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non-destructive biomass
estimation of pearl millet
(Pennisetum glaucum)
Faten Dhawi1*, Abdul Ghafoor2*, Norah Almousa3, Sakinah Ali3

and Sara Alqanbar3

1Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal
University, Al Ahsa, Saudi Arabia, 2Center for Water and Environmental Studies, King Faisal University,
Al-Ahsa, Saudi Arabia, 3Fab Lab, Abdulmonem Al Rashed Humanitarian Foundation,
Al-Ahsa, Saudi Arabia
Digital tools and non-destructive monitoring techniques are crucial for real-time

evaluations of crop output and health in sustainable agriculture, particularly for

precise above-ground biomass (AGB) computation in pearl millet (Pennisetum

glaucum). This study employed a transfer learning approach using pre-trained

convolutional neural networks (CNNs) alongside shallow machine learning

algorithms (Support Vector Regression, XGBoost, Random Forest Regression)

to estimate AGB. Smartphone-based RGB imaging was used for data collection,

and Shapley additive explanations (SHAP) methodology evaluated predictor

importance. The SHAP analysis identified Normalized Green-Red Difference

Index (NGRDI) and plant height as the most influential features for AGB

estimation. XGBoost achieved the highest accuracy (R2 = 0.98, RMSE = 0.26)

with a comprehensive feature set, while CNN-based models also showed strong

predictive ability. Random Forest Regression performed best with the two most

important features, whereas Support Vector Regression was the least effective.

These findings demonstrate the effectiveness of CNNs and shallow machine

learning for non-invasive AGB estimation using cost-effective RGB imagery,

supporting automated biomass prediction and real-time plant growth

monitoring. This approach can aid small-scale carbon inventories in

smallholder agricultural systems, contributing to climate-resilient strategies.
KEYWORDS

digital agriculture, deep learning, plant monitoring, carbon sequestration, CNN -
convolutional neural network
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1 Introduction

In sustainable agriculture, digital technologies and non-

destructive monitoring methods are essential for real-time

assessments оf crop health and productivity. Biomass serves as an

indicator оf crop vigor, reflecting vital processes such as

photosynthesis, energy transfer, and water exchange with the

atmosphere (Yue et al., 2017; Liu et al., 2022; Zheng et al., 2023).

Accurate biomass estimation іs critical for resource allocation, and

yield prediction, all оf which contribute tо food security and

agricultural production optimization (Niu et al., 2019; Jimenez-

Sierra et al., 2021; Tang et al., 2022; Chiu and Wang, 2024). A

biomass assessment offers valuable information about carbon

sequestration mechanisms since biomass is directly related to the

amount of carbon stored in vegetative matter (Lorenz and Lal, 2014;

Ortiz-Ulloa et al., 2021; Funes et al., 2022; Chopra et al., 2023;

Saleem et al., 2023). In the present study, we emphasized pearl

millet (Pennisetum glaucum) which is an important grain crop

known for its high nutritional value, climate resilience, and

potential health advantages. Its gluten-free characteristics and

high nutrient content have inspired the development of numerous

food products, like as beverages and infant foods, which are

increasingly popular in health-conscious markets around the

globe (Deevi et al., 2024). The crop’s remarkable tolerance to hot

and arid conditions makes it especially suited to regions facing

climate variability, positioning it as a critical player in climate-

resilient agriculture and food security (Taylor, 2015; Shrestha et al.,

2023). Furthermore, pearl millet has a high potential for carbon

sequestration via biomass and soil interactions (Terefe et al., 2020;

Ali et al., 2021).

Conventional techniques of biomass measurement are manual,

time-consuming, and destructive (Fry, 1990; Bazzo et al., 2023). In

recent times, methods for monitoring without causing damage have

gained significant attention in research. Thanks to advancements in

computer vision, image-based methods are becoming popular for

non-destructive monitoring of crop development. These methods

specifically take low-level features from digital images and connect

them to growth-related phenotypes like leaf area index and biomass

(Fry, 1990; Radloff and Mucina, 2007; Tsaftaris et al., 2016; Bazzo

et al., 2023). RGB imaging, which uses red, green, and blue

wavelengths to record intricate morphological information, has

become a potent tool for plant health monitoring (Kefauver et al.,

2015; Alves et al., 2021). RGB imagery’s semantic segmentation

allows for accurate vegetation categorization by differentiating plant

components from backgrounds like soil or debris (Zhuang et al.,

2018). Contemporary developments use deep and shallow machine

learning to increase segmentation precision; for example, U-net

designs identify vegetation from the background, and Support

Vector Machines (SVM) categorize vegetation into green and

senescent groups based on colour space analysis (Kolhar and

Jagtap, 2021; Karthik et al., 2022; Madec et al., 2023).

The introduction of deep learning technologies has

fundamental ly changed the approaches used in plant

development analysis, especially when it comes to the application

of sophisticated methods like RGB image segmentation in
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conjunction with the evaluation of different vegetation indices

(Khaki et al., 2020; Zheng et al., 2022). Convolutional neural

networks (CNNs) are a cutting-edge deep learning technique that

adeptly process images to learn complex features. When provided

with a generous amount of data, CNNs are capable of reaching a

level of precision that surpasses traditional methods. Consequently,

Convolutional Neural Networks (CNNs), for instance, are

particularly effective in agricultural applications to extract and

interpret complex features related to plant morphology, texture,

the diagnosis of plant diseases, detection and enumeration of plant

organs, crop yield, and chromatic properties (Castro et al., 2020;

Poley and McDermid, 2020; Khaki et al., 2020; Morbekar et al.,

2020; Schreiber et al., 2022; Kaya and Gürsoy, 2023; Gonten et al.,

2024; Issaoui et al., 2024). Convolutional Neural Networks (CNNs)

permit scalable, non-intrusive biomass evaluation, crucial for

ecological surveillance, forestry, and precision farming (LeCun

et al., 2015; Nakajima et al., 2023; Gülmez, 2024).

Estimating plant biomass from photographs has been

attempted in some published papers (Schreiber et al., 2022; Ma

et al., 2023; Zheng et al., 2023). One approach involved using linear

modelling, hyperspectral imagery, and other vegetation indexes to

predict wheat biomass (Yue et al., 2017). Features related to grass

growth were evaluated using digital image analysis., Researchers

established correlation between observed values of dry matter

content, oven-dried biomass, and aboveground fresh biomass

with the image-derived attributes, such as the percentage of green

pixels and projected area (PA) (Tackenberg, 2007). Additionally,

the visual atmospherically resistant index (VARI) and excess green

(ExG), two vegetation indices extracted from digital images, were

used to evaluate biophysical characteristics of maize. The results

showed that ExG effectively estimated overall LAI, while VARI

corresponded with green LAI (Sakamoto et al., 2012).

