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Digital tools and non-destructive monitoring techniques are crucial for real-time
evaluations of crop output and health in sustainable agriculture, particularly for
precise above-ground biomass (AGB) computation in pearl millet (Pennisetum
glaucum). This study employed a transfer learning approach using pre-trained
convolutional neural networks (CNNs) alongside shallow machine learning
algorithms (Support Vector Regression, XGBoost, Random Forest Regression)
to estimate AGB. Smartphone-based RGB imaging was used for data collection,
and Shapley additive explanations (SHAP) methodology evaluated predictor
importance. The SHAP analysis identified Normalized Green-Red Difference
Index (NGRDI) and plant height as the most influential features for AGB
estimation. XGBoost achieved the highest accuracy (R = 0.98, RMSE = 0.26)
with a comprehensive feature set, while CNN-based models also showed strong
predictive ability. Random Forest Regression performed best with the two most
important features, whereas Support Vector Regression was the least effective.
These findings demonstrate the effectiveness of CNNs and shallow machine
learning for non-invasive AGB estimation using cost-effective RGB imagery,
supporting automated biomass prediction and real-time plant growth
monitoring. This approach can aid small-scale carbon inventories in
smallholder agricultural systems, contributing to climate-resilient strategies.

digital agriculture, deep learning, plant monitoring, carbon sequestration, CNN -
convolutional neural network
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1 Introduction

In sustainable agriculture, digital technologies and non-
destructive monitoring methods are essential for real-time
assessments of crop health and productivity. Biomass serves as an
indicator of crop vigor, reflecting vital processes such as
photosynthesis, energy transfer, and water exchange with the
atmosphere (Yue et al., 2017; Liu et al., 2022; Zheng et al., 2023).
Accurate biomass estimation is critical for resource allocation, and
yield prediction, all of which contribute to food security and
agricultural production optimization (Niu et al, 2019; Jimenez-
Sierra et al., 2021; Tang et al, 2022; Chiu and Wang, 2024). A
biomass assessment offers valuable information about carbon
sequestration mechanisms since biomass is directly related to the
amount of carbon stored in vegetative matter (Lorenz and Lal, 2014;
Ortiz-Ulloa et al., 2021; Funes et al., 2022; Chopra et al., 2023;
Saleem et al,, 2023). In the present study, we emphasized pearl
millet (Pennisetum glaucum) which is an important grain crop
known for its high nutritional value, climate resilience, and
potential health advantages. Its gluten-free characteristics and
high nutrient content have inspired the development of numerous
food products, like as beverages and infant foods, which are
increasingly popular in health-conscious markets around the
globe (Deevi et al.,, 2024). The crop’s remarkable tolerance to hot
and arid conditions makes it especially suited to regions facing
climate variability, positioning it as a critical player in climate-
resilient agriculture and food security (Taylor, 2015; Shrestha et al.,
2023). Furthermore, pear] millet has a high potential for carbon
sequestration via biomass and soil interactions (Terefe et al., 2020;
Ali et al,, 2021).

Conventional techniques of biomass measurement are manual,
time-consuming, and destructive (Fry, 1990; Bazzo et al., 2023). In
recent times, methods for monitoring without causing damage have
gained significant attention in research. Thanks to advancements in
computer vision, image-based methods are becoming popular for
non-destructive monitoring of crop development. These methods
specifically take low-level features from digital images and connect
them to growth-related phenotypes like leaf area index and biomass
(Fry, 1990; Radloff and Mucina, 2007; Tsaftaris et al., 2016; Bazzo
et al, 2023). RGB imaging, which uses red, green, and blue
wavelengths to record intricate morphological information, has
become a potent tool for plant health monitoring (Kefauver et al,,
2015; Alves et al, 2021). RGB imagery’s semantic segmentation
allows for accurate vegetation categorization by differentiating plant
components from backgrounds like soil or debris (Zhuang et al.,
2018). Contemporary developments use deep and shallow machine
learning to increase segmentation precision; for example, U-net
designs identify vegetation from the background, and Support
Vector Machines (SVM) categorize vegetation into green and
senescent groups based on colour space analysis (Kolhar and
Jagtap, 2021; Karthik et al., 2022; Madec et al., 2023).

The introduction of deep learning technologies has
fundamentally changed the approaches used in plant
development analysis, especially when it comes to the application
of sophisticated methods like RGB image segmentation in
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conjunction with the evaluation of different vegetation indices
(Khaki et al., 2020; Zheng et al., 2022). Convolutional neural
networks (CNNGs) are a cutting-edge deep learning technique that
adeptly process images to learn complex features. When provided
with a generous amount of data, CNNs are capable of reaching a
level of precision that surpasses traditional methods. Consequently,
Convolutional Neural Networks (CNNs), for instance, are
particularly effective in agricultural applications to extract and
interpret complex features related to plant morphology, texture,
the diagnosis of plant diseases, detection and enumeration of plant
organs, crop yield, and chromatic properties (Castro et al., 2020;
Poley and McDermid, 2020; Khaki et al., 2020; Morbekar et al.,
2020; Schreiber et al., 2022; Kaya and Giirsoy, 2023; Gonten et al.,
2024; Issaoui et al., 2024). Convolutional Neural Networks (CNN’s)
permit scalable, non-intrusive biomass evaluation, crucial for
ecological surveillance, forestry, and precision farming (LeCun
et al., 2015; Nakajima et al., 2023; Giilmez, 2024).

