligned

to the reference genome of C. oleifera which was obtained from a

designated website (https://zenodo.org/record/5768785#.

ywrqgnzbwdu). Differentially expressed genes (DEGs) were

identified using the DESeq2 software package. The functional

annotation of these DEGs was conducted using the KEGG

database (http://www.genome.jp/kegg/). To identify DEGs, we

applied thresholds of |log2FC|>1 and a P <0.05.

2.6.2 RNA-seq verification by quantitative real-
time PCR

To verify DEGs expression, RT-qPCR was conducted, utilizing

primers specifically designed for DEGs with Primer Express

Software v2.0 (Supplementary Table S1), in accordance with the

transcriptional analysis.
2.7 Effect of MT-DZY 6715 of on the
defense enzymes activity and substances
related to the cell wall in C. oleifera

The treatment method for C. oleifera remains consistent with

that described in section 2.4. Leaf samples of C. oleifera, collected on

the 30th day post-treatment, were used to evaluate the following

indicators. The activity of phenylalanine ammonia-lyase (PAL) was

assessed as described by Zhu et al. (2021). The activities of cinnamic

acid-4-hydroxylase (C4H) and 4-coumarate: coenzyme A ligase

(4CL) were investigated according to the method described by Yin

et al. (2023). Laccase and cinnamyl-alcohol dehydrogenase (CAD)

activities were measured in accordance with the protocol

established by Khedr and Khedr (2024). The content of lignin

and cellulose were examined as illustrated by Sun et al. (2023).

Additionally, cellulase activities was examined utilizing the

methodology detailed by Abu-Goukh and Bashir (2003).

Protopectin content was determined based on Shinga and Fawole

(2023) method. Pectinase activity was determined as described by

Dal Magro et al. (2019). The results for the activities of PAL, 4CL,

C4H, CAD, laccase, cellulase, and pectinase are expressed in units

per gram of protein concentration (U g-¹), while the content of

lignin, cellulose, and protopectin is indicated as milligrams per

gram of fresh leaf weight (mg g-¹).
2.8 Statistical analyses

Statistical comparisons of the data were performed using

independent t-test or Duncan’s multiple range test in SPSS 20.0

(IBM, Armonk, NY, USA), with statistical significance determined

at P <0.05.
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3 Result

3.1 Inhibitory effect of MT-DZY 6715
against C. siamense in vitro

After inducing DZY 6715 with 50 mmol L-1 MT (MT-DZY

6715), the inhibitory effect on C. siamense was the best, during the

24–120 h of cultivation, MT-DZY6715 treatment showed an

inhibition rate of 58.67% -76.33% against C. siamense, and the

highest inhibition rate was observed at 72 h, which was 26.86%

higher than the DZY 6715 treatment (Figure 1).
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3.2 The impact of MT-DZY 6715 aganist C.
siamense on C. oleifera

Figure 2A showed that as the treatment time increased, the

disease incidence rate in all treatment groups rises linearly. At the

9th day, the disease incidence rate in the control group reached

100%, which is significantly higher than that of the DZY 6715, MT,

and MT-DZY 6715 treatment groups by 22.22%, 8.89%, and

35.56%, respectively. In addition, the lesion diameter on the

leaves of each treatment group also gradually increase with

prolonged treatment time. However, from the 4th to 10th day of
FIGURE 1

Representative photos demonstrating the antagonistic activity of MT-DZY 6715 on the growth of C. siamense. (A) represents the treatment with the
pathogen alone; (B) shows the treatment with DZY 6715 suspension; (C) displays the treatment with MT-DZY 6715; and (D) illustrates the inhibitory
effect on the pathogen in vitro. The data presented are expressed as the mean ± standard error (SE). * represents significant differences based on
P <0.05.
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treatment, the leaf lesion diameters of the DZY 6715, MT, and MT-

DZY 6715 treatment are significantly lower by 40.24-52.66%, 13.83-

31.17%, and 54.88-63.83%, respectively, compared to the control

group (Figure 2B). The above indicated that the MT-DZY 6715

treatment exhibited the highest inhibitory activity against C. oleifera

anthracnose caused by C. siamense.
3.3 Impact of MT DZY 6715 on the leaf
structure of C. oleifera

