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1Genetics Diversity and Breeding Laboratory, Department of Genetics, University of São Paulo,
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Soybean is a global food and industrial crop, however, climate change

significantly affects its grain yield. Therefore, the selection of varieties with high

adaptation to target population of environments is imperative in Sub-Saharan

Africa. This study aimed to identify soybean varieties with high overall

performance and stability using multi-environment trial data from the Pan-

African Soybean Trial Network. Additionally, we sought to determine the

environmental factors influencing yield through envirotyping tools. In two

South-Eastern African countries, a total of 169 soybean varieties were

evaluated across 83 environments in 19 locations in Malawi (47 trials) and 14

locations in Zambia (36 trials). The trials followed a randomized complete block

design with three replications. Data for 37 environmental features were obtained

from NASA POWER and SoilGrids. We fitted factor analytic models (FA) to

estimate genotype adaptation across environments. Additionally, we applied an

environmental kernel approach and the XGBoost method to assess the number

of mega-environments. The FA model with four factors provided the best fit,

explaining 82.44% and 81.95% of the variance and the average semi-variance

ratio (ASVR), respectively. Approximately, 59.6% of the genotype-by-

environment interaction were crossover. Varieties V025, V035, and V158

exhibited high yield potential and reliability but displayed moderate stability.

Three mega-environments were identified, with growing degree days, mean

temperature, and photosynthetically active radiation use efficiency being the

most associated features for soybean grain yield. To enhance the identification of

variety adaptation in these environments, integrating machine learning models

with crop growth modeling is essential to assess associations between

environmental features and soybean yield.
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1 Introduction

Soybean (Glycine max L.) is a commodity crop of great global

importance (Mishra et al., 2024). Its grains are widely utilized in

agro-industry, primarily for oil production, high-protein food

products, and animal feed formulation (Zhi et al., 2020). Its

nutritional composition is determined by proteins, oil,

carbohydrates, isoflavones, and minerals. However, population

growth and the ever increasing demand for protein sources, both

for human consumption and animal feed, highlights the need to

expand global soybean production (Messina, 2022). In this context,

improving production efficiency in new agricultural frontiers

through the development of more adapted varieties becomes

essential to ensure food security for future generations. In light of

that, genetic improvement programs have focused on developing

highyielding varieties with resistance to pests and diseases, as well as

broad adaptation to target environmental conditions (Favoretto

et al., 2025). These advancements have been driven by the

optimization of breeding strategies and the adoption of effective

agricultural practices (Carciochi et al., 2019).

Plant breeders rely on multi-environment trials (METs) to

evaluate genotype performance across diverse conditions,

representing the target population of environments (TPE) and

assessing genotype adaptation to specific or broad environments

(Poupon et al., 2023; Malosetti et al., 2016; Costa-Neto et al., 2023;

Vitale et al., 2024). When crossover interactions occur, genotype

rankings vary across environments (Fehr, 1987; Cooper and Delacy,

1994), and neglecting genotype-by-environment (G×E) interaction

can introduce some bias and reduce selection efficiency (van

Eeuwijk et al., 2016). To quantify G×E interaction, various

methods have been explored, each with distinct assumptions and

applications. These include analysis of variance (Plaisted and

Peterson, 1959; Shukla, 1972), regression models (Finlay and

Wilkinson, 1963; Eberhart and Russell, 1966), non-parametric

approaches (Lin and Binns, 1998), multiplicative models such as

GGE Biplot (Yan et al., 2000) and AMMI (Gauch and Zobel, 1997;

Gauch, 2008), linear mixed models (Henderson, 1949, 1950), factor

analytic (FA) models — which are extensions of linear mixed

models — (Piepho, 1997a, b; Smith et al., 2001b), and Bayesian

approaches (Cotes et al., 2006), all widely applied in plant breeding.

Factor analytic (FA) models are a specific class of linear mixed

models (LMMs) that are particularly robust in handling diverse

data structures, especially unbalanced data. As a parsimonious

approximation of the unstructured model, they indirectly

construct the full genetic covariance structure, accounting for

heterogeneous variances and covariances. This capability allows

for the exploration of genetic covariance between environments or

traits, making FA models well-suited for METs. Their effectiveness

stems from dimensionality reduction through latent variables,

known as factors (Smith et al. , 2001b; Piepho, 1998).

Additionally, as linear mixed models, they facilitate the inclusion

of relatedness information, whether genomic (marker-based) or

ancestral (pedigree) (Smith et al., 2005). Building on these

principles, Smith and Cullis (2018) introduced the Factor

Analytic Selection Tools (FAST), which incorporate parameters
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for assessing overall performance (OP) and stability via Root Mean

Square Deviation (RMSD). These metrics enhance breeders’

decision-making by providing a statistically sound and

comprehensive evaluation framework. Today, FA models are the

benchmark for handling unbalanced MET data within the LMM

framework (Tolhurst et al., 2022; Araújo et al., 2024), with recent

insights by Piepho and Williams (2024) emphasizing their utility in

predicting genotype performance in METs.