Estimating plant biomass from photographs has been
attempted in some published papers (Schreiber et al., 2022; Ma
etal, 2023; Zheng et al., 2023). One approach involved using linear
modelling, hyperspectral imagery, and other vegetation indexes to
predict wheat biomass (Yue et al., 2017). Features related to grass
growth were evaluated using digital image analysis., Researchers
established correlation between observed values of dry matter
content, oven-dried biomass, and aboveground fresh biomass
with the image-derived attributes, such as the percentage of green
pixels and projected area (PA) (Tackenberg, 2007). Additionally,
the visual atmospherically resistant index (VARI) and excess green
(ExG), two vegetation indices extracted from digital images, were
used to evaluate biophysical characteristics of maize. The results
showed that ExG effectively estimated overall LAI, while VARI
corresponded with green LAI (Sakamoto et al., 2012).
Convolutional neural networks (CNN) effectively monitored
greenhouse lettuce growth and predicted metrics such as leaf
fresh weight (LFW), leaf dry weight (LDW), and leaf area (LA)
(Zhang et al., 2020; Gang et al., 2022). Han et al (Han et al., 2019).
focused on estimating maize’s above-ground biomass (AGB). They
extracted spectral and structural information from photographs
using four machine-learning algorithms: artificial neural networks,
random forests, support vector machines, and multiple linear
regression. The best-performing model was the random forest
model, which had low error rates and high explained
variance.(Yang et al, 2023). employed the Photosynthetic
Accumulation Model (PAM) in combination with a range of
vegetative indices to measure the aboveground biomass (AGB) of
rice. The results demonstrated that combining height data and VIs
produced more accurate AGB projections, providing a reliable
technique for evaluating rice growth variables, with R2 values
above 0.8. (Wang et al., 2022b). addressed the challenge of
predicting above-ground biomass (AGB) in winter wheat at field-
scale, finding that random forest models outperforming partial least
squares regression models in both training and validation datasets.
(Carlier et al., 2023). investigated the application of convolutional
neural networks (CNNs) for forecasting biophysical variables in
wheat, identifying EfficientNetB4 and Resnet50 as particularly
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proficient in predicting biomass and nitrogen traits. Their findings
indicated that while pseudo-labelling enhanced CNN efficacy,
traditional methods like Partial Least Square regression (PLSr)
were comparatively less effective, highlighting the need for further
research to optimize CNN applications in crop phenotyping.
While artificial intelligence (AI) has been used in agriculture for
tasks like disease classification (Kumari et al., 2022), there is still
much to learn regarding the utilization of machine learning
algorithms for regression analysis tasks. Most prior studies have
focused on biomass estimation in major crops such as wheat, rice,
maize, and lettuce (Niu et al., 2019; Zhang et al., 2020; Gang et al.,
20225 Carlier et al,, 2023; Chiu and Wang, 2024). This study targets
pearl millet, an underrepresented and a climate-resilient crop
critical for arid and semi-arid regions, where precise biomass
estimation is essential for sustainable agriculture. This study aims
to demonstrate the benefits of utilising machine learning (e.g.,
XGBoost) and deep learning (e.g., CNN) for measuring above-
ground biomass (AGB) of pear]l millet. We emphasize its distinct
contributions, including a comprehensive evaluation of several
vegetation indices (VIs) for AGB estimation and a comparison
between the interpretability of XGBoost and CNN’s feature
extraction. CNN’s superiority over conventional techniques in
identifying intricate correlations in low-dimensional data serves
as justification for its use. Furthermore, unlike traditional remote
sensing platforms (e.g., UAVs or satellites) which are indeed suited
for broader and large scales, our focus on smartphone imaging
holds immense potential for democratizing data collection,
particularly in scenarios where resources or infrastructure for
advanced imaging technologies are limited. Its utility extends to
applications such as precision monitoring in small-scale agricultural
plots and localized environmental assessments. This approach
would bridge the gap between advanced technologies and
resource-limited farming communities as well as between small-
and large-scale imaging systems by devising cost-efficient models
utilizing visible imaging. Additionally, the significance of the study
lies in how the integration of smartphone imaging with machine
learning can contribute to sustainable agricultural practices by
enabling real-time, on-site biomass estimation, which clearly
establish the value and relevance of our research to both the
scientific community and its practical applications for pear]l millet
cultivation and facilitating effective crop health monitoring.

2 Materials and methods

2.1 Experimental design and data
collection

This study was structured using a completely randomized block
design in a factorial format to evaluate the effects of different
treatments on pearl millet growth. The experimental setup
included three distinct treatment groups: control, Fertilizer 1, and
Fertilizer 2, each with six replicates, totalling 18 experimental units
per group. Pearl millet seeds were soaked at 28-30°C for four days
to initiate germination. Following germination, 10 seeds were
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planted in each PVC pot, with pot dimensions of 150 x 100 x
125 mm. Each pot had four drainage holes at the base, and trays
were placed underneath to collect drainage. The irrigation schedule,
conducted every three days, was determined based on typical
meteorological conditions in Saudi Arabia’s Eastern region. A 5-
5-5 (N-P,05-K,0) liquid fertilizer was applied at a concentration of
5 mL per liter of irrigation water. Throughout the experiment, plant
height (from ground level to the shoot tip) and dry weight (obtained
after drying at 105°C for 24 hours) were recorded at each growth
stage (16, 34, 45, 65, and 90 days after sowing) for 10 randomly
selected experimental units, providing heterogenous growth metrics
throughout the experiment. As a result, 150 points were obtained
from all of the readings and used in the data analysis. The following
formula was used to convert AGB per pot to Mgha-1

-1, AGBperpot (g)
AGB (Mgha ™) = 100 x Area of pot(m?)

To facilitate digital analysis, high-resolution RGB images of the
plants were captured at each growth stage using an iPhone 14 Pro
Max (Apple Inc.). The iPhone was set up one meter above the
vegetation. Initially, the digital photographs had pixel resolutions of
900 x 1600. The iPhone’s back camera is 48 MP and has an aperture
of 1.78. Every image was taken in a laboratory environment with
700-720 lux of lighting. Images were saved in JPG format with a
resolution of 1000 x 800 pixels, forming the primary dataset for
subsequent machine learning-based biomass estimation.

2.2 Data preprocessing

Data preprocessing was critical to ensure model robustness and
enhance its generalization capability. Several pre-processing
procedures are applied to the images to improve their quality and
prepare them for deep learning model training. For instance, through
normalization, the images’ pixel intensity values were scaled to a
standard range, such as 0 to 1 or -1 to 1. The photos were resized to a
consistent size of 800x800 pixels to guarantee consistency. Various
data augmentation techniques including random horizontal and
vertical flips, rotations, and modifications in brightness and
contrast were applied as standard procedure to artificially increase
the diversity of the dataset [44, 48]. Image processing tasks, such as
image reading, cropping, and preparation for model training, were
executed using Python 3.10.12, employing OpenCV, PIL, Numpy,
and Scikit-Image libraries (Van Der Walt et al., 2014; Harris et al,
2020; Sharma et al., 2020). These preprocessing steps aimed to create
a diverse and well-prepared dataset, enhancing the deep learning
model’s ability to accurately predict biomass and adapt to variances in
image quality and environmental conditions.

2.3 Semantic segmentation with deep
learning

In image analysis, semantic segmentation classifies each pixel in
an image using Convolutional Neural Networks (CNNs), which
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capture intricate spatial correlations. CNNs function by iteratively
applying convolutional kernels, which operate through piece-wise
multiplication with input data. By combining neighbouring pixel
values into a full spatial representation, CNNs can grasp intricate
spatial interactions because of their layered structure. Increasingly
complex feature representations are created as data moves through
these convolutional layers, leading to network topologies
customized for particular uses (Kolhar and Jagtap, 2021; Madec
et al,, 2023). Fully convolutional segmentation workflows generally
follow a two-stage approach. First, the model extracts high-level
features from input images, encoding significant spatial and textural
details. Subsequently, these features are used to predict each pixel’s
class at the original resolution. A prominent model for this is the
encoder-decoder architecture. In this architecture the encoder
condenses the input into a compact, high-level feature
representation, retaining essential spatial information. The
decoder then reconstructs these features back to the original
resolution, ensuring precise spatial alignment of segmented
output with the input (Khaki et al., 2020; Kaya and Giirsoy, 2023).

In this study, we used weights from the VegAnn dataset to
initialize the SegVeg model, an architecture created for plant image
segmentation (Serouart et al., 2022), Figure 1. Masks were generated
using the SegVeg model, which operates in two stages: the first stage
uses a U-net architecture to predict binary masks separating
vegetation from the background, while the second stage applies a
Support Vector Machine (SVM) to classify vegetation pixels into
green and senescent categories. This classification capability is vital
for ecological and agricultural applications, as it facilitates
comprehensive assessments of vegetation cover, plant vitality, and
various agronomic factors. The SegVeg model builds on the U-net
architecture, a robust encoder-decoder framework tailored for
semantic segmentation tasks. U-Net’s structure captures both fine

RGB images

Image Pre-processing

Semantic segmentation
with VegAnn+SegVeg

Vegetation indices
(VIs)
ExG, NDI, TGl etc.