Convolutional neural networks (CNN) effectively monitored

greenhouse lettuce growth and predicted metrics such as leaf

fresh weight (LFW), leaf dry weight (LDW), and leaf area (LA)

(Zhang et al., 2020; Gang et al., 2022). Han et al (Han et al., 2019).

focused on estimating maize’s above-ground biomass (AGB). They

extracted spectral and structural information from photographs

using four machine-learning algorithms: artificial neural networks,

random forests, support vector machines, and multiple linear

regression. The best-performing model was the random forest

model, which had low error rates and high explained

variance.(Yang et al., 2023). employed the Photosynthetic

Accumulation Model (PAM) in combination with a range of

vegetative indices to measure the aboveground biomass (AGB) of

rice. The results demonstrated that combining height data and VIs

produced more accurate AGB projections, providing a reliable

technique for evaluating rice growth variables, with R2 values

above 0.8. (Wang et al., 2022b). addressed the challenge of

predicting above-ground biomass (AGB) in winter wheat at field-

scale, finding that random forest models outperforming partial least

squares regression models in both training and validation datasets.

(Carlier et al., 2023). investigated the application of convolutional

neural networks (CNNs) for forecasting biophysical variables in

wheat, identifying EfficientNetB4 and Resnet50 as particularly
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https://doi.org/10.3389/fpls.2025.1594728
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dhawi et al. 10.3389/fpls.2025.1594728
proficient in predicting biomass and nitrogen traits. Their findings

indicated that while pseudo-labelling enhanced CNN efficacy,

traditional methods like Partial Least Square regression (PLSr)

were comparatively less effective, highlighting the need for further

research to optimize CNN applications in crop phenotyping.

While artificial intelligence (AI) has been used in agriculture for

tasks like disease classification (Kumari et al., 2022), there is still

much to learn regarding the utilization of machine learning

algorithms for regression analysis tasks. Most prior studies have

focused on biomass estimation in major crops such as wheat, rice,

maize, and lettuce (Niu et al., 2019; Zhang et al., 2020; Gang et al.,

2022; Carlier et al., 2023; Chiu and Wang, 2024). This study targets

pearl millet, an underrepresented and a climate-resilient crop

critical for arid and semi-arid regions, where precise biomass

estimation is essential for sustainable agriculture. This study aims

to demonstrate the benefits of utilising machine learning (e.g.,

XGBoost) and deep learning (e.g., CNN) for measuring above-

ground biomass (AGB) of pearl millet. We emphasize its distinct

contributions, including a comprehensive evaluation of several

vegetation indices (VIs) for AGB estimation and a comparison

between the interpretability of XGBoost and CNN’s feature

extraction. CNN’s superiority over conventional techniques in

identifying intricate correlations in low-dimensional data serves

as justification for its use. Furthermore, unlike traditional remote

sensing platforms (e.g., UAVs or satellites) which are indeed suited

for broader and large scales, our focus on smartphone imaging

holds immense potential for democratizing data collection,

particularly in scenarios where resources or infrastructure for

advanced imaging technologies are limited. Its utility extends to

applications such as precision monitoring in small-scale agricultural

plots and localized environmental assessments. This approach

would bridge the gap between advanced technologies and

resource-limited farming communities as well as between small-

and large-scale imaging systems by devising cost-efficient models

utilizing visible imaging. Additionally, the significance of the study

lies in how the integration of smartphone imaging with machine

learning can contribute to sustainable agricultural practices by

enabling real-time, on-site biomass estimation, which clearly

establish the value and relevance of our research to both the

scientific community and its practical applications for pearl millet

cultivation and facilitating effective crop health monitoring.
2 Materials and methods

2.1 Experimental design and data
collection

This study was structured using a completely randomized block

design in a factorial format to evaluate the effects of different

treatments on pearl millet growth. The experimental setup

included three distinct treatment groups: control, Fertilizer 1, and

Fertilizer 2, each with six replicates, totalling 18 experimental units

per group. Pearl millet seeds were soaked at 28–30°C for four days

to initiate germination. Following germination, 10 seeds were
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planted in each PVC pot, with pot dimensions of 150 × 100 ×

125 mm. Each pot had four drainage holes at the base, and trays

were placed underneath to collect drainage. The irrigation schedule,

conducted every three days, was determined based on typical

meteorological conditions in Saudi Arabia’s Eastern region. A 5-

5-5 (N-P2O5-K2O) liquid fertilizer was applied at a concentration of

5 mL per liter of irrigation water. Throughout the experiment, plant

height (from ground level to the shoot tip) and dry weight (obtained

after drying at 105°C for 24 hours) were recorded at each growth

stage (16, 34, 45, 65, and 90 days after sowing) for 10 randomly

selected experimental units, providing heterogenous growth metrics

throughout the experiment. As a result, 150 points were obtained

from all of the readings and used in the data analysis. The following

formula was used to convert AGB per pot to Mgha-1

AGB (Mgha−1 ) =
AGB per pot (g)

100� Area of  pot(m2)
 

To facilitate digital analysis, high-resolution RGB images of the

plants were captured at each growth stage using an iPhone 14 Pro

Max (Apple Inc.). The iPhone was set up one meter above the

vegetation. Initially, the digital photographs had pixel resolutions of

900 x 1600. The iPhone’s back camera is 48 MP and has an aperture

of 1.78. Every image was taken in a laboratory environment with

700–720 lux of lighting. Images were saved in JPG format with a

resolution of 1000 × 800 pixels, forming the primary dataset for

subsequent machine learning-based biomass estimation.
2.2 Data preprocessing

Data preprocessing was critical to ensure model robustness and

enhance its generalization capability. Several pre-processing

procedures are applied to the images to improve their quality and

prepare them for deep learning model training. For instance, through

normalization, the images’ pixel intensity values were scaled to a

standard range, such as 0 to 1 or -1 to 1. The photos were resized to a

consistent size of 800x800 pixels to guarantee consistency. Various

data augmentation techniques including random horizontal and

vertical flips, rotations, and modifications in brightness and

contrast were applied as standard procedure to artificially increase

the diversity of the dataset [44, 48]. Image processing tasks, such as

image reading, cropping, and preparation for model training, were

executed using Python 3.10.12, employing OpenCV, PIL, Numpy,

and Scikit-Image libraries (Van Der Walt et al., 2014; Harris et al.,

2020; Sharma et al., 2020). These preprocessing steps aimed to create

a diverse and well-prepared dataset, enhancing the deep learning

model’s ability to accurately predict biomass and adapt to variances in

image quality and environmental conditions.
2.3 Semantic segmentation with deep
learning

In image analysis, semantic segmentation classifies each pixel in

an image using Convolutional Neural Networks (CNNs), which
frontiersin.org
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capture intricate spatial correlations. CNNs function by iteratively

applying convolutional kernels, which operate through piece-wise

multiplication with input data. By combining neighbouring pixel

values into a full spatial representation, CNNs can grasp intricate

spatial interactions because of their layered structure. Increasingly

complex feature representations are created as data moves through

these convolutional layers, leading to network topologies

customized for particular uses (Kolhar and Jagtap, 2021; Madec

et al., 2023). Fully convolutional segmentation workflows generally

follow a two-stage approach. First, the model extracts high-level

features from input images, encoding significant spatial and textural

details. Subsequently, these features are used to predict each pixel’s

class at the original resolution. A prominent model for this is the

encoder-decoder architecture. In this architecture the encoder

condenses the input into a compact, high-level feature

representation, retaining essential spatial information. The

decoder then reconstructs these features back to the original

resolution, ensuring precise spatial alignment of segmented

output with the input (Khaki et al., 2020; Kaya and Gürsoy, 2023).