3.3.1 Surface structure and stomata of C. oleifera
leaves

Figure 3 showed that on the 30th day post-treatment, the MT-

DZY 6715 treatment group exhibited stomatal dimensions with

horizontal axis of stomata (HAS) of 17.59 mm, a vertical axis of

stomata (VAS) of 16.51 mm, a stomatal area (SA) of 163.12 mm2,

and a stomatal perimeter (SP) of 47.03 mm. These values were

significantly (P<0.05) lower compared to the CK, MT, and DZY

6175 treatment groups. Furthermore, the stomata in the MT-DZY

6715 treated group were nearly fully closed, meanwhile, the stomata

in the control and MT groups were larger and more open.
Frontiers in Plant Science 06
In addition, after 30 days of treatment, the epidermal surfaces of

C. oleifera leaves showed varying amounts of solid particulate

matter. It is worth noting that compared with the control group,

DZY 6715, and MT, the leaves treated with MT-DZY 6715 showed

notably more solid particles. These particles comprised the waxy

layer of the leaf epidermis. Furthermore, MT-DZY 6715 treatment

resulted in reduced epidermal folding and a wax layer with dense,

fragmented protrusions.

3.3.2 Leaf anatomical structure
Figure 4 exhibited the structural features of the cross-section of

C. oleifera leaves. Both the upper and lower epidermal layers are

composed of a single layer cell. Adjacent to the upper epidermis is

the palisade mesophyll, characterized by its tightly packed

arrangement of elongated, columnar cells in 2–3 layers. Spongy

mesophyll, situated next to the palisade mesophyll, consists of

irregularly shaped cells arranged loosely with expansive

intercellular spaces. Figure 5 showed that there are differences in

the anatomical characteristics of C. oleifera leaves following various

treatments. Compared to the control, leaves treated with DZY 6715,

MT, and MT-DZY 6715 exhibited an increase in leaf thickness (Ln)

and palisade mesophyll thickness (Tpa). No significant difference
FIGURE 2

The incidence rate (A) and lesion diameter (B) of C. siamense on C. oleifera leaves during the cultivation period. Representative images illustrate the
effect of MT-DZY 6715 on lesion development in C. oleifera leaves resulting from 10 days post-pathogen inoculation (C-F). (C-F) represent
treatments with C. siamense, DZY 6715, MT, and MT-DZY 6715, respectively. Data are represented as mean ± standard error (SE). Diverse letters are
used to denote significantly differences among the different timepoints as determined through a Duncan’s multiple range test (P < 0.05).
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was observed in the upper/lower epidermal thickness (Tup/Tep)

between the MT-DZY 6715 treatment and the control. The sponge

tissue thickness (Tsp) in the MT-DZY6715 treatment group was

significantly reduced compared to the control, MT and DZY 6715

treatment groups. Additionally, leaves treated with MT-DZY 6715

exhibited a significantly higher ratio of palisade mesophyll to

spongy mesophyll (PS) and a greater degree tissue compactness

(CTR) than the control, MT, and DZY 6715 groups. Conversely, the

tissue looseness (SR) in the MT-DZY6715 treatment group was

significantly lower than that in the other three groups.
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3.4 Transcriptomic analysis of C. oleifera
treated with MT-DZY 6715

3.4.1 DEGs identified by transcriptome analysis
In the present study, the R2 values between biological replicates

fell within the range of 0.98 to 1.00, signifying the high reliability of

the transcriptome data, thereby validating it for subsequent

downstream analyses (Figure 6A). In the comparison CK-vs-DZY

6715, 1,142 differentially expressed genes (DEGs) were detected,

with 442 upregulated and 700 downregulated. In CK-vs-MT, 924
FIGURE 3

Scanning electron microscope assessment of the effects of CK (A), DZY 6715 (B), MT (C), and MT-DZY 6715 (D) treatments on the stomata of C. oleifera
leaves, and stomatal structure characteristic parameters of leaves under different treatments at 30 d: HAS (E), VAS (F), SA (G), and SP (H). Data are
represented as mean ± standard error (SE). Different letters indicate significant differences between the different treatments as determined by a Duncan’s
multiple range test (P < 0.05).
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DEGs were identified, including 558 upregulated and 366

downregulated genes. A total of 1,372 DEGs were detected in CK-

vs-MT-DZY 6715, among which 620 were upregulated and 752

were downregulated. The identification of a higher number of DEGs

in CK-vs-MT-DZY 6715 suggests that the MTDZY 6715 treatment

has a more significant impact on C. oleifera (Figure 6B).