Feature extraction

FIGURE 1
Schematic diagram of the methods employed in this investigation.
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details and broader contextual information, making effective
segmentation of complex vegetation patterns. A Support Vector
Machine (SVM) layer is integrated, improving the segmentation of
plant pixels into green and senescent categories (Serouart et al,
2022; Madec et al., 2023).

The proposed U-Net architecture was implemented, utilizing
PyTorch version 2.4 (Facebook, Inc., CA, USA), within the dynamic
environment of Google Colab (Google Colab website (last accessed
22 October 2024): https://colab.research.google.com/). An NVIDIA
Tesla T4 GPU with 16 GB of dedicated memory was used for its
high-performance computing capabilities. The two primary routes
of the U-Net architecture are the encoder (down-sampling) and the
decoder (up-sampling), which are joined by a bottleneck. There are
two convolutional layers and a max-pooling layer for down-
sampling in each of the four stages of the encoder pipeline (960
kernels). A 2x2 max-pooling layer cuts the feature maps’ spatial size
in half after each step. The encoder and decoder paths are
connected by the bottleneck (1024 kernels). Two convolutional
layers are used to further process the features that have been
extracted. Four up-sampling stages make up the decoder path
(960 kernels). To improve spatial resolution, each stage starts
with an up-convolution (transposed convolution), which is
followed by two convolutional layers. A 2x2 up-convolution
(transposed convolution) is used in each up-sampling step to
double the spatial dimensions. The final layer uses a 1x1
convolutional layer with 3 kernels to map the output feature
maps to the required number of classes (background, green
vegetation, and senescent vegetation).

To ensure that each picture could be partitioned into
manageable pieces complying to the essential specifications, the
original images were selectively padded with zeros as needed,
generating consistently dimensioned patches of 800 x 800 pixels

Biomass estimation based on Machine
learning

Data pre-processing

Predictor weight
analysis

SVR, RFR, Xgboost,
CNN

Model Training and
validation

Estimated Biomass
evaluation
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that do not overlap. Bias in the training process was eliminated
since the plant and background masks were evenly distributed
among these patches. All CNN layers had identical feature
representations since each mask was normalized to a scale of [0,
1]. To increase the model’s performance and convergence, pre-
trained parameters from the ImageNet database were utilized
followed by training with the Adam optimizer. Earlier research
(Serouart et al., 2022; Madec et al., 2023) provides further detailed
descriptions of the model and training procedures. The assessment
of semantic segmentation employed a variety of techniques,
prominently featuring the intersection-over-union (IoU),
accuracy, and F1-score.

TP
IOU=|————] x100
TP + FP + FN

Accuracy = P+ TN x 100
Y=\ TP+ TN + FP+ FN

(2.TP)

F1 —score =100 X | ——————
2.TP + FN + FP

Where TP (true positives) is the proportion of pixels well
predicted in green crop class; TN (true negative) is the proportion
of pixels well predicted in the background class; FP (false positives)
is the proportion of pixels wrongly predicted in green crop class;
and FN (false negatives) is the proportion of pixels wrongly
predicted in background (Figure 2).

2.4 Phenotypic feature extraction

RGB images inherently carry a rich spectrum of visual
information that may be efficiently used for phenotypic feature
extraction. This procedure is critical for extracting and
characterizing different visual qualities from picture data. Each
RGB picture consists of three spectral channels: red, green, and
blue, each represented by a matrix of pixel values that capture
different elements of plant shape and health. Based on prior studies
demonstrating their significance and utility in estimating AGB
(Hamuda et al, 2016; Gang et al., 2022; Gerardo and de Lima,

Input Image Vegetation Background Prediction

200 200

400 400
600

600

800

FIGURE 2
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2023), these indices effectively capture key spectral characteristics of
vegetation, such as biomass and chlorophyll concentration, which
are intricately associated with AGB. Additionally, indices that
minimize sensitivity to external factors, such as soil background
and atmospheric interference, were prioritized to enhance model
robustness and accuracy. Approximately 16 vegetation indices
important to plant growth evaluation were examined (Table 1). In
this investigation, RGB-based vegetation indices were carefully
examined for their ability to evaluate crop biomass. These indices
were thoroughly studied as model inputs, allowing for a comparison
to determine which indices were the most advantageous. The
study’s purpose is to increase the model’s accuracy in predicting
phenotypic traits by establishing the optimal indices, providing a
reliable framework for analysing plant health and growth dynamics
using image-based analysis.

2.5 Machine learning regression algorithms

Machine learning regression techniques can effectively describe
both linear and nonlinear relationships between predictor variables
and crop growth parameters. These methods are especially useful
for regression predictions with numerous input variables (Liyew
and Melese, 2021; Fragassa et al., 2023; Purushotam et al., 2023;
Sharma et al, 2023). We established models to predict the
aboveground biomass (AGB) of pearl millet using three shallow
machine learning algorithms: Random Forest Regression (RFR),
XGBoost, and Support Vector Regression (SVR), as well as one deep
learning technique, Convolutional Neural Networks. To assess
model accuracy and optimize hyperparameters, we employed a
statistical technique called five-fold cross-validation. The process
involves randomly dividing a dataset into five subsets, each of which
alternates as the test set and the others as the training set. This
process is repeated five times to guarantee that all subsets are used
completely, and the evaluation metrics from the five tests are then
averaged to determine the model’s effectiveness.

A grid search algorithm was utilized to ascertain the optimal
hyperparameters. This exploration encompassed a spectrum of
parameter configurations, employing five-fold cross-validation
and RMSE (Root Mean Square Error) as the principal

RAW Senescent Green Prediction

Sm:othed + Erode Senescent Green Prediction

Visualization of image segmentation results of Pearl Millet using VegAnn and SegVeg.
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TABLE 1 Definitions of the vegetation index (Vis) extracted from the RGB images of pearl millet.

Vegetation Index*
CIVE (Color Index of Vegetation Extraction)

Excess Blue Index (ExB)

Equation

CIVE = 0.441 x red — 0.811 x green + 0.385 X blue + 18.787

ExB = 2 x blue - red — green

10.3389/fpls.2025.1594728

Refernces
(Kataoka et al., 2003)

(Meyer and Neto, 2008)

Excess Green Index (ExG)

ExG =2 x green — red — blue

(Woebbecke et al., 1995)

Excess Green minus Excess Red
Excess Red Index (ExR)

Green Leaf Index (GLI)

ExGR = ExG — ExR
ExR = 1.4 x red — green

(2 x green — red — blue)

(Meyer and Neto, 2008)
(Meyer and Neto, 2008)

(Louhaichi et al., 2001)

GLl = —=————————
(2 x green + red + blue)
Modified Green-Red Vegetation Index (MGRVI) J— (greenz — red?) (Lu et al., 2019)
"~ (green® + red?)
Normalized Green-Red Difference Index (NGRDI) NGRDI = (geen — red) (Tucker, 1979)
- (green + red)
Normalized Difference Index (NDI) NDI = (green — blue) (Woebbecke et al., 1995)
- (green + blue)
RGBVI (Red-Green-Blue Vegetation Index) RGBVI - (green* — red x blue) (Lu et al,, 2019)