In this study, we used weights from the VegAnn dataset to

initialize the SegVeg model, an architecture created for plant image

segmentation (Serouart et al., 2022), Figure 1. Masks were generated

using the SegVeg model, which operates in two stages: the first stage

uses a U-net architecture to predict binary masks separating

vegetation from the background, while the second stage applies a

Support Vector Machine (SVM) to classify vegetation pixels into

green and senescent categories. This classification capability is vital

for ecological and agricultural applications, as it facilitates

comprehensive assessments of vegetation cover, plant vitality, and

various agronomic factors. The SegVeg model builds on the U-net

architecture, a robust encoder-decoder framework tailored for

semantic segmentation tasks. U-Net’s structure captures both fine
Frontiers in Plant Science 04
details and broader contextual information, making effective

segmentation of complex vegetation patterns. A Support Vector

Machine (SVM) layer is integrated, improving the segmentation of

plant pixels into green and senescent categories (Serouart et al.,

2022; Madec et al., 2023).

The proposed U-Net architecture was implemented, utilizing

PyTorch version 2.4 (Facebook, Inc., CA, USA), within the dynamic

environment of Google Colab (Google Colab website (last accessed

22 October 2024): https://colab.research.google.com/). An NVIDIA

Tesla T4 GPU with 16 GB of dedicated memory was used for its

high-performance computing capabilities. The two primary routes

of the U-Net architecture are the encoder (down-sampling) and the

decoder (up-sampling), which are joined by a bottleneck. There are

two convolutional layers and a max-pooling layer for down-

sampling in each of the four stages of the encoder pipeline (960

kernels). A 2x2 max-pooling layer cuts the feature maps’ spatial size

in half after each step. The encoder and decoder paths are

connected by the bottleneck (1024 kernels). Two convolutional

layers are used to further process the features that have been

extracted. Four up-sampling stages make up the decoder path

(960 kernels). To improve spatial resolution, each stage starts

with an up-convolution (transposed convolution), which is

followed by two convolutional layers. A 2×2 up-convolution

(transposed convolution) is used in each up-sampling step to

double the spatial dimensions. The final layer uses a 1×1

convolutional layer with 3 kernels to map the output feature

maps to the required number of classes (background, green

vegetation, and senescent vegetation).

To ensure that each picture could be partitioned into

manageable pieces complying to the essential specifications, the

original images were selectively padded with zeros as needed,

generating consistently dimensioned patches of 800 × 800 pixels
FIGURE 1

Schematic diagram of the methods employed in this investigation.
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that do not overlap. Bias in the training process was eliminated

since the plant and background masks were evenly distributed

among these patches. All CNN layers had identical feature

representations since each mask was normalized to a scale of [0,

1]. To increase the model’s performance and convergence, pre-

trained parameters from the ImageNet database were utilized

followed by training with the Adam optimizer. Earlier research

(Serouart et al., 2022; Madec et al., 2023) provides further detailed

descriptions of the model and training procedures. The assessment

of semantic segmentation employed a variety of techniques,

prominently featuring the intersection-over-union (IoU),

accuracy, and F1-score.

IOU =
TP

TP + FP + FN

� �
� 100

Accuracy =
TP + TN

TP + TN + FP + FN

� �
� 100

F1 − score = 100� (2:TP)
2:TP + FN + FP

� �

Where TP (true positives) is the proportion of pixels well

predicted in green crop class; TN (true negative) is the proportion

of pixels well predicted in the background class; FP (false positives)

is the proportion of pixels wrongly predicted in green crop class;

and FN (false negatives) is the proportion of pixels wrongly

predicted in background (Figure 2).
2.4 Phenotypic feature extraction

RGB images inherently carry a rich spectrum of visual

information that may be efficiently used for phenotypic feature

extraction. This procedure is critical for extracting and

characterizing different visual qualities from picture data. Each

RGB picture consists of three spectral channels: red, green, and

blue, each represented by a matrix of pixel values that capture

different elements of plant shape and health. Based on prior studies

demonstrating their significance and utility in estimating AGB

(Hamuda et al., 2016; Gang et al., 2022; Gerardo and de Lima,
Frontiers in Plant Science 05
2023), these indices effectively capture key spectral characteristics of

vegetation, such as biomass and chlorophyll concentration, which

are intricately associated with AGB. Additionally, indices that

minimize sensitivity to external factors, such as soil background

and atmospheric interference, were prioritized to enhance model

robustness and accuracy. Approximately 16 vegetation indices

important to plant growth evaluation were examined (Table 1). In

this investigation, RGB-based vegetation indices were carefully

examined for their ability to evaluate crop biomass. These indices

were thoroughly studied as model inputs, allowing for a comparison

to determine which indices were the most advantageous. The

study’s purpose is to increase the model’s accuracy in predicting

phenotypic traits by establishing the optimal indices, providing a

reliable framework for analysing plant health and growth dynamics

using image-based analysis.
2.5 Machine learning regression algorithms

Machine learning regression techniques can effectively describe

both linear and nonlinear relationships between predictor variables

and crop growth parameters. These methods are especially useful

for regression predictions with numerous input variables (Liyew

and Melese, 2021; Fragassa et al., 2023; Purushotam et al., 2023;

Sharma et al., 2023). We established models to predict the

aboveground biomass (AGB) of pearl millet using three shallow

machine learning algorithms: Random Forest Regression (RFR),

XGBoost, and Support Vector Regression (SVR), as well as one deep

learning technique, Convolutional Neural Networks. To assess

model accuracy and optimize hyperparameters, we employed a

statistical technique called five-fold cross-validation. The process

involves randomly dividing a dataset into five subsets, each of which

alternates as the test set and the others as the training set. This

process is repeated five times to guarantee that all subsets are used

completely, and the evaluation metrics from the five tests are then

averaged to determine the model’s effectiveness.

A grid search algorithm was utilized to ascertain the optimal

hyperparameters. This exploration encompassed a spectrum of

parameter configurations, employing five-fold cross-validation

and RMSE (Root Mean Square Error) as the principal
FIGURE 2

Visualization of image segmentation results of Pearl Millet using VegAnn and SegVeg.
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performance metric. Out of 150 total data specimens, 80% (120

specimens) were designated for training and validation, while the

remaining 20% (30 specimens) were reserved as a testing set for

evaluating the model’s predictive accuracy on AGB. Python 3.10.12

was used for model creation, feature selection, and data analysis. For

regression tasks, the Scikit-learn module (version 1.4) was used,

which includes CNN and shallow learning algorithms.
2.6 Statistical analysis

The efficacy of each machine learning model was evaluated

using a suite of statistical metrics:

Root Mean Square Error (RMSE): Measures the model’s

prediction error magnitude, indicating accuracy in predicting AGB.