Beyond selecting the most appropriate statistical methods,

modern plant breeding demands additional tools to enhance the

predictive ability of models. Over the past decade, environmental

features have emerged as valuable resources for improving

predictions in METs (Xu, 2016; Resende et al., 2024). Although

the integration of environmental data into genetic analyses is not a

new concept (Van Eeuwijk and Elgersma, 1993; Wood, 1976),

advances in hardware and data processing have enabled the use

of large datasets, facilitating the incorporation of environmental

features into statistical genetic models. Enviromics, a specialized

field at the intersection of environmental data, statistics, and

quantitative genetics, leverages plant ecophysiology to better

understand how environmental factors influence plant

development and the plasticity of key agronomic traits (Costa-

Neto and Fritsche-Neto, 2021). In this context, envirotypes

represent all sources of environmental variation affecting plant

development and can serve as environmental markers in

statistical genetic models, aiding in the prediction of genotypic

performance in non-evaluated environments (Xu, 2016; Resende

et al., 2025).

The addition of information derived from Geographic

Information System (GIS) techniques into predictive models has

been encouraged to improve the efficiency of breeding programs

(Guarino et al., 2002). An initial effort was made by Booth (1990)

aiming to indicate climatically suitable regions for the introduction

of tree species at a global scale based on the environmental

conditions where they were collected. Annicchiarico et al. (2006)

assessed how GIS-based methodologies could aid the

recommendation of durum wheat genotypes in MET, as

compared to traditional methodologies. The integration of

machine learning, quantitative genetics, enviromics, and GIS tools

enhances the identification of environmental patterns in target

environments. These resources enable the exploration of

environmental homogeneity and the determination of factors

influencing climatic variability, facilitating the incorporation of

G×E interaction and the selection of cultivars adapted to

specific conditions.

Soybean variety selection is becoming increasingly important

due to its high nutritional value and economic significance in the

global market. Despite its potential, generally, the adaptation of

soybean varieties to Sub-Saharan African environments specifically

in the South-Eastern countries of Malawi and Zambia remains

largely unexplored, limiting the availability of high-performing

cultivars suited to the region’s diverse agro-ecological conditions.

This gap is particularly concerning given the rapid population

growth and the escalating demand for affordable protein based

food sources, which underscore the necessity of expanding and
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optimizing soybean production. Moreover, climate change

exacerbates environmental variability, increasing the urgency for

resilient cultivars capable of maintaining stable yields across

unpredictable conditions (Sousa et al., 2019). To address this

challenge, this study employs advanced selection tools to identify

superior varieties with high overall performance and stability within

the Pan-African Trials Network. Furthermore, the integration of

envirotyping methodologies enables the exploration of associations

between environmental variables and G×E interactions, facilitating

the identification of specific adaptations critical for sustainable

soybean production in Malawi and Zambia.
2 Material and methods

2.1 Phenotypic data and field trials

Soybean variety yield trials are part of the Soybean Innovation

Lab (SIL). This program was established to select high-yielding

varieties adapted to target population environments (TPE) in

Africa, to support cultivation by smallholder farmers. This

initiative led to the creation of the Pan-African Soybean Variety

Trials (PATs) through partnerships with the African Agricultural

Technology Foundation (AATF), the Syngenta Foundation for
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Sustainable Agriculture (SFSA), and the International Institute of

Tropical Agriculture (IITA) (Santos, 2019). The PATs program

plays a key role in identifying and disseminating varieties capable of

adapting to diverse Agro-ecological conditions, thereby

contributing to enhanced food security and economic growth

across selected Africa countries. The African continent was

divided into 33 Agro-ecological Zones (AEZs), classified

according to criteria such as climatic zones (tropical, temperate,

etc.), length of the growing season, soil type, and altitude, with a

resolution of 5 arc-minutes (≈ 9.2 km × 9.2 km) (Figure 1) (Food

and Agriculture Organization of the United Nations, 2025).

A total of 169 soybean varieties were evaluated over the 2017/18

to 2023/24 seasons (Supplementary Figure S1) in trials conducted in

two South-Eastern African countries of Malawi and Zambia. In

Malawi, 47 trials were conducted across 19 distinct locations, each

defined as the interaction between location and season (Figure 1B).