(green® + red x blue)

Red-Green Ratio Index (RGRI)

RGRI =~ (Kawashima and Nakatani, 1998)
g

TGI (Triangular Greenness Index)

TGI = green — 0.39 x red — 0.61 x blue

(Hunt and Daughtry, 2018)

Transformed Green-Red Vegetation Index (TGRVI) (green — red) (Bannari et al., 1995)
TGRVI = =————
(green + red)

Visible Atmospherically Resistant Index (VARI) VARI = (geen — red) (Gitelson et al., 2002)

Vegetative Index (VI)

VI = green — red

(green + red — blue)

(Tucker, 1979)

Visible Light Vegetation Index (VLVI) VLVI =

{(green — blue)}  {(green —red)}

(Gitelson et al., 2002)

{(green + blue)}  {(green + red)}

*Vegetation indices are dimensionless ratios of reflectance values measured in specific spectral bands, values typically ranging between -1 and 1 or 0 and 1.

performance metric. Out of 150 total data specimens, 80% (120
specimens) were designated for training and validation, while the
remaining 20% (30 specimens) were reserved as a testing set for
evaluating the model’s predictive accuracy on AGB. Python 3.10.12
was used for model creation, feature selection, and data analysis. For
regression tasks, the Scikit-learn module (version 1.4) was used,
which includes CNN and shallow learning algorithms.

2.6 Statistical analysis

The efficacy of each machine learning model was evaluated
using a suite of statistical metrics:

Root Mean Square Error (RMSE): Measures the model’s
prediction error magnitude, indicating accuracy in predicting AGB.

Coefficient of Determination (R?): Indicates the proportion of
variance explained by the model, providing a measure of fit quality.
These measurements were crucial for evaluating model
performance, determining which model was best for estimating
AGB, and confirming each machine learning algorithm’s capacity to
improve the accuracy of biomass prediction for pearl millet.

Frontiers in Plant Science

RMSE =

R2 _ 2?:1(Yp - Yav)2
2?:1(Ym - Yav)2

where Ym, Yp, and Yav represent the measured value, predicted
value, and average value, respectively, and n is the total number of
data points.

3 Results and discussion

3.1 Evaluation metrics of transfer learning
approach

Using transfer learning as a component of our methodology, we
used a pre-trained model for predictions in this investigation. We
specifically employed SegVeg, which was pre-trained on the
VegAnn and ImageNet data sets. The basic feature
representations were obtained using the pre-training process
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employed by the model’s original developers. Because the pre-
training dataset includes a variety of classes and item categories,
the model can pick up strong low-level and mid-level characteristics
that apply to our vegetation segmentation problem, like edges,
textures, and patterns. Even though our sample data and the pre-
training data did not originate from the same source, the features
that were acquired from the extensive pre-training dataset are very
applicable to the segmentation of vegetation. This ability to
generalize has been shown in several picture segmentation tasks,
especially for related domains (Trivedi and Gupta, 2021; Karthik
et al., 2022; Serouart et al., 2022; Zenkl et al., 2022; Madec et al.,
2023). No new pre-training accuracy was produced in this study
because our work focusses on employing pre-trained models
without further training on the existing dataset. This investigation
now demonstrates how well the pre-trained model segments
vegetative sections with a high degree of precision. Our test
dataset was used to compute quantitative indicators including
Mean IoU, FI1 score, and pixel accuracy (Table 2). A comparison
that shows how the pre-trained model performed satisfactorily in
segmentation without the need for further fine-tuning.

The model demonstrated strong overall performance in
segmenting vegetation and background, achieving 95% overall
accuracy, with 94% for vegetation and 98% for background. This
suggests that the algorithm properly classifies most pixels, with the
background marginally simpler to recognize. The high IoU values
indicate a good overlap between predicted and ground truth
regions, especially for vegetation, though there is room for
improvement in precise boundary delineation. The F1-score
shows the model balances precision and recall well but struggles
slightly more with vegetation compared to the background. While
background is classified with higher accuracy and F1 scores, likely
due to its uniform nature and larger representation in the dataset,
vegetation performs slightly lower, reflecting challenges in complex
textures or overlapping boundaries. These results highlight the
model’s reliability but suggest that targeted improvements could
further enhance vegetation segmentation performance.

3.2 Summary statistics and correlation
analysis between vegetation indices

Table 3 summarizes descriptive statistics for various vegetation
indices (VI) used to quantify vegetation characteristics. A
correlation matrix showing the correlations between several
vegetation indices produced from RGB imagery is shown in
Figure 3. This matrix offers a detailed perspective of the
relationships between indices. The largest positive association
(0.93) was found between AGB and plant height, followed by
NGRDI and TGI (0.92), and VARI (0.87). This suggests that
these indices are complimentary for vegetation study since they
are sensitive to red and green spectral components. AGB and RGRI
and ExG have a somewhat positive relationship, suggesting that
their measurements may overlap, perhaps in terms of vegetation
structure and greenness. AGB has some sensitivity to indices like
MGRUVI (0.37) that focus on variations in green reflectance but with
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TABLE 2 Performance metrics for the semantic segmentation.

Metric Overall Vegetation Background
Performance

Accuracy 95 94 98

10U 87 93 90

F1 92 89 91

less precision than other indices. The weak negative correlation of
AGB to RGBVI (-0.29) indicates RGBVI may capture distinct traits,
possibly related to background noise (e.g., soil or non-vegetative
elements) rather than vegetation structure. There is no correlation
between ExB and AGB, suggesting that ExB’s sensitivity to
vegetative features does not overlap with that of AGB.

Additionally, ABG and TGI are closely connected, exhibiting
similar sensitivity to canopy health and chlorophyll. AGB’s high
correlation with height (0.93) and other greenness-related indices
(NGRDIL TGI, VARI) makes it a robust choice for monitoring
biomass, vegetation health, and canopy coverage. Divergent indices,
such as RGBVI, ExB, and ExR, on the other hand, do not match
AGB and would be better suited for applications that concentrate
on pigmentation or stress. According to these results, a mix of
indicators with both high and low correlations may provide a more
thorough understanding of vegetation health, structure, and
stress response.