Coefficient of Determination (R²): Indicates the proportion of

variance explained by the model, providing a measure of fit quality.

These measurements were crucial for evaluating model

performance, determining which model was best for estimating

AGB, and confirming each machine learning algorithm’s capacity to

improve the accuracy of biomass prediction for pearl millet.
Frontiers in Plant Science 06
RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Ym − Yp)

2

s

R2 = o
n
i=1(Yp − Yav)

2

on
i=1(Ym − Yav)

2

where Ym, Yp, and Yav represent the measured value, predicted

value, and average value, respectively, and n is the total number of

data points.
3 Results and discussion

3.1 Evaluation metrics of transfer learning
approach

Using transfer learning as a component of our methodology, we

used a pre-trained model for predictions in this investigation. We

specifically employed SegVeg, which was pre-trained on the

VegAnn and ImageNet data sets . The bas ic feature

representations were obtained using the pre-training process
TABLE 1 Definitions of the vegetation index (Vis) extracted from the RGB images of pearl millet.

Vegetation Index* Equation Refernces

CIVE (Color Index of Vegetation Extraction) CIVE  =  0:441 �  red  −  0:811 �  green  +  0:385 �  blue  +  18:787 (Kataoka et al., 2003)

Excess Blue Index (ExB) ExB  =  2 �  blue − red − green (Meyer and Neto, 2008)

Excess Green Index (ExG) ExG = 2� green − red − blue (Woebbecke et al., 1995)

Excess Green minus Excess Red ExGR = ExG − ExR (Meyer and Neto, 2008)

Excess Red Index (ExR) ExR = 1:4� red − green (Meyer and Neto, 2008)

Green Leaf Index (GLI)
GLI  =  

(2� green − red − blue)
(2� green + red + blue)

(Louhaichi et al., 2001)

Modified Green-Red Vegetation Index (MGRVI)
MGRVI  =  

(green2 − red2)
(green2 + red2)

(Lu et al., 2019)

Normalized Green-Red Difference Index (NGRDI)
NGRDI =

(geen − red)
(green + red)

(Tucker, 1979)

Normalized Difference Index (NDI)
NDI  =  

(green − blue)
(green + blue)

(Woebbecke et al., 1995)

RGBVI (Red-Green-Blue Vegetation Index)
RGBVI  =  

(green2 − red � blue)
(green2 + red � blue)

(Lu et al., 2019)

Red-Green Ratio Index (RGRI) RGRI =
r
g

(Kawashima and Nakatani, 1998)

TGI (Triangular Greenness Index) TGI  =  green  −  0:39 �  red  −  0:61 �  blue (Hunt and Daughtry, 2018)

Transformed Green-Red Vegetation Index (TGRVI)
TGRVI  =  

(green − red)
(green + red)

(Bannari et al., 1995)

Visible Atmospherically Resistant Index (VARI)
VARI =

(geen − red)
(green + red − blue)

(Gitelson et al., 2002)

Vegetative Index (VI) VI  =  green  −  red (Tucker, 1979)

Visible Light Vegetation Index (VLVI)
VLVI  =  

(green − blue)f g
(green + blue)f g −

(green − red)f g
(green + red)f g

(Gitelson et al., 2002)
*Vegetation indices are dimensionless ratios of reflectance values measured in specific spectral bands, values typically ranging between -1 and 1 or 0 and 1.
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employed by the model’s original developers. Because the pre-

training dataset includes a variety of classes and item categories,

the model can pick up strong low-level and mid-level characteristics

that apply to our vegetation segmentation problem, like edges,

textures, and patterns. Even though our sample data and the pre-

training data did not originate from the same source, the features

that were acquired from the extensive pre-training dataset are very

applicable to the segmentation of vegetation. This ability to

generalize has been shown in several picture segmentation tasks,

especially for related domains (Trivedi and Gupta, 2021; Karthik

et al., 2022; Serouart et al., 2022; Zenkl et al., 2022; Madec et al.,

2023). No new pre-training accuracy was produced in this study

because our work focusses on employing pre-trained models

without further training on the existing dataset. This investigation

now demonstrates how well the pre-trained model segments

vegetative sections with a high degree of precision. Our test

dataset was used to compute quantitative indicators including

Mean IoU, F1 score, and pixel accuracy (Table 2). A comparison

that shows how the pre-trained model performed satisfactorily in

segmentation without the need for further fine-tuning.

The model demonstrated strong overall performance in

segmenting vegetation and background, achieving 95% overall

accuracy, with 94% for vegetation and 98% for background. This

suggests that the algorithm properly classifies most pixels, with the

background marginally simpler to recognize. The high IoU values

indicate a good overlap between predicted and ground truth

regions, especially for vegetation, though there is room for

improvement in precise boundary delineation. The F1-score

shows the model balances precision and recall well but struggles

slightly more with vegetation compared to the background. While

background is classified with higher accuracy and F1 scores, likely

due to its uniform nature and larger representation in the dataset,

vegetation performs slightly lower, reflecting challenges in complex

textures or overlapping boundaries. These results highlight the

model’s reliability but suggest that targeted improvements could

further enhance vegetation segmentation performance.
3.2 Summary statistics and correlation
analysis between vegetation indices

Table 3 summarizes descriptive statistics for various vegetation

indices (VI) used to quantify vegetation characteristics. A

correlation matrix showing the correlations between several

vegetation indices produced from RGB imagery is shown in

Figure 3. This matrix offers a detailed perspective of the

relationships between indices. The largest positive association

(0.93) was found between AGB and plant height, followed by

NGRDI and TGI (0.92), and VARI (0.87). This suggests that

these indices are complimentary for vegetation study since they

are sensitive to red and green spectral components. AGB and RGRI

and ExG have a somewhat positive relationship, suggesting that

their measurements may overlap, perhaps in terms of vegetation

structure and greenness. AGB has some sensitivity to indices like

MGRVI (0.37) that focus on variations in green reflectance but with
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less precision than other indices. The weak negative correlation of

AGB to RGBVI (-0.29) indicates RGBVI may capture distinct traits,

possibly related to background noise (e.g., soil or non-vegetative

elements) rather than vegetation structure. There is no correlation

between ExB and AGB, suggesting that ExB’s sensitivity to

vegetative features does not overlap with that of AGB.