3.4.2 Effects of different treatments on the
transcriptome of C. oleifera

To further elucidate gene functions, KEGG enrichment analysis

was conducted on the DEGs. The results revealed that the 1,142,

924, and 1,372 DEGs identified in CK-vs-DZY 6715, CK-vs-MT,

and CK-vs-MTDZY 6715, respectively, were enriched into 92, 85,

and 108 KEGG pathways, with the top 20 pathways shown in the

Figure 7. Among these top 20 KEGG pathways, Phenylpropanoid

biosynthesis exhibited the highest number of enrichments in both

CK-vs-DZY 6715 (Figure 7A) and CK-vs-MT-DZY 6715

(Figure 7B), whereas Plant-pathogen interaction was the most

enriched in CK-vs-MT (Figure 7C). The application of DZY

6715, MT, and MT-DZY 6715 altered the differential gene

expression (DEGs) link to disease resistance in C. oleifera. These

DEGs were subsequently analyzed and categorized into four

functional groups: transcription factors, plant hormone signal

transduction, cell wall and phenylpropanoid metabolism.

For transcription factors (Figure 8A), compared to the control

group, after DZY 6715 application, a total of 13 genes were up-

regulated, including TAF10, MYBP, U2AF1, ERF1, PTI5, UAF30, 2

AP2, 3 EREBPs, and 2 WRKY33, while 5 genes were down-regulated,

encompassing HD-ZIP, HSPP, WRKY33, 2 MYBPs, and ARF.

Following the MT application, 6 genes experienced up-regulated,

including AP2, MYC2, WRKY33, ARF, UAF30 and RNF38_44,
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while 7 genes were down-regulated, including EREBP, HD-ZIP,

HSFF, WRKY33, and 3 MYBPs. The application of MT-DZY 6715,

16 genes exhibited up-regulation, such as TAF10, AP2, U2AF1, RAV,

ERF1,HSFF, UAF30, RNF38_44, along with 3 EREBPs, 3 MYBP and 2

WRKY33, while 5 genes were down-regulated, including HD-ZIP,

WRKY33, ARF. For plant hormone signal transduction (Figure 8B),

compared to the control group, after DZY 6715 was applied, 11 genes

were affected, with 3 up-regulated (including AOC, IAA, SAUR), and 8

genes down-regulated (BHMT, SMG1, AMD1, SAUR, PIN, GH3, PYL,

and SLC15A3_4). And the MT application, 9 genes exhibited changes,

with 4 up-regulated, such as IAA, GH3, SAUR, AUX1, and 5 down-

regulated, including BHMT, CYP26A, SAUR and 2 PYL. Meanwhile,

MT-DZY6715 treatment led to alterations in 13 genes. Among these, 7

genes were up-regulated, including GA2ox, CYP707A, IAA, SAUR,

AOG and 2 AOCs, while 6 genes down-regulated like BHMT, SMG1,

PIN, GH3, PYL, SLC15A3_4. For cell wall metabolism (Figure 8C),

compared to the control group, after DZY 6715 was applied, 29 genes

were affected, among these, 6 genes were up-regulated, including otsB,

SEC61G, PIP, ANXA7_11 and 2 CHI. At the same time, 23 genes were

down-regulated, such as PE, CHI, PREP, 2 ATP2C, PPC, 3 PEL, CFL,

CDC45, YCG1, TUBA, 3 CESA, 2 GAUT, CSLA, SCPL-IV, NEDD1,

SACS, EXOC6. FollowingMT application, 18 genes exhibited changes,

with 8 up-regulated (PIP5K, PE, cynT, 2 AOS, PEL, TUBA, CESA) and

10 down-regulated (PPC, PEL, CFL, CDC45, UGT75C1, GAUT,

NEDD1, ECOC6 and 2 CHI). Meanwhile, MT-DZY6715 treatment

led to alterations in 34 genes. Among these, 13 genes were up-

regulated, such as PE, otsB, 2 CHI, TUBA, 4 PIP, TIP, CESA,

GAUT, SCPL-IV. While 21 genes were down-regulated, including

PIP5K, CHI, PREP, ATP2C, PPC, 3 PEL, APR, CDC45, YCG1, TUBA,

TRIP12, 2 CESA,KPC1,UGT75C1,UTP20,NEDD1, SACS, EXOC6. In

the phenylpropanoid metabolism (Figure 8D), the application of
FIGURE 4

Microscopic analysis of C. oleifera leaf anatomical structures at ×20 magnification after treated with CK (A), DZY 6715 (B), MT (C), MT-DZY 6715 (D).
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DZY6715 resulted in the differential expression of 22 genes compared