3.3 Selection of predictors for the AGB
biomass estimation using SHAP
methodology

In developing predictive models for above-ground biomass
(AGB) estimation, the selection of the most relevant predictors is
essential to maximize accuracy, reduce noise, and optimize
computational efficiency. The Shapley additive explanations
(SHAP) technique (Lundberg and Lee, 2017) was used in this
investigation to systematically assess predictor significance. A
robust interpretive method for machine learning, SHAP assigns
significance scores that represent each predictor’s impact on the
target variable, allowing for a thorough evaluation of each
predictor’s contribution to model predictions (Lundberg and Lee,
2017; Wang et al, 2022a). The SHAP methodology enhances
interpretability by highlighting how each feature influences
predictions, thereby promoting informed predictor selection.
SHAP’s application in this study represents an advancement in
the selection process by balancing model interpretability with
predictive accuracy. By identifying predictors with the most
significant contributions, SHAP aids in isolating those features
that most effectively drive AGB predictions, while minimizing
the inclusion of uncorrelated or redundant variables. SHAP
analysis was performed using the Python package shap. The
base model chosen for SHAP analysis in this study was
GradientBoostingRegressor from the Python package scikit-learn.
All variables were normalized before the SHAP analysis was
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TABLE 3 Summary statistics for the vegetation indices.
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Index Mean Min Max Range Std
CIVE 0.022 0.154 0.227 0.072 0.021
ExB 0.447 0.079 0.631 0.552 0.159
ExG 0.004 -0.015 0.021 0.036 0.007
ExGR 0.013 -0.006 0.040 0.046 0.011
ExR 0.238 0.001 0.631 0.630 0.159
GLI 0.003 -0.013 0.019 0.032 0.006

MGRVI 0.002 -0.012 0.014 0.026 0.006
NDI 0.118 -0.009 0.318 0.327 0.079

NGRDI 0.011 -0.014 0.037 0.051 0.012

RGBVI 0.004 -0.010 0.021 0.032 0.007
RGRI 0.007 -0.018 0.033 0.052 0.009
TGI 0.011 -0.008 0.039 0.047 0.012

TGRVI 0.021 -0.006 0.059 0.065 0.018
VARI 0.005 -0.006 0.018 0.024 0.006

VI 0.128 0.015 0.184 0.169 0.041
VLVI -0.001 -0.002 0.000 0.002 0.001
s _ S 3 S o
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Height | 0.08 . -0.30| 0:34 0.26 -0.01 .. ‘ 0.03 -0.27 . -0.30 -0.15 . . ’a !
VLVI | 0.03 030 0.06 -0.14 044 0.13 013 0.5 . -0.20 0.10 0.30 -0.05 0.17 -0.41 -0.34 08
EXG -011 0.08 024 007 041 035 0.36 0.08 -0.14 ' -0.11-0.21 0337 -0.36 -0.38
EXR -0.17/-0.08 -0.10 -0.30 -0.27 -0.26 -0.20 -0.12 -0.04 ‘ -0.01 -0.32 -0.15 -0.09 0.6
MGRVI -0.08 0.05 037 0.37 . -0.01 -0.18 | 0.09 -0.18 -0.12| 0:34 -0.07 -0.10
VI 014 020 018 016 (42 -0.07 0333 -0.06 -0.05 0.16 -0.30 -0.28 o
CIVE -0.03 -0.05 -0.06 . 0.06 0.00 -0.10 0.00 -0.08 0.02 0.04 02
AGB ‘. 0.00 -0.20 (Bb -0.31 -015 ‘ 04s 048
TGl . 0.00 -0.27 (6 -0.28 -0.13 . -0.40 -0.39 0
VARI |-0.04 -030 (45 -0.27 -0.09 . 040 041
ExB 0.08 0.00 -0.19 0.03 -0.06 0.04 0.07 02
RGBVI -0.22 -0.11 0.7 -0.19 ‘ ' L oos
RGRI -0.04 -0.24 (5 -0.46 048
NDI ' 0.00 -0.32 -0.15 -0.10 0.6
GLI .0.08 0.23 0.17
NGRDI -4z 044 08
TGRVI .
-1
FIGURE 3

The visualization illustrates a correlation matrix between vegetation metrics and AGB. Red indicates positive correlation,

correlation, and color intensity indicates correlation strength.
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performed. This was an essential preprocessing step that
standardized the scales of the variables to reduce the
disproportionate impact of variables with larger magnitudes on
the SHAP value calculations.

3.4 SHAP analysis results

Figure 4 provides two visual SHAP representations, offering
insights into the significance and impact of each predictor on model
outputs. Figure 4A illustrates the average SHAP values assigned to
each feature, representing the mean effect of each feature on
AGB predictions.

-NGRDI (Normalized Green-Red Difference Index): NGRDI
exhibits the highest average SHAP value, indicating it as the most
influential predictor. As a commonly used index in vegetation
analysis, NGRDI likely has a strong correlation with AGB,
underscoring its critical role in the model’s predictive framework.

Height: Height is ranked as the second most important
predictor and has a strong correlation with AGB. This suggests
that plant height is directly associated with biomass accumulation,
and therefore contributes substantially to model predictions.

TGI (Triangular Greenness Index) and VARI (Visible
Atmospherically Resistant Index): These indices follow NGRDI
and height in importance. Although their impact is relatively
smaller, TGI and VARI contribute valuable information on
vegetation greenness, which is pertinent to biomass estimation.

TGRVI (Triangular Green-Red Vegetation Index) and RGBVI
(Red-Green-Blue Vegetation Index): These indices demonstrate a
moderate influence on model predictions but are less critical than
the top-ranked features. They still provide additional insights that
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FIGURE 4
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may enhance the model’s accuracy by offering different perspectives
on plant vigor and color differentiation.

Less Significant Predictors (e.g., ExG, VLVI, RGRI): These
features exhibit minimal average SHAP values, indicating a low
contribution to AGB predictions. Their limited impact suggests that
they may be less relevant or potentially redundant for this specific
model, offering little additional predictive power.

The SHAP analysis confirms that the most influential features
(such as NGRDI and height) substantially contribute to AGB
estimation accuracy, whereas features with low SHAP values may
be excluded from the final model to streamline computations
without compromising predictive performance. This selective
approach, informed by SHAP, enhances model efficiency by
concentrating on high-impact predictors, which ultimately
improves both the interpretability and accuracy of AGB predictions.

Figure 4B (also called Bee Swarm Plot) offers a more in-depth
perspective on how the value of each feature affects the output of the
model. Each point depicted in this visualization corresponds to a
SHAP value for a specific feature within a single observation, and
the points are color-coded based on the feature’s value, ranging
from blue for low values to red for high values. The analysis
indicates that high values (represented in red) tend to positively
influence the model’s output, effectively pushing it to the right,
while low values (shown in blue) appear to have a detrimental effect.
This observation suggests that elevated NGRDI values are likely
associated with higher predictions, which may indicate the presence
or overall health of vegetation in the assessed area. Similar to the
NGRDI trend, high values of height (represented by red points)
generally result in higher model output, implying that taller plants
might correlate with higher predictions, thus highlighting the
importance of height in the predictive model. The influence of

B) High
NGRDI R ™ v .o
Height =i Lees h o

TGl == -
VARI I JECTERE

TGRVI s
RGBVI

ExG

VLI

RGRI

!
1
|

Feature value

EXGR

ExR

Low
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SHAP value (impact on model output)

SHAP summary plots display the mean absolute SHAP values for each input feature, representing their average contribution to the model's
prediction of above-ground biomass (AGB). Panel (A) ranks the characteristics based on their overall influence, with higher values indicating greater
impact on AGB projections. Panel (B) offers a more granular view, illustrating how individual feature values (represented by colored dots) influence
the model output in both positive and negative directions. The color gradient in Panel (B) reflects the magnitude of the feature value (from low to
high), enabling interpretation of whether high or low values of a characteristic tend to increase or decrease AGB predictions across all instances.
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TGI on the model is somewhat more complex and nuanced. While
elevated values (red) generally exert a positive impact, the
consistency of this effect appears to be less reliable when
compared to the clear trends associated with NGRDI or Height.
VARI feature exhibits a varied spread of impact values, indicating
that both high and low values of VARI can significantly affect the
model’s output, although the overall influence seems to be
comparatively smaller in magnitude. For those features that
register very low SHAP values (for instance, ExG, VLVI,
MGRVI), the points are densely clustered around zero. The fact
that the points for many of the features that are considered less
significant are closely clustered around zero emphasizes that they
contribute very little to the model’s output and are typically
unaffected by changes in high or low values.