Additionally, ABG and TGI are closely connected, exhibiting

similar sensitivity to canopy health and chlorophyll. AGB’s high

correlation with height (0.93) and other greenness-related indices

(NGRDI, TGI, VARI) makes it a robust choice for monitoring

biomass, vegetation health, and canopy coverage. Divergent indices,

such as RGBVI, ExB, and ExR, on the other hand, do not match

AGB and would be better suited for applications that concentrate

on pigmentation or stress. According to these results, a mix of

indicators with both high and low correlations may provide a more

thorough understanding of vegetation health, structure, and

stress response.
3.3 Selection of predictors for the AGB
biomass estimation using SHAP
methodology

In developing predictive models for above-ground biomass

(AGB) estimation, the selection of the most relevant predictors is

essential to maximize accuracy, reduce noise, and optimize

computational efficiency. The Shapley additive explanations

(SHAP) technique (Lundberg and Lee, 2017) was used in this

investigation to systematically assess predictor significance. A

robust interpretive method for machine learning, SHAP assigns

significance scores that represent each predictor’s impact on the

target variable, allowing for a thorough evaluation of each

predictor’s contribution to model predictions (Lundberg and Lee,

2017; Wang et al., 2022a). The SHAP methodology enhances

interpretability by highlighting how each feature influences

predictions, thereby promoting informed predictor selection.

SHAP’s application in this study represents an advancement in

the selection process by balancing model interpretability with

predictive accuracy. By identifying predictors with the most

significant contributions, SHAP aids in isolating those features

that most effectively drive AGB predictions, while minimizing

the inclusion of uncorrelated or redundant variables. SHAP

analysis was performed using the Python package shap. The

base model chosen for SHAP analysis in this study was

GradientBoostingRegressor from the Python package scikit-learn.

All variables were normalized before the SHAP analysis was
TABLE 2 Performance metrics for the semantic segmentation.

Metric Overall
Performance

Vegetation Background

Accuracy 95 94 98

IOU 87 93 90

F1 92 89 91
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TABLE 3 Summary statistics for the vegetation indices.

Index Mean Min Max Range Std

CIVE 0.022 0.154 0.227 0.072 0.021

ExB 0.447 0.079 0.631 0.552 0.159

ExG 0.004 -0.015 0.021 0.036 0.007

ExGR 0.013 -0.006 0.040 0.046 0.011

ExR 0.238 0.001 0.631 0.630 0.159

GLI 0.003 -0.013 0.019 0.032 0.006

MGRVI 0.002 -0.012 0.014 0.026 0.006

NDI 0.118 -0.009 0.318 0.327 0.079

NGRDI 0.011 -0.014 0.037 0.051 0.012

RGBVI 0.004 -0.010 0.021 0.032 0.007

RGRI 0.007 -0.018 0.033 0.052 0.009

TGI 0.011 -0.008 0.039 0.047 0.012

TGRVI 0.021 -0.006 0.059 0.065 0.018

VARI 0.005 -0.006 0.018 0.024 0.006

VI 0.128 0.015 0.184 0.169 0.041

VLVI -0.001 -0.002 0.000 0.002 0.001
F
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FIGURE 3

The visualization illustrates a correlation matrix between vegetation metrics and AGB. Red indicates positive correlation, blue indicates negative
correlation, and color intensity indicates correlation strength.
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performed. This was an essential preprocessing step that

standardized the scales of the variables to reduce the

disproportionate impact of variables with larger magnitudes on

the SHAP value calculations.
3.4 SHAP analysis results

Figure 4 provides two visual SHAP representations, offering

insights into the significance and impact of each predictor on model

outputs. Figure 4A illustrates the average SHAP values assigned to

each feature, representing the mean effect of each feature on

AGB predictions.

-NGRDI (Normalized Green-Red Difference Index): NGRDI

exhibits the highest average SHAP value, indicating it as the most

influential predictor. As a commonly used index in vegetation

analysis, NGRDI likely has a strong correlation with AGB,

underscoring its critical role in the model’s predictive framework.

Height: Height is ranked as the second most important

predictor and has a strong correlation with AGB. This suggests

that plant height is directly associated with biomass accumulation,

and therefore contributes substantially to model predictions.

TGI (Triangular Greenness Index) and VARI (Visible

Atmospherically Resistant Index): These indices follow NGRDI

and height in importance. Although their impact is relatively

smaller, TGI and VARI contribute valuable information on

vegetation greenness, which is pertinent to biomass estimation.

TGRVI (Triangular Green-Red Vegetation Index) and RGBVI

(Red-Green-Blue Vegetation Index): These indices demonstrate a

moderate influence on model predictions but are less critical than

the top-ranked features. They still provide additional insights that
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may enhance the model’s accuracy by offering different perspectives

on plant vigor and color differentiation.

Less Significant Predictors (e.g., ExG, VLVI, RGRI): These

features exhibit minimal average SHAP values, indicating a low

contribution to AGB predictions. Their limited impact suggests that

they may be less relevant or potentially redundant for this specific

model, offering little additional predictive power.

The SHAP analysis confirms that the most influential features

(such as NGRDI and height) substantially contribute to AGB

estimation accuracy, whereas features with low SHAP values may

be excluded from the final model to streamline computations

without compromising predictive performance. This selective

approach, informed by SHAP, enhances model efficiency by

concentrating on high-impact predictors, which ultimately

improves both the interpretability and accuracy of AGB predictions.

Figure 4B (also called Bee Swarm Plot) offers a more in-depth

perspective on how the value of each feature affects the output of the

model. Each point depicted in this visualization corresponds to a

SHAP value for a specific feature within a single observation, and

the points are color-coded based on the feature’s value, ranging

from blue for low values to red for high values. The analysis

indicates that high values (represented in red) tend to positively

influence the model’s output, effectively pushing it to the right,

while low values (shown in blue) appear to have a detrimental effect.

This observation suggests that elevated NGRDI values are likely

associated with higher predictions, which may indicate the presence

or overall health of vegetation in the assessed area. Similar to the

NGRDI trend, high values of height (represented by red points)

generally result in higher model output, implying that taller plants

might correlate with higher predictions, thus highlighting the

importance of height in the predictive model. The influence of
FIGURE 4

SHAP summary plots display the mean absolute SHAP values for each input feature, representing their average contribution to the model’s
prediction of above-ground biomass (AGB). Panel (A) ranks the characteristics based on their overall influence, with higher values indicating greater
impact on AGB projections. Panel (B) offers a more granular view, illustrating how individual feature values (represented by colored dots) influence
the model output in both positive and negative directions. The color gradient in Panel (B) reflects the magnitude of the feature value (from low to
high), enabling interpretation of whether high or low values of a characteristic tend to increase or decrease AGB predictions across all instances.
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TGI on the model is somewhat more complex and nuanced. While

elevated values (red) generally exert a positive impact, the

consistency of this effect appears to be less reliable when

compared to the clear trends associated with NGRDI or Height.

VARI feature exhibits a varied spread of impact values, indicating

that both high and low values of VARI can significantly affect the

model’s output, although the overall influence seems to be

comparatively smaller in magnitude. For those features that

register very low SHAP values (for instance, ExG, VLVI,

MGRVI), the points are densely clustered around zero. The fact

that the points for many of the features that are considered less

significant are closely clustered around zero emphasizes that they

contribute very little to the model’s output and are typically

unaffected by changes in high or low values.
3.5 Estimation of AGB based on machine
learning algorithms

In this study, Machine Learning (ML) techniques were applied

to estimate the above-ground biomass (AGB) of Pearl millet,

util izing both shallow and deep learning models. ML

methodologies facilitate efficient and precise model development,

enhancing predictive accuracy across diverse analytical frameworks.