to the control group. Specifically, 8 genes were up-regulated, including

6 peroxidases (PODs) and 2 hydroxycinnamoyl-CoA shikimate/

quinate hydroxycinnamoyltransferases (HCTs), while 14 genes were
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down-regulated, comprising 5 PODs, 5 laccases (LAs), 2

leucoanthocyanidin reductases (LARs), and 2 cinnamoyl-CoA

reductases (DCRs). Upon the application of MT, 14 lignin-

associated genes exhibited altered expression, with 9 genes up-
FIGURE 5

Morpho-anatomical traits of C. oleifera leaf of different treatments at 30(d) (A) Ln, leaf thickness; (B) Tup, thickness of the upper epidermises; (C) Tpa,
thickness of the palisade mesophyll; (D) Tsp, thickness of the spongy mesophyll; (E) Tep, thickness of the lower epidermises; (F) P/S: the ratio of palisade
mesophyll to spongy mesophyll; (G) CTR (tissue compactness), the ratio of leaf thickness to palisade mesophyll thickness; (H) SR (tissue looseness), the
ratio of spongy mesophyll thickness to leaf thickness. Vertical bars indicate the standard errors of the mean. Different letters denote a significant
difference among various treatments, as determined by one-way ANOVA at P < 0.05. Values are the mean ± SE.
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FIGURE 7

The 20 most significantly associated KEGG pathways identified in comparisons of CK-vs-DZY 6715 (A), CK-vs-MT (B), CK-vs-MT-DZY 6715 (C) in
C. oleifera.
FIGURE 6

Sample correlation test chart (A), and DEGs in CK-vs-DZY 6715, CK-vs-MT, and CK-vs-MT-DZY 6715 (B).
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regulated, including 7 PODs and 2HCTs, and 5 genes down-regulated,

specifically 2 PODs, 2 LARs, and chalcone synthase (CHS). The

application of MT-DZY6715 led to changes in the expression of 15

phenylpropane metabolism-related genes, with 15 genes up-regulated,

including 7 PODs, CHS, 4-coumarate-CoA ligase (4CL), LA, 3

phenylalanine ammonia-lyases (PALs), and 2 HCTs, while 5 genes

were down-regulated, including POD, 3 LAs, and DCR.

3.4.3 qRT-PCR assay
To verify the accuracy of the transcriptome data, we performed

qRT-PCR analysis on six randomly selected differentially expressed

genes. The results, as illustrated in Figure 9, demonstrate that the

expression levels of these genes in the CK, DZY 6715, MT, and
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MT-DZY 6715 samples align with the trends observed in the

transcriptome data, indicating the reproducibility and consistency

of the RNA-seq data.
3.5 Defense enzyme activities and
substances in C. oleifera after MT-DZY
6715 treatment

After 30 days of treatment with DZY 6715, MT, and MT-

DZY6715, the PAL activity in C. oleifera significantly increased by

59.50%, 32.11%, and 59.86%, respectively, compared to the control

group (Figure 10A). Similarly, the 4CL activity in the groups treated
FIGURE 8

presents cluster analyses of the expression profiles of differentially expressed genes (DEGs) related to transcription factors (A), plant hormone signal
transduction (B), cell wall metabolism (C), and phenylpropanoid metabolism (D) following treatment with DZY 6715, MT, MT-DZY6715.
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with DZY 6715, MT, and MT-DZY6715 was significantly elevated