3.5 Estimation of AGB based on machine
learning algorithms

In this study, Machine Learning (ML) techniques were applied
to estimate the above-ground biomass (AGB) of Pearl millet,
utilizing both shallow and deep learning models. ML
methodologies facilitate efficient and precise model development,
enhancing predictive accuracy across diverse analytical frameworks.
Both shallow algorithms, such as Random Forest Regression (RFR),
Support Vector Regression (SVR), and XGBoost, as well as deep
learning architectures like Convolutional Neural Networks (CNNs)
were examined. Shallow algorithms, characterized by their
computational efficiency and enhanced interpretability, provide
significant benefits in contexts where resources are constrained.
Conversely, CNNs are capable of extracting complex patterns from
data, making them powerful but resource-intensive (Zhang et al,
2020; Kolhar and Jagtap, 2021). Metrics such as the Root Mean
Square Error (RMSE) and coefficient of determination (R2) were
employed to compare machine learning algorithms. Figures 5-7
illustrate scatter plots depicting the predictions of each model,
comparing both comprehensive and selected feature sets. These
scatter plots show the correlation between predicted and observed
AGB values. The results indicate strong predictive performance
across models, with R* values ranging from 0.82 to 0.98 and RMSE
values from 0.20 to 0.70 Mg ha', reflecting a strong alignment
between predicted and actual AGB values.

Support Vector Regression (SVR): As shown in Figure 6, SVR
demonstrated a broader scatter of sample points, indicating lower
precision in AGB predictions. The widespread around the 1:1
regression line suggests that SVR may not capture the underlying
relationships as effectively, leading to a relatively less
accurate estimation.

Random Forest Regression (RFR) and XGBoost: In contrast,
Figures 5 and 7 show that both RFR and XGBoost predictions are
closely grouped around the 1:1 line, highlighting their superior
performance in regression tasks. These models exhibit less
deviation, indicating greater consistency and precision in
predicting AGB. Notably, XGBoost demonstrated the highest
accuracy, with R? reaching 0.98 and an RMSE of 0.26 Mg ha',
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indicating minimal prediction error. The clustering of points
around the regression line emphasizes XGBoost’s robust
predictive power.

Figure 7 provides additional insights by comparing XGBoost
model predictions using the full feature set and a selective subset of
features (NGRDI, Height, VARI, TGI, and TGRVI):

Full Feature Set (Figure 7C): The XGBoost model, when
utilizing all available features, achieved the highest performance
with an R? of 0.98 and an RMSE of 0.26 Mg ha'. This configuration
closely aligns with the observed values, as indicated by the tight
clustering along the red line in the scatter plot.

Reduced Feature Set (Figures 7A, B): In these plots, the
XGBoost model’s performance with a reduced subset of five
selected features is also presented. This configuration yielded an
R? of 0.96 and an RMSE of 0.32 Mg ha', a slight reduction in
accuracy compared to the full feature model. Nevertheless, this
reduced model remains highly effective, maintaining strong
alignment with actual AGB measurements. The minimal drop in
accuracy suggests that a reduced set of well-chosen features can still
provide reliable predictions, particularly in cases where simplicity is
prioritized or data constraints exist.

The comparative analysis underscores that incorporating a
broader set of features generally improves model accuracy.
However, the XGBoost model, using a carefully selected subset of
five features, still achieved commendable predictive accuracy. This
finding highlights the potential for efficient AGB estimation with
fewer predictors, offering a practical solution for scenarios where
data availability or computational resources are limited. XGBoost
emerged as the most effective model for AGB prediction,
demonstrating a strong correlation between predicted and
observed values, with minimal error. While incorporating all
features maximizes accuracy, the model using the selected five
features continues to provide reliable predictions, making it a
viable alternative in simplified modelling applications.

3.6 Deep learning approach for biomass
estimation using convolutional neural
networks

CNNs are largely recognized for processing image data,
however, recent research has shown that they can also handle
low-dimensional and one-dimensional data effectively by using
their capacity to extract hierarchical features and patterns. CNNs
have been effectively utilized in tasks involving regression and time
series analysis (Srivastava et al, 2022; Purushotam et al, 2023;
Sharma et al., 2023). This study proposed a deep learning approach
using Convolutional Neural Networks (CNNs) to estimate the
aboveground biomass (AGB) of Pear] millet. Vegetative variables
were processed through a CNN, leveraging 1-dimensional
convolution operations to capture complex, nonlinear interactions
among input features. Each input variable was processed
independently within the same CNN model, and the resulting
CNN outputs were concatenated to form a cohesive
predictive representation.
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FIGURE 5

Relationship between measured AGB and predicted AGB using random forest regression (RFR). (A) Two best features; (B) Five best features; (C)

all features.

The CNN architecture was implemented in Python (version
3.10.12) using the TensorFlow framework (version 2.17.0). Model
weights were initialized with a uniform distribution, while biases
were initialized to zero, following standard TensorFlow
configuration practices. The Adam optimizer was used for
training, with Mean Squared Error (MSE) serving as the loss
function. The model was trained for a total of 100 and 200
epochs, with each epoch representing a complete pass through
the training dataset, during which model weights were iteratively
updated. After each epoch, the model’s validation Root Mean
Square Error (RMSE) was computed using a reserved validation
dataset to monitor performance independently of the training data.
Optimal model parameters were identified based on the minimum
validation loss achieved during training. Learning rate decay was
applied throughout the training process to gradually reduce the
learning rate every 20 epochs, helping the model converge to a
minimum. The learning rate decay followed a schedule in which the
initial learning rate was sequentially multiplied by 0.8, 0.6, 0.4, and
0.2 at each 20-epoch interval, enabling controlled adjustments to
the rate of learning. Hyperparameters, including batch size and
initial learning rate, were fine-tuned to optimize model
performance. Batch size was varied across values of 8, 16, 32, and
64, while the initial learning rate was tested with values of 0.1, 0.01,
0.001, 0.0001, and 0.00001. The optimal combination of batch size
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and learning rate was determined based on the model’s predictive
accuracy on the test dataset. This combination was then used to
train the final CNN model, maximizing accuracy for
AGB estimation.

The most accurate model, based on the optimal batch size and
learning rate configuration, was selected to predict Pearl millet
biomass. The evolution of training and validation losses over the
epochs for this model is illustrated in Figure 8. This plot provides
insights into the model’s convergence behaviour, showing a
consistent reduction in training and validation losses, particularly
as the model approaches its optimal configuration. The validation
loss trend also demonstrates the model’s capacity to generalize,
avoiding overfitting by maintaining stable performance across
training iterations.