Both shallow algorithms, such as Random Forest Regression (RFR),

Support Vector Regression (SVR), and XGBoost, as well as deep

learning architectures like Convolutional Neural Networks (CNNs)

were examined. Shallow algorithms, characterized by their

computational efficiency and enhanced interpretability, provide

significant benefits in contexts where resources are constrained.

Conversely, CNNs are capable of extracting complex patterns from

data, making them powerful but resource-intensive (Zhang et al.,

2020; Kolhar and Jagtap, 2021). Metrics such as the Root Mean

Square Error (RMSE) and coefficient of determination (R2) were

employed to compare machine learning algorithms. Figures 5–7

illustrate scatter plots depicting the predictions of each model,

comparing both comprehensive and selected feature sets. These

scatter plots show the correlation between predicted and observed

AGB values. The results indicate strong predictive performance

across models, with R² values ranging from 0.82 to 0.98 and RMSE

values from 0.20 to 0.70 Mg ha1, reflecting a strong alignment

between predicted and actual AGB values.

Support Vector Regression (SVR): As shown in Figure 6, SVR

demonstrated a broader scatter of sample points, indicating lower

precision in AGB predictions. The widespread around the 1:1

regression line suggests that SVR may not capture the underlying

relationships as effectively, leading to a relatively less

accurate estimation.

Random Forest Regression (RFR) and XGBoost: In contrast,

Figures 5 and 7 show that both RFR and XGBoost predictions are

closely grouped around the 1:1 line, highlighting their superior

performance in regression tasks. These models exhibit less

deviation, indicating greater consistency and precision in

predicting AGB. Notably, XGBoost demonstrated the highest

accuracy, with R² reaching 0.98 and an RMSE of 0.26 Mg ha1,
Frontiers in Plant Science 10
indicating minimal prediction error. The clustering of points

around the regression line emphasizes XGBoost’s robust

predictive power.

Figure 7 provides additional insights by comparing XGBoost

model predictions using the full feature set and a selective subset of

features (NGRDI, Height, VARI, TGI, and TGRVI):

Full Feature Set (Figure 7C): The XGBoost model, when

utilizing all available features, achieved the highest performance

with an R² of 0.98 and an RMSE of 0.26 Mg ha1. This configuration

closely aligns with the observed values, as indicated by the tight

clustering along the red line in the scatter plot.

Reduced Feature Set (Figures 7A, B): In these plots, the

XGBoost model’s performance with a reduced subset of five

selected features is also presented. This configuration yielded an

R² of 0.96 and an RMSE of 0.32 Mg ha1, a slight reduction in

accuracy compared to the full feature model. Nevertheless, this

reduced model remains highly effective, maintaining strong

alignment with actual AGB measurements. The minimal drop in

accuracy suggests that a reduced set of well-chosen features can still

provide reliable predictions, particularly in cases where simplicity is

prioritized or data constraints exist.

The comparative analysis underscores that incorporating a

broader set of features generally improves model accuracy.

However, the XGBoost model, using a carefully selected subset of

five features, still achieved commendable predictive accuracy. This

finding highlights the potential for efficient AGB estimation with

fewer predictors, offering a practical solution for scenarios where

data availability or computational resources are limited. XGBoost

emerged as the most effective model for AGB prediction,

demonstrating a strong correlation between predicted and

observed values, with minimal error. While incorporating all

features maximizes accuracy, the model using the selected five

features continues to provide reliable predictions, making it a

viable alternative in simplified modelling applications.
3.6 Deep learning approach for biomass
estimation using convolutional neural
networks

CNNs are largely recognized for processing image data,

however, recent research has shown that they can also handle

low-dimensional and one-dimensional data effectively by using

their capacity to extract hierarchical features and patterns. CNNs

have been effectively utilized in tasks involving regression and time

series analysis (Srivastava et al., 2022; Purushotam et al., 2023;

Sharma et al., 2023). This study proposed a deep learning approach

using Convolutional Neural Networks (CNNs) to estimate the

aboveground biomass (AGB) of Pearl millet. Vegetative variables

were processed through a CNN, leveraging 1-dimensional

convolution operations to capture complex, nonlinear interactions

among input features. Each input variable was processed

independently within the same CNN model, and the resulting

CNN outputs were concatenated to form a cohesive

predictive representation.
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The CNN architecture was implemented in Python (version

3.10.12) using the TensorFlow framework (version 2.17.0). Model

weights were initialized with a uniform distribution, while biases

were initialized to zero, following standard TensorFlow

configuration practices. The Adam optimizer was used for

training, with Mean Squared Error (MSE) serving as the loss

function. The model was trained for a total of 100 and 200

epochs, with each epoch representing a complete pass through

the training dataset, during which model weights were iteratively

updated. After each epoch, the model’s validation Root Mean

Square Error (RMSE) was computed using a reserved validation

dataset to monitor performance independently of the training data.

Optimal model parameters were identified based on the minimum

validation loss achieved during training. Learning rate decay was

applied throughout the training process to gradually reduce the

learning rate every 20 epochs, helping the model converge to a

minimum. The learning rate decay followed a schedule in which the

initial learning rate was sequentially multiplied by 0.8, 0.6, 0.4, and

0.2 at each 20-epoch interval, enabling controlled adjustments to

the rate of learning. Hyperparameters, including batch size and

initial learning rate, were fine-tuned to optimize model

performance. Batch size was varied across values of 8, 16, 32, and

64, while the initial learning rate was tested with values of 0.1, 0.01,

0.001, 0.0001, and 0.00001. The optimal combination of batch size
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and learning rate was determined based on the model’s predictive

accuracy on the test dataset. This combination was then used to

train the final CNN model, maximizing accuracy for

AGB estimation.

The most accurate model, based on the optimal batch size and

learning rate configuration, was selected to predict Pearl millet

biomass. The evolution of training and validation losses over the

epochs for this model is illustrated in Figure 8. This plot provides

insights into the model’s convergence behaviour, showing a

consistent reduction in training and validation losses, particularly

as the model approaches its optimal configuration. The validation

loss trend also demonstrates the model’s capacity to generalize,

avoiding overfitting by maintaining stable performance across

training iterations.
3.7 Training and validation performance
analysis

Figure 8 illustrates the training and validation performance of

the model over 200 epochs, providing insights into the model’s

behaviour across both loss and Mean Absolute Error

(MAE) metrics.
FIGURE 5

Relationship between measured AGB and predicted AGB using random forest regression (RFR). (A) Two best features; (B) Five best features; (C)
all features.
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3.7.1 Model loss plot
The loss plot tracks the model’s loss during training (blue line)

and validation (orange line) phases. At the beginning of training,

both training and validation losses show a sharp decrease,

indicating rapid learning as the model adjusts its parameters to

minimize prediction error. Following this initial drop, losses

stabilize, fluctuating around lower values, with the training loss

consistently remaining below the validation loss. This consistent

difference suggests that the model fits well with the training data but

may be capturing some patterns that don’t generalize perfectly to

the validation set. Towards the end of training, a slight increase in

validation loss is observed, possibly indicating the onset of

overfitting, where the model becomes more tailored to the

training data at the expense of generalization.