compared to the control. Specifically, the 4CL activity was 344.97 U

g-1 (10.99% higher), 330.29 U g-1 (5.65% higher), and 386.0 U g-1

(24.20% higher) in the DZY 6715, MT, and MT-DZY 6715 groups,

respectively (Figure 10B). Additionally, after 30 days of treatment

with DZY 6715, MT, and MT-DZY 6715, the C4H activity

significantly rose by 30.04%, 17.60%, and 43.28%, respectively,

compared to the control group (Figure 10C). On the 30th day of

treatment, the CAD activity in the DZY 6715-treated group was

reduced to 1.08- times that of the control group, whereas the CAD

activity in the MT and MT-DZY 6715 treatment groups was

elevated to 1.06- times and 1.38- times that of the control group,

respectively (Figure 10D). As shown in Figure 10E, the laccase

activity in the treatment groups with DZY 6715, MT, and MT-DZY

6715 was 2.73-, 2.16-, and 3.06- times higher, respectively,

compared to that of the control group. Figure 10F exhibited that

after 30 days of treatment, the lignin content in the DZY 6715 and

MT treatment groups was 3.02% and 3.22% lower, respectively,

compared to the control group. In contrast, the lignin content in the

MT-DZY6715 treatment group was 6.96% higher than that of the

control group. On the 30th day, the cellulase activities in the DZY

6715, MT, and MT-DZY6715 treatment groups were 781.88,

881.96, and 754.85 U g-1, respectively, which were 23.94%, 9.88%,

and 28.38% lower than those in the control (Figure 10G). As shown

in Figure 10H, the cellulose content in the DZY 6715, MT, and MT-

DZY 6715 treatment groups significantly increased to 1.32- times,

1.13- times, and 1.41- times higher than that of the control group,

respectively. On the 30th day of treatment, the pectinase activity in

the control group was 1.20-, 1.13-, and 1.27- times higher than that

in the DZY 6715, MT, and MT-DZY 6715 treatment groups,

respectively (Figure 10I). Figure 10J showed that on the 30th day,
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the protopectin content in the DZY 6715, MT, and MT-DZY6715

treatment groups was markedly higher than that in the control

group, with increases of 5.60%, 21.14%, and 37.92%, respectively.
4 Discussion

Anthracnose, a disease primarily caused by Colletotrichum

species like C. gloeosporioides, C. fructicola, C. siamense, and C.

boninense, poses as a significant threat to C. oleifera (Jeyaraj et al.,

2023). This disease results in substantial yield losses, ranging

between 20% and 50% (Zhu and He, 2023). In response to the

growing emphasis on environmental protection, the application of

Bacillus species for microbial control has emerged as a more

sustainable and efficacious alternative (Elnahal et al., 2022;

Lastochkina et al., 2019). Research has shown that Bacillus species

effectively inhibit the growth and invasion of pathogen through a

combination of mechanisms, including nutrients spatial niche

competition (Caulier et al., 2018; Lastochkina et al., 2019),

secretion of antibiotic substances, production of antibacterial

proteins (Liu et al., 2020; Zhang et al., 2017), and induction of

enhanced activity of plant disease resistance-related enzymes (Bai

et al., 2023; Fan et al., 2023; Wu et al., 2019). Although Bacillus sp.

exhibit considerable potential for biological control, they are

generally less effective than chemical fungicides. MT, as a

naturally occurring small molecule substance widely present in

organisms, functions as a biological stimulant capable of

counteracting various biotic and abiotic stresses (Ahammed et al.,

2020; Arnao and Hernández-Ruiz, 2014; Zhao et al., 2019). As

reported by Liu et al. (2024), the combined application of MT and

fungal metabolites enhances disease resistance in tomato plants
FIGURE 9

qRT-PCR assay performed to validate the DEGs GST (A), HCT (B), MYBP (C), UGT72E (D), PE (E), WRKY22 (F). The vertical bars indicate the SD from
three replicates. Different letters indicate significant differences among the different treatment groups, as determined by Duncan’s multiple range
test (P < 0.05).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1593369
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2025.1593369
against bacterial wilt by regulating the expression of plant hormone-

related genes, increasing the contents of jasmonic acid (JA) and

salicylic acid (SA), decreasing ethylene (ET) levels, and augmenting

antioxidant enzyme activity within the plants. Chen et al. (2019)

indicated that compared to the control, MT significantly inhibited
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the growth of Xanthomonas oryzae pv. oryzicola (Xoc), reduced its

pathogenicity, as evidenced by a decrease in lesion length by over

23% and a reduction in bacterial population by 45%. Additionally,

MT effectively suppressed Xoc’s biofilm formation, motility, and

extracellular protease activity, ultimately leading to a 17% decrease
FIGURE 10

Effect of MT-DZY 6715 on the PAL (A), 4CL (B), C4H (C), CAD (D), laccase (E) cellulase (G), pectinase (I) activities and the content of lignin (F),
cellulose (H), protopectin (J) in C. oleifera. Diverse letters stand for significantly different at the different treatment groups as determined through a
Duncan’s multiple range test (P < 0.05).
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in the incidence of rice bacterial leaf streak disease. In the present

work, MT was used as the elicitor for the induced culture of

B.tequilensis DZY 6715. According to our results, MT-DZY 6715

exhibited enhanced antibacterial activity compared to DZY 6715,

achieving a maximum inhibition rate of 76% against C. siamense in

vitro. Furthermore, MT-DZY 6715 treatment effectively suppressed

the growth of the anthracnose pathogen and controlled its spread

on leaves of C. oleifera.