3.7 Training and validation performance
analysis

Figure 8 illustrates the training and validation performance of
the model over 200 epochs, providing insights into the model’s
behaviour across both loss and Mean Absolute Error
(MAE) metrics.
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Relationship between measured AGB and predicted AGB using the Support Vector regression (SVR) model. (A) Two best features; (B) Five best

features; (C) all features.

3.7.1 Model loss plot

The loss plot tracks the model’s loss during training (blue line)
and validation (orange line) phases. At the beginning of training,
both training and validation losses show a sharp decrease,
indicating rapid learning as the model adjusts its parameters to
minimize prediction error. Following this initial drop, losses
stabilize, fluctuating around lower values, with the training loss
consistently remaining below the validation loss. This consistent
difference suggests that the model fits well with the training data but
may be capturing some patterns that don’t generalize perfectly to
the validation set. Towards the end of training, a slight increase in
validation loss is observed, possibly indicating the onset of
overfitting, where the model becomes more tailored to the
training data at the expense of generalization.

3.7.2 Model MAE plot

Similar to the loss plot, the MAE plot shows both training (blue
line) and validation MAE (orange line). The MAE starts high for
both phases but drops quickly in the initial epochs, suggesting that
the model is quickly learning to minimize absolute prediction
errors. Throughout training, the training MAE remains
consistently lower than the validation MAE, which implies that
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the model is more accurate on the training data than on the
validation data. Some variability is present in both training and
validation MAE values across epochs, reflecting minor fluctuations
as the model fine-tunes its weights. However, towards the end of
training, the validation MAE begins to increase slightly, which may
also indicate overfitting.

Both the loss and MAE metrics stabilize early in training,
suggesting that the model effectively learns the main patterns in
the data within the initial epochs. However, the upward trend in
validation loss and MAE towards the end implies a slight overfitting
tendency as training continues. This could potentially be mitigated
by implementing early stopping or by tuning regularization
parameters to prevent the model from overfitting. Figure 8
highlights that while the model rapidly learns and stabilizes, its
slight overfitting towards the final epochs suggests a potential area
for improvement in future training runs.

The predictive accuracy of the CNN model for estimating
above-ground biomass (AGB) on the test dataset is presented in
Figure 9. The model shows high effectiveness, evidenced by
substantial correlations between measured and predicted AGB
values, showcasing the model’s capacity to accurately predict
biomass. In Figure 9A, the plot includes height and the
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FIGURE 7

Relationship between measured AGB and predicted AGB using the Extreme Gradient Boosting (XGBoost) model. (A) Two best features; (B) Five best
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Graph showing the training and validation performance of a model over 200 epochs, showing both loss (A) and Mean Absolute Error (MAE)

metrics (B).
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Triangular Greenness Index (TGI) as predictors, yielding an R-
squared value of 0.90 and a Root Mean Square Error (RMSE) of
0.53. This high R-squared indicates a strong linear relationship
between measured and predicted AGB, while the moderate RMSE
suggests some error, visualized by the red trendline and associated
confidence interval. This configuration demonstrates that height
and TGI alone provide a reliable foundation for AGB prediction,
though with some degree of residual error.

By incorporating height, TGI, Visible Atmospherically Resistant
Index (VARI), Red-Green Ratio Index (RGRI), and Normalized
Green-Red Difference Index (NGRDI), this configuration achieves
superior predictive performance. The R-squared increases to 0.97,
and the RMSE drops to 0.31, indicating a very close match between
measured and predicted values. This improvement suggests that
these five features capture a broader range of vegetation
characteristics, enhancing model accuracy and reducing error.
The increased R-squared and lower RMSE indicate that the
model effectively leverages additional indices to improve
AGB prediction.

In Figure 9C, the plot utilizes all available features, resulting in
an R-squared of 0.91 and an RMSE of 0.51. While this setup slightly
outperforms, Figure 9A shows lower performance compared to the
configuration in Figure 9B. This suggests that adding more features
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beyond the five used in Figure 9B may introduce noise or
redundancy, slightly reducing the model’s predictive efficiency.

The integration of five features (height, TGI, VARI, RGRI, and
NGRDI) provides the highest predictive accuracy, as shown by the
highest R-squared (0.97) and lowest RMSE (0.31) values. This
configuration strikes an optimal balance, where the addition of
indices beyond height and TGI significantly enhances the model’s
predictive power, but including all features yields only a marginal
improvement. Each plot demonstrates a positive relationship
between measured and predicted AGB, with confidence intervals
representing the inherent uncertainty in predictions. Overall, these
findings suggest that a focused set of relevant indices can achieve
high model performance, with the five-feature configuration
proving the most effective for accurate AGB estimation.

3.8 Evaluation and comparison of machine
learning models for estimating above-
ground biomass

Table 4 provides a comparative analysis of four machine
learning models—Random Forest Regression (RFR), Support
Vector Regression (SVR), XGBoost, and Convolutional Neural
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FIGURE 9

Relationship between measured AGB and predicted AGB using Convolutional neural networks (CNNs) model. (A) Two best features; (B) Five best

features; (C) all features.
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TABLE 4 AGB estimation accuracy using different machine learning algorithms.

Features XGBoost

RMSE
All features 0.96 ‘ 031 0.82 0.70 0.98 0.26 091 051
5 best features ‘ 0.97 ‘ 0.31 ‘ 0.83 0.68 0.96 0.32 0.97 0.31
2 best features ‘ 0.94 ‘ 020 ‘ 0.83 0.68 0.86 0.62 0.90 0.53