3.7.2 Model MAE plot
Similar to the loss plot, the MAE plot shows both training (blue

line) and validation MAE (orange line). The MAE starts high for

both phases but drops quickly in the initial epochs, suggesting that

the model is quickly learning to minimize absolute prediction

errors. Throughout training, the training MAE remains

consistently lower than the validation MAE, which implies that
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the model is more accurate on the training data than on the

validation data. Some variability is present in both training and

validation MAE values across epochs, reflecting minor fluctuations

as the model fine-tunes its weights. However, towards the end of

training, the validation MAE begins to increase slightly, which may

also indicate overfitting.

Both the loss and MAE metrics stabilize early in training,

suggesting that the model effectively learns the main patterns in

the data within the initial epochs. However, the upward trend in

validation loss and MAE towards the end implies a slight overfitting

tendency as training continues. This could potentially be mitigated

by implementing early stopping or by tuning regularization

parameters to prevent the model from overfitting. Figure 8

highlights that while the model rapidly learns and stabilizes, its

slight overfitting towards the final epochs suggests a potential area

for improvement in future training runs.

The predictive accuracy of the CNN model for estimating

above-ground biomass (AGB) on the test dataset is presented in

Figure 9. The model shows high effectiveness, evidenced by

substantial correlations between measured and predicted AGB

values, showcasing the model’s capacity to accurately predict

biomass. In Figure 9A, the plot includes height and the
FIGURE 6

Relationship between measured AGB and predicted AGB using the Support Vector regression (SVR) model. (A) Two best features; (B) Five best
features; (C) all features.
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FIGURE 7

Relationship between measured AGB and predicted AGB using the Extreme Gradient Boosting (XGBoost) model. (A) Two best features; (B) Five best
features; (C) all features.
FIGURE 8

Graph showing the training and validation performance of a model over 200 epochs, showing both loss (A) and Mean Absolute Error (MAE)
metrics (B).
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Triangular Greenness Index (TGI) as predictors, yielding an R-

squared value of 0.90 and a Root Mean Square Error (RMSE) of

0.53. This high R-squared indicates a strong linear relationship

between measured and predicted AGB, while the moderate RMSE

suggests some error, visualized by the red trendline and associated

confidence interval. This configuration demonstrates that height

and TGI alone provide a reliable foundation for AGB prediction,

though with some degree of residual error.

By incorporating height, TGI, Visible Atmospherically Resistant

Index (VARI), Red-Green Ratio Index (RGRI), and Normalized

Green-Red Difference Index (NGRDI), this configuration achieves

superior predictive performance. The R-squared increases to 0.97,

and the RMSE drops to 0.31, indicating a very close match between

measured and predicted values. This improvement suggests that

these five features capture a broader range of vegetation

characteristics, enhancing model accuracy and reducing error.

The increased R-squared and lower RMSE indicate that the

model effectively leverages additional indices to improve

AGB prediction.

In Figure 9C, the plot utilizes all available features, resulting in

an R-squared of 0.91 and an RMSE of 0.51. While this setup slightly

outperforms, Figure 9A shows lower performance compared to the

configuration in Figure 9B. This suggests that adding more features
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beyond the five used in Figure 9B may introduce noise or

redundancy, slightly reducing the model’s predictive efficiency.

The integration of five features (height, TGI, VARI, RGRI, and

NGRDI) provides the highest predictive accuracy, as shown by the

highest R-squared (0.97) and lowest RMSE (0.31) values. This

configuration strikes an optimal balance, where the addition of

indices beyond height and TGI significantly enhances the model’s

predictive power, but including all features yields only a marginal

improvement. Each plot demonstrates a positive relationship

between measured and predicted AGB, with confidence intervals

representing the inherent uncertainty in predictions. Overall, these

findings suggest that a focused set of relevant indices can achieve

high model performance, with the five-feature configuration

proving the most effective for accurate AGB estimation.
3.8 Evaluation and comparison of machine
learning models for estimating above-
ground biomass

Table 4 provides a comparative analysis of four machine

learning models—Random Forest Regression (RFR), Support

Vector Regression (SVR), XGBoost, and Convolutional Neural
FIGURE 9

Relationship between measured AGB and predicted AGB using Convolutional neural networks (CNNs) model. (A) Two best features; (B) Five best
features; (C) all features.
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Networks (CNNs)—in estimating AGB using different feature sets:

all features, the five most significant features, and the two most

salient features. Performance metrics are reported as R² (coefficient

of determination) and RMSE (root mean square error).

All Features: XGBoost achieved the highest accuracy (R² = 0.98,

RMSE = 0.26), followed by RFR (R² = 0.96, RMSE = 0.31). CNNs

exhibited moderate performance (R² = 0.91, RMSE = 0.51), and

SVR was the least effective (R² = 0.82, RMSE = 0.70). These results

indicate that XGBoost benefits from the complete feature set,

leveraging its robust gradient-boosting framework to minimize

errors effectively.

Five Most Significant Features: Both RFR and CNNs

demonstrated high accuracy, with R² ≈ 0.97 and RMSE ≈ 0.31.

XGBoost performed slightly lower (R² = 0.96, RMSE = 0.32), while

SVR continued to lag (R² = 0.83, RMSE = 0.68). The comparable

performance of RFR and CNNs with fewer features suggests that they

are capable of effective prediction without requiring a full feature set,

making them adaptable for resource-constrained scenarios.

Two Most Significant Features: RFR emerged as the top

performer, achieving R² = 0.94 and RMSE = 0.20. XGBoost and

CNNs showed declines in performance, with CNNs reaching an R²

of 0.90 and RMSE of 0.53, while SVR maintained its relatively low

performance (R² = 0.83, RMSE = 0.68). This result indicates that

RFR retains accuracy even with a reduced feature set, highlighting

its flexibility and robustness.

Multivariate features have more predictive power for AGB than

single variable features, as shown in earlier investigations (Lu et al.,

2019). Similarly, when evaluating biophysical crop parameters,

(Han et al., 2019). stressed that vegetation indices of photographs

might be taken into account simultaneously rather than separately.

Consistent with earlier research, plant height has a major impact on

biomass yield, making it a significant agricultural architecture that

is strongly connected with biomass yield (Montes et al., 2011;

Schirrmann et al., 2016; Naito et al., 2017; Lu et al., 2019; Yu

et al., 2023). (Schirrmann et al., 2016). showed that the estimation

accuracy could be effectively increased by incorporating plant

height into the model designed to estimate AGB. Similar findings

were made by (Naito et al., 2017). and (Yu et al., 2023).
3.9 Overall summary of model
performance

Estimating AGB accurately is essential for understanding

carbon sequestration and enhancing agricultural management
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(Ortiz-Ulloa et al., 2021; Funes et al., 2022; Chopra et al., 2023).