Leaves, being highly sensitive to environmental changes and

possessing significant plasticity, provide an important perspective

through the study of their anatomical structures for analyzing the

physical defense mechanisms and disease resistance against

pathogens (Accioly et al., 2024). Specifically, leaf epidermis serves

as the first barrier between plants and the external environment. It

often contains structures such as wax layer and cuticle layer, which

are crucial in resisting pathogen invasion (Wang et al., 2020b; Ziv

et al., 2018). The wax layer, as a protective barrier outside the

cuticle, endows plants with natural defense capabilities, as its

hydrophobic properties can effectively prevent pathogen spores

from adhering to the leaf surface, thus hindering their penetration

into plant tissues (Li et al., 2019; Reina-Pinto and Yephremov, 2009;

Sharma et al., 2018; Tafolla-Arellano et al., 2018). C. oleifera

anthracnose belongs to an air-borne disease, with the pathogen

producing a large number of conidia that spreads through media

like wind and rain. In the current research, compared to the control,

the epidermal wax of leaves treated with MT-DZY 6715 showed

dense, fragmented, and more tightly packed protrusions. These

changes indicated that the MT-DZY 6715 treatment altered the

structure of the wax crystals on the C. oleifera leaves, forming a

stronger defensive barrier, and thus more effectively resisting

pathogen invasion. In addition, thicker leaves provide plants with

a more solid physical barrier, which not only effectively blocks

pathogen entry into plant tissues, mitigating disease incidence, and

aiding in water conservation by reducing transpiration, thereby

maintaining the plant’s water balance (Guo et al., 2017; Ma et al.,

2012). As the same time, thicker leaves exhibit heightened efficiency

in utilizing light energy to synthesize organic matter (Jinwen et al.,

2009; Murchie et al., 2005), which helps accumulate more nutrients

and enhance the plant’s resistance to diseases. The palisade

mesophyll and spongy mesophyll are crucial mesophyll tissues.

Palisade mesophyll is primarily responsible for efficiently

conducting photosynthesis, thereby accumulating energy and

nutrients for the plant (Zhang et al., 2022). Meanwhile, the

spongy mesophyll features large cell gaps and primarily functions

to store water and facilitate gas exchange, maintaining water

balance and gas circulation within the plant (Tamang et al.,

2023). Their synergistic effect is vital in maintaining leaf stability

and enhancing plant’s disease resistance. For example, Wang et al.

(2022b) found that the decreased expression of CmNF-YB8 leads to

improved drought resistance in chrysanthemum by altering leaf

anatomy. Specifically, this modification includes a decrease in

stomatal opening and the development of a thicker epidermal

cuticle. Walnuts exhibit enhanced disease resistance against

Xanthomonas arboricola pv. juglandis through altered leaf

anatomy, characterized by reduced stomatal length and area, as
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well as an increased thickness ratio of spongy to palisade mesophyll

(Yang et al., 2021). In our study, leaves treated with MT-DZY 6715

exhibited increased leaf thickness (Ln), palisade mesophyll

thickness (Tpa) compared to the control group, and the treated

leaves had a significantly higher ratio of palisade mesophyll to

sponge tissue (PS) and tissue compactness (CTR), as well as

reducing tissue looseness (SR) (Figure 5). Furthermore, the

stomata of the leaves treated with MT-DZY6715 decrease in

stomatal opening, and the stomatal characteristic index was also

significantly lower compared to the control, MT, and DZY 6715

treatment (Figure 3). These structural changes further suggested

that C. oleifera leaves treated with MT-DZY 6715 enhanced

resistance to the infiltration of pathogens.

To further investigate the mechanism by which MT-DZY 6715

treatment enhances the disease resistance of C. oleifera, we analysis

the molecular mechanisms underlying MT-DZY 6715-induced

resistance enhancement using transcriptome. In this study, KEGG

pathway enrichment analysis indicated that the secondary

metabolites biosynthesis played a pivotal role in C. oleifera when

treated with MT-DZY 6715. Previous studies have demonstrated

that the synthesis of secondary metabolites in plants is significantly

influenced by a range of transcription factors (TFs), including

WRKY (Chen et al., 2017), MYB (Zhao et al., 2022b), AP2/ERF

(Mizoi et al., 2012),NAC (Danielsson et al., 2011), bHLH (Sun et al.,

2018). Among these,WRKY transcription factors play a pivotal role

in regulating the biosynthesis of various secondary metabolites, like

phenols, lignin, flavonoids, tannins, etc. For instance, Tang et al.