Networks (CNNs)—in estimating AGB using different feature sets: ~ (Ortiz-Ulloa et al., 2021; Funes et al., 2022; Chopra et al.,, 2023).
all features, the five most significant features, and the two most ~ XGBoost performs best with a comprehensive feature set, achieving
salient features. Performance metrics are reported as R* (coefficient  superior predictive accuracy with an R? of 0.98 and RMSE of 0.26.
of determination) and RMSE (root mean square error). This is attributed to its advanced gradient-boosting approach,
All Features: XGBoost achieved the highest accuracy (R*=0.98,  which integrates multiple weak learners to minimize errors
RMSE = 0.26), followed by RFR (R* = 0.96, RMSE = 0.31). CNNs through sequential corrections (Wang et al., 2022a; Sharma et al.,
exhibited moderate performance (R*> = 0.91, RMSE = 0.51), and  2023). XGBoost uses a combination of a loss function and a
SVR was the least effective (R* = 0.82, RMSE = 0.70). These results  regularization term to prevent overfitting, enhanced by features
indicate that XGBoost benefits from the complete feature set,  such as gradient descent optimization, column subsampling, and
leveraging its robust gradient-boosting framework to minimize  shrinkage for improved convergence and stability. Additionally,
errors effectively. XGBoost’s ability to handle missing data and optimize tree structure
Five Most Significant Features: Both RFR and CNNs  through parallel processing adds to its effectiveness. RER shows
demonstrated high accuracy, with R®> = 0.97 and RMSE = 0.31.  superior performance with a reduced feature set, indicating a high
XGBoost performed slightly lower (R* = 0.96, RMSE = 0.32), while  level of adaptability. With its ensemble-based structure, RFR
SVR continued to lag (R*> = 0.83, RMSE = 0.68). The comparable ~ combines predictions from multiple decision trees, effectively
performance of RFR and CNNs with fewer features suggests that they ~ capturing nonlinear relationships in the data and reducing
are capable of effective prediction without requiring a full feature set,  sensitivity to noise (Chiu and Wang, 2024). This adaptability
making them adaptable for resource-constrained scenarios. makes RFR a suitable choice when computational resources are
Two Most Significant Features: RFR emerged as the top  limited or when fewer predictor variables are available. SVR
performer, achieving R*> = 0.94 and RMSE = 0.20. XGBoost and  consistently underperforms in comparison to other models across
CNNs showed declines in performance, with CNNs reaching an R?>  all feature sets (R* = 0.82-0.83, RMSE = 0.68-0.70). As a linear
of 0.90 and RMSE of 0.53, while SVR maintained its relatively low  regression model, SVR struggles with the complex nonlinear
performance (R* = 0.83, RMSE = 0.68). This result indicates that  relationships inherent in the dataset, which limits its accuracy. Its
RFR retains accuracy even with a reduced feature set, highlighting  susceptibility to outliers and reliance on linear transformations may
its flexibility and robustness. explain its lower performance (Liu et al.,, 2021). CNNs perform
Multivariate features have more predictive power for AGB than ~ moderately well across different feature sets, showing potential for
single variable features, as shown in earlier investigations (Lu et al.,  improvement with further tuning (Carlier et al., 2023). CNNs excel
2019). Similarly, when evaluating biophysical crop parameters, at extracting complex features from data, which is beneficial for
(Han et al,, 2019). stressed that vegetation indices of photographs  tasks involving unstructured data (such as images) but may be less
might be taken into account simultaneously rather than separately.  suited for purely tabular data where tree-based models like XGBoost
Consistent with earlier research, plant height has a major impacton  and RFR perform better. Overall, the observed differences in
biomass yield, making it a significant agricultural architecture that  performance indicate that nonlinear regression models
is strongly connected with biomass yield (Montes et al., 2011;  outperform linear alternatives like SVR, consistent with findings
Schirrmann et al, 2016; Naito et al, 2017; Lu et al, 2019; Yu  from prior studies (Lu et al., 2019; Nakajima et al., 2023). This is
et al,, 2023). (Schirrmann et al., 2016). showed that the estimation  consistent with (Zhai et al., 2023)’s findings that the RFR approach
accuracy could be effectively increased by incorporating plant  performed better than alternative machine learning algorithms,
height into the model designed to estimate AGB. Similar findings  resulting in increased AGB estimation accuracy.
were made by (Naito et al,, 2017). and (Yu et al., 2023).

3.10 Limitations and perspectives
3.9 Overall summary of model
performance Vegetation indices (VIs) are effective for estimating
aboveground biomass (AGB) because they are designed to
Estimating AGB accurately is essential for understanding  highlight specific spectral features of vegetation that correlate
carbon sequestration and enhancing agricultural management  with biomass attributes. Studies have shown that the inclusion of
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red-edge and NIR bands further improves the sensitivity of indices
to variations in biomass and reduces the influence of confounding
factors such as soil background and atmospheric conditions
(Woebbecke et al., 1995; Hamuda et al., 2016; Yue et al., 2017; Lu
et al., 2019). The current study focuses on one-dimensional VI
combinations, potentially overlooking spatial patterns available in
raw spectral imagery. Future studies could explore integrating data
from multiple sensors (e.g., hyperspectral and multispectral
imagery) which could enhance the accuracy and robustness of
AGB estimation. Investigating newer indices tailored for specific
vegetation types or environmental conditions could address
limitations in biomass estimation under extreme conditions.

XGBoost emerged as the best-performing model, with high R
and low RMSE values. Key features contributing to XGBoost’s
success include its capability to aggregate weak learners,
implement gradient boosting, and minimize an objective function
that combines a loss function with regularization. However,
XGBoost’s computational demands are significant, requiring
substantial memory and processing power, particularly for large
or high-dimensional datasets. The extensive hyperparameter tuning
required for XGBoost further necessitates considerable expertise
and computational resources. Moreover, XGBoost is less effective
for unstructured data, such as images, where deep learning
architectures like CNNs generally perform better. Moreover, this
study primarily focuses on one-dimensional data regression
analysis and does not explore two-dimensional data analysis
methods for AGB prediction modelling. This limits the potential
advantages of using CNN over XGBoost, as CNNs are specifically
well-suited for extracting spatial features from two-
dimensional data.

This study’s methodology highlights the potential for farmers to
use accessible technologies, such as smartphone devices, and enter
them into automated biomass prediction algorithms, which could
serve as the foundation for carbon sequestration inventories. The
integration of machine learning algorithms into agricultural
practices could facilitate the creation of automated AGB
estimation systems, providing accurate biomass predictions
essential for precision agriculture (Lu et al., 2019; Fragassa et al,
2023; Purushotam et al., 2023; Sharma et al., 2023). Even with
noise-prone image data, the models demonstrated satisfactory
accuracy, supporting the feasibility of using smartphone-acquired
images for AGB estimation in field setting. The current study
focuses on a single crop variety under controlled growth
conditions, which was a deliberate choice to ensure the feasibility
of the study within the given scope and resources. Future research
could also explore the application of this framework on a larger
scale by incorporating data from diverse environmental conditions,
multiple crop varieties, crop growth stages, and geographical
regions to assess the model’s generalizability. Expanding the
dataset to include multispectral or hyperspectral imagery could
further improve model accuracy by capturing additional vegetation

Frontiers in Plant Science

16

10.3389/fpls.2025.1594728

characteristics. Integrating real-time monitoring systems through
IoT-enabled sensors with machine learning models could provide
continuous, automated AGB estimations, aiding decision-making
in dynamic agricultural environments. Lastly, implementing
transfer learning with other advanced neural networks or refining
hyperparameters may enhance the predictive performance of
CNNs, particularly in estimating biomass in unstructured and
complex agricultural settings.

4 Conclusions

In conclusion, this study proposes a non-destructive framework
for forecasting above-ground biomass (AGB) in pearl millet by
combining Convolutional Neural Networks (CNNs) with shallow
machine-learning methods. The results show that sophisticated
deep learning approaches like CNNs, when combined with
machine learning, particularly tree-based algorithms like
XGBoost, may provide reliable AGB predictions. XGBoost
outperformed other models when a comprehensive feature set
was utilized, achieving the highest R* and the lowest RMSE
values. Random Forest Regression (RFR) demonstrated
effectiveness with reduced feature sets, highlighting its versatility
and efficacy under data-constrained scenarios.

In summary, this study emphasizes the potential of readily
available digital technologies, such as smartphone-acquired photos,
to support automated biomass prediction and real-time crop
monitoring. The unique characteristics of small farming systems,
such as diverse cropping patterns, agroforestry practices, and
integrated livestock, play a crucial role in carbon dynamics. These
tools could form the basis for small-scale carbon inventories to
measure the carbon sequestered within vegetation biomass in
smallholder agricultural systems. These inventories are crucial for
understanding how agricultural practices contribute to carbon
sequestration at the local level and for informing climate-
resilient strategies.
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