XGBoost performs best with a comprehensive feature set, achieving

superior predictive accuracy with an R² of 0.98 and RMSE of 0.26.

This is attributed to its advanced gradient-boosting approach,

which integrates multiple weak learners to minimize errors

through sequential corrections (Wang et al., 2022a; Sharma et al.,

2023). XGBoost uses a combination of a loss function and a

regularization term to prevent overfitting, enhanced by features

such as gradient descent optimization, column subsampling, and

shrinkage for improved convergence and stability. Additionally,

XGBoost’s ability to handle missing data and optimize tree structure

through parallel processing adds to its effectiveness. RFR shows

superior performance with a reduced feature set, indicating a high

level of adaptability. With its ensemble-based structure, RFR

combines predictions from multiple decision trees, effectively

capturing nonlinear relationships in the data and reducing

sensitivity to noise (Chiu and Wang, 2024). This adaptability

makes RFR a suitable choice when computational resources are

limited or when fewer predictor variables are available. SVR

consistently underperforms in comparison to other models across

all feature sets (R² = 0.82–0.83, RMSE = 0.68–0.70). As a linear

regression model, SVR struggles with the complex nonlinear

relationships inherent in the dataset, which limits its accuracy. Its

susceptibility to outliers and reliance on linear transformations may

explain its lower performance (Liu et al., 2021). CNNs perform

moderately well across different feature sets, showing potential for

improvement with further tuning (Carlier et al., 2023). CNNs excel

at extracting complex features from data, which is beneficial for

tasks involving unstructured data (such as images) but may be less

suited for purely tabular data where tree-based models like XGBoost

and RFR perform better. Overall, the observed differences in

performance indicate that nonlinear regression models

outperform linear alternatives like SVR, consistent with findings

from prior studies (Lu et al., 2019; Nakajima et al., 2023). This is

consistent with (Zhai et al., 2023)’s findings that the RFR approach

performed better than alternative machine learning algorithms,

resulting in increased AGB estimation accuracy.
3.10 Limitations and perspectives

Vegetation indices (VIs) are effective for estimating

aboveground biomass (AGB) because they are designed to

highlight specific spectral features of vegetation that correlate

with biomass attributes. Studies have shown that the inclusion of
TABLE 4 AGB estimation accuracy using different machine learning algorithms.

Features RFR SVR XGBoost CNNs

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

All features 0.96 0.31 0.82 0.70 0.98 0.26 0.91 0.51

5 best features 0.97 0.31 0.83 0.68 0.96 0.32 0.97 0.31

2 best features 0.94 0.20 0.83 0.68 0.86 0.62 0.90 0.53
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red-edge and NIR bands further improves the sensitivity of indices

to variations in biomass and reduces the influence of confounding

factors such as soil background and atmospheric conditions

(Woebbecke et al., 1995; Hamuda et al., 2016; Yue et al., 2017; Lu

et al., 2019). The current study focuses on one-dimensional VI

combinations, potentially overlooking spatial patterns available in

raw spectral imagery. Future studies could explore integrating data

from multiple sensors (e.g., hyperspectral and multispectral

imagery) which could enhance the accuracy and robustness of

AGB estimation. Investigating newer indices tailored for specific

vegetation types or environmental conditions could address

limitations in biomass estimation under extreme conditions.

XGBoost emerged as the best-performing model, with high R²

and low RMSE values. Key features contributing to XGBoost’s

success include its capability to aggregate weak learners,

implement gradient boosting, and minimize an objective function

that combines a loss function with regularization. However,

XGBoost’s computational demands are significant, requiring

substantial memory and processing power, particularly for large

or high-dimensional datasets. The extensive hyperparameter tuning

required for XGBoost further necessitates considerable expertise

and computational resources. Moreover, XGBoost is less effective

for unstructured data, such as images, where deep learning

architectures like CNNs generally perform better. Moreover, this

study primarily focuses on one-dimensional data regression

analysis and does not explore two-dimensional data analysis

methods for AGB prediction modelling. This limits the potential

advantages of using CNN over XGBoost, as CNNs are specifically

wel l-suited for extract ing spatial features from two-

dimensional data.

This study’s methodology highlights the potential for farmers to

use accessible technologies, such as smartphone devices, and enter

them into automated biomass prediction algorithms, which could

serve as the foundation for carbon sequestration inventories. The

integration of machine learning algorithms into agricultural

practices could facilitate the creation of automated AGB

estimation systems, providing accurate biomass predictions

essential for precision agriculture (Lu et al., 2019; Fragassa et al.,

2023; Purushotam et al., 2023; Sharma et al., 2023). Even with

noise-prone image data, the models demonstrated satisfactory

accuracy, supporting the feasibility of using smartphone-acquired

images for AGB estimation in field setting. The current study

focuses on a single crop variety under controlled growth

conditions, which was a deliberate choice to ensure the feasibility

of the study within the given scope and resources. Future research

could also explore the application of this framework on a larger

scale by incorporating data from diverse environmental conditions,

multiple crop varieties, crop growth stages, and geographical

regions to assess the model’s generalizability. Expanding the

dataset to include multispectral or hyperspectral imagery could

further improve model accuracy by capturing additional vegetation
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characteristics. Integrating real-time monitoring systems through

IoT-enabled sensors with machine learning models could provide

continuous, automated AGB estimations, aiding decision-making

in dynamic agricultural environments. Lastly, implementing

transfer learning with other advanced neural networks or refining

hyperparameters may enhance the predictive performance of

CNNs, particularly in estimating biomass in unstructured and

complex agricultural settings.
4 Conclusions

In conclusion, this study proposes a non-destructive framework

for forecasting above-ground biomass (AGB) in pearl millet by

combining Convolutional Neural Networks (CNNs) with shallow

machine-learning methods. The results show that sophisticated

deep learning approaches like CNNs, when combined with

machine learning, particularly tree-based algorithms like

XGBoost, may provide reliable AGB predictions. XGBoost

outperformed other models when a comprehensive feature set

was utilized, achieving the highest R² and the lowest RMSE

values. Random Forest Regression (RFR) demonstrated

effectiveness with reduced feature sets, highlighting its versatility

and efficacy under data-constrained scenarios.

In summary, this study emphasizes the potential of readily

available digital technologies, such as smartphone-acquired photos,

to support automated biomass prediction and real-time crop

monitoring. The unique characteristics of small farming systems,

such as diverse cropping patterns, agroforestry practices, and

integrated livestock, play a crucial role in carbon dynamics. These

tools could form the basis for small-scale carbon inventories to

measure the carbon sequestered within vegetation biomass in

smallholder agricultural systems. These inventories are crucial for

understanding how agricultural practices contribute to carbon

sequestration at the local level and for informing climate-

resilient strategies.
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