(2023) research revealed that Paeonia lactiflora can regulate its

secondary cell wall thickness to enhance stem strength through

modulation by TF PlWRKY41a. Wang et al. (2022a) have

demonstrated that group IIc WRKY TFs directly binds to the

promoter of GhMKK2, regulating its expression and triggering a

novel mitogen-activated protein kinase (MAPK) cascade involving

GhMKK2, GhNTF6, and GhMYC2. By upregulating various

flavonoid biosynthesis-related genes expressed by GhMYC2, the

accumulation of flavonoids was increased, thereby enhancing

cotton’s resistance to Fusarium oxysporum f. sp. vasinfectum.

Similarly, HvWRKY23 regulates the expression of genes such as

PAL, C4H, 4CL, HCT, Laccase15, and UDPGT, promoting the

biosynthesis of favonoid glycoside and Hydroxycinnamic acid

amides, which strengthens cell walls and enhances barley

resistance to Fusarium head blight (Karre et al., 2019). In

potatoes, StNAC43 activates the StMYB8, and subsequently,

StMYB8 directly regulates the expression of secondary cell wall

biosynthesis genes such as HCT, PHT, and CHS, enhancing the

structure and function of cell wall, thereby increasing potato

resistance to late blight (Yogendra et al., 2017). In addition,

GbERF1-like, acting as a positive regulator of lignin synthesis,

enhances lignin accumulation in cotton plants by promoting the

expression of genes-related to plant secondary metabolism,

including PAL, C4H, C3H, HCT, CCR, and F5H. Consequently,

this strengthens the cotton plants’ resistance to Verticillium wilt, a

disease induced by Verticillium dahlia (Guo et al., 2016).

Furthermore, according to Li et al. (2020) reported that the

enhancement of rice disease resistance is attributed to the
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thickening of sclerenchyma cells near the epidermis due to

OsMYB30-induced lignin accumulation, which inhibits pathogen

penetration and augments rice immunity. In this study, the

expression of transcription factors such as MYBP, AP2, MYBP,

WRKY33, WRKY22, and ERF1 was activated after treatment with

MT-DZY6715, which induced the expression of genes associated

with the secondary metabolic pathways in C. oleifera, including

PAL, CAL, Laccase, HCT, and CHI. Furthermore, the expression of

these genes activated the secondary metabolic pathways, leading to

the accumulation of secondary metabolites and ultimately

enhancing the disease resistance of C. oleifera.

Lignin biosynthesis is a core branch of plant secondary

metabolism, with its foundation rooted in three primary

hydroxycinnamyl alcohols: p-coumaryl alcohol, coniferyl alcohol,

and sinapyl alcohol (Yao et al., 2021). These alcohols undergo

radical coupling reactions to synthesize lignin. During the process

of lignin biosynthesis, phenylalanine ammonia-lyase (PAL), 4-

coumarate:CoA ligase (4CL), and cinnamate 4-hydroxylase (C4H)

play crucial roles (Ma et al., 2023). The process initiates with

phenylalanine, which is converted into cinnamic acid under the

action of PAL. Subsequently, cinnamic acid undergoes

hydroxylation catalyzed by C4H, producing p-coumaric acid (Yao

et al., 2021). Then, p-coumaric acid is hydroxylated at C3 position

catalyzed by coumarate 3-hydroxylase (C3H), generating caffeic

acid. The hydroxyl group at the C3 position of caffeic acid is further

methylated by cinnamyl alcohol dehydrogenase (COMT), resulting

in the production of ferulic acid (Choi et al., 2023; Marchiosi et al.,

2020). This series of transformations provides the necessary

intermediates for subsequent lignin monomer synthesis. Next, p-

coumaric acid and ferulic acid undergo consecutive catalysis by

enzymes, including 4CL, cinnamoyl-CoA reductase (CCR),

cinnamyl alcohol dehydrogenase (CAD), quinate/shikimate p-

hydroxycinnamoyltransferase (HCT), p-coumaroylshikimate 3’-

hydroxylase (C3’H), and caffeoyl-CoA O-methyltransferase

(CCoAOMT), forming monolignols—the precursors of lignin (Liu

et al., 2021; Zhao et al., 2022a). Finally, these monolignol

precursors, catalyzed by lignin-forming enzymes, particularly

peroxidases (PRX) and laccases (LACs), undergo polymerization

through radical reactions on the cell wall, resulting in the formation

of lignin (Blaschek and Pesquet, 2021; Jalal et al., 2025; Peracchi

et al., 2024). This process enhances the stability and mechanical

strength of plant cell walls, thereby improving the plant’s resistance

to external environmental and biological stresses (Han et al., 2022;

Yadav and Chattopadhyay, 2023). In our research, compared to the

control group, the application of MT-DZY 6715 significantly

increased the activity of PAL, C4H, 4CL, CAD, and laccase. This

synergistic enhancement of these enzyme activities that associated

with disease resistance defense, promoted the synthesis and

accumulation of lignin, thereby effectively enhanced the resistance

of C. oleifera to anthracnose.

The plant cell wall, comprising intricate components such as

cellulose, hemicellulose, and pectin, stands as a formidable physical

barrier, crucial for safeguarding plants against pathogen invasion

(Lorrai and Ferrari, 2021). Within this structure, cellulose molecules

coalesce into microfibrils, forming the foundational scaffold of the
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cell wall. Pectin, on the other hand, plays a pivotal role in

maintaining the structural integrity and mechanical properties of

the cell wall, while also participating in plant defense mechanisms

by modulating cell wall permeability and signaling pathways

(Bidhendi and Geitmann, 2016). Lakshmesha et al. (2005)

reported that the decreased activities of cellulase and pectinase

hindered the degradation of cell walls, and effectively delaying the

spread of anthracnose on pepper fruits. Similarly, Li et al. (2018)

found that intercropping potato onion with tomato stimulates the

roots to reduce the activities of cellulase and pectinase, thereby

inhibiting the growth of the soil-borne pathogen Verticillium

dahliae and enhancing tomato’s resistance to Verticillium wilt.

According to Xiang et al. (2025), MT effectively enhanced mango

resistance to anthracnose by inducing the expression of the IF

MiWRKY45, which in turn activated the phenylpropanoid

metabolic pathway, and promoted the synthesis of lignin and

other defense compounds. Similarly, research by Sun et al. (2021)

suggested that to a single treatment, the combined application of

MT and Meyerozyma guilliermondii Y-1 markedly hinders the

invasion and spread of Botrytis cinerea by enhancing defense-

related enzyme activities, such as POD, PAL and PPO, as well as

accumulating total phenolics and lignin content. Consequently, this

combination fortifies the mechanical strength of fruit cell walls,

thereby enhancing apple fruit resistance to gray mold disease.

According to our experimental results, treatment with MT-DZY

6715 effectively inhibited both cellulase and pectinase activities,

maintaining elevated levels of cellulose and protopectin in the leaves

of C. oleifera, which better preserved the mechanical properties of C.

oleifera cell walls and ultimately enhanced its disease resistance.
5 Conclusion

In summary, the application of MT-DZY 6715 effectively

inhibits the growth of C. siamense, consequently decreasing the

incidence of C. oleifera anthracnose. The structural characteristics

of C. oleifera leaves were fortified, resulting in an elevated disease

resistance, after being treated with MT-DZY 6715. Additionally,

MT-DZY 6715 treatment stimulates the expression of genes

associated with secondary metabolic pathways, increasing the

activities of enzymes like PAL, 4AL, C4H, and CAD, while

simultaneously suppressing the activities of cellulase and

pectinase. These combined effects synergistically promote the

accumulation of secondary metabolites, maintain the mechanical

integrity of cell walls, and enhance the resistance of C. oleifera

against anthracnose. Therefore, MT-DZY 6715 emerges as a

promising biological control agent for managing C. oleifera

anthracnose. However, future research is still needed to

comprehensively evaluate the long-term prevention and control

effects of MT-DZY 6715 under different environmental conditions

through field trials. Additionally, the molecular mechanisms

underlying the interaction between MT-DZY 6715 and C. oleifera

should be explored in depth using transcriptomics and proteomics.

Furthermore, exploring potential synergistic effects between MT-

DZY 6715 and other biocontrol agents or chemical pesticides to
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enhance the integrated disease control efficacy. Collectively, these

future research paths hold significant potential for promoting the

sustainable management of C. oleifera anthracnose, offering novel

technological support and solutions for the healthy development of

the C. oleifera industry.
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