In Zambia, 36 environments were carried out across 14 locations

(Figure 1C). The trials followed a randomized complete block

design (RCBD) with three replications. Each plot consisted of

four rows measuring five meters in length (4 × 5 m), spaced

50 cm apart, with 20 plants per row. grain yield (kg ha−1) was

measured from the two central rows. Agronomic management

practices adhered to the specific technical recommendations for

soybean cultivation.
FIGURE 1

(A) displays the map of Africa with Agro-ecological Zones (AEZ) classified into 33 distinct categories based on climatic variables, topography, and the
chemical and physical properties of the soil. Each color on the map represents a specific AEZ class. Refer to Food and Agriculture Organization of
the United Nations (2025) for detailed identification of each class. The red and black points on the map highlight the countries of Malawi and
Zambia, respectively. (B) presents the map of Malawi, highlighting its respective AEZs. The colors of the points indicate the locations where the trials
were conducted, and the number in parentheses represents the number of trials carried out at each site. (C) shows Zambia with the distribution of
trial locations, along with the number of experimental trials conducted in each region.
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2.2 Envirotyping

Throughout the crop’s growing season, we collected data on 37

environmental features (Table 1). Each genotype’s sowing and

harvesting dates were used to retrieve environment-specific

variables, enabling the characterization of trial conditions and the

assessment of their similarity. The environmental covariates

encompassed geographic, climatic, and soil information. The

climatic variables were obtained using the EnvRtype package

(Costa-Neto et al., 2021), which accesses the NASA POWER

database (https://power.larc.nasa.gov/) (Sparks, 2018; NasaPower,

2022). Soil attributes were retrieved from the SoilGrids database via

API using the httr package for web access (Wickham, 2023) and

jsonlite for JSON parsing (Ooms, 2014). Static variables such as

altitude and soil properties were associated with the trial

location coordinates.

Prior to kernel construction, we applied quality control filters to

remove missing or inconsistent values and standardized all

continuous variables using Z-score normalization to ensure

comparability across different measurement scales (Equation 1):

Zij =
xij − �x·j

s·j
(1)

where �x·j and s·j denote the mean and standard deviation,

respectively, of the j-th variable across all locations.

To reduce multicollinearity, we examined the Pearson

correlation matrix and flagged variable pairs with correlation

coefficients. Redundant variables were removed based on domain

knowledge and exploratory principal component analysis (PCA),

which was implemented using the factoextra version 1.0.7 package

(Kassambara and Mundt, 2016).

The final environment-by-variable matrix W was then used to

compute the enviromic similarity kernelKE as described in Equation 2.

KE =
WW⊤

trace(WW⊤)=n
(2)

where W⊤ is the transpose of W, and n is the number of

environments. This standardization ensures unit trace, allowing

comparability across analyses and interpretation of diagonal elements

as average similarities. The matrix W contains standardized

environmental covariates (e.g., climatic and soil variables), with rows

representing environments (location-by-year combinations) and

columns corresponding to environmental descriptors.
2.2.1 Identification of mega-environments
Initially, environments were grouped into mega-environments

based on an enviromic similarity matrix, denoted as the enviromic

kernel (KE). This matrix integrated 37 environmental covariates

and grain yield. Hierarchical clustering was applied using the

Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) algorithm (Sokal and Michener, 1958). The optimal

number of clusters was defined using the Elbow method, and the

most influential covariates were explored via principal component

analysis (PCA) (Pearson, 1901). To prevent methodological
Frontiers in Plant Science 04
circularity, the dataset was randomly split into training (70%) and

test (30%) subsets prior to unsupervised learning. PCA and K-

means clustering were applied exclusively to the training subset, and

the resulting cluster assignments were used as categorical labels for

model training.

Classification was performed using the XGBoost (Extreme

Gradient Boosting) algorithm (Chen and Guestrin, 2016),

implemented via the xgboost package. The model was configured for

multi-class classification (multi:softmax) and trained using the first

three principal components. The hyperparameters used were: tree

depth of 6, learning rate (h) of 0.3, and 100 boosting iterations. The

objective function minimized by the algorithm included both the

predictive loss and regularization terms, and is expressed in Equation 3:

L(q) =o
N

i=1
‘(yi, ŷ

(t)
i ) +o

T

t=1
W(ft), (3)

where ‘ denotes the multinomial log-loss function, and the

regularization term W(ft) for each tree ft is defined in Equation 4:

W(ft) = g T +
1
2
lo

T

j=1
w2
j , (4)

in which T is the number of leaves, wj is the score on leaf j, g is
the complexity penalty for the number of leaves, and l controls the

L2 regularization on leaf weights. All analyses were performed in R

(version 4.3.1) using the following packages: cluster (Maechler et al.,

2019), caret (Kuhn et al., 2020), xgboost (Chen et al., 2022), and

dendextend (Galili, 2015).

To explore the relationship between environmental variables

and grain yield, we fitted a multiple linear regression model using

the adjusted mean yield for each environment as the response

variable. The model is specified in Equation 5:

y = m +o
t

i=1
biXi + e (5)

where y represents the adjusted mean yield in each environment;

µ is the intercept of the model, corresponding to the overall mean

yield; bi denotes the coefficient associated with the i-th environmental

variable; Xi corresponds to the value of the i-th environmental

feature; e is the random error term, assumed to follow a normal

distribution with zero mean and constant variance. Adjusted means

used as the response variable were obtained by fitting separate linear

mixed models for each environment, in which genotype was included

as a fixed effect and replication as a random effect. From these

models, empirical best linear unbiased estimates (eBLUEs) of

genotype means were extracted. Subsequently, the mean of the

eBLUEs within each environment was calculated and used as the

environment-level adjusted mean in the subsequent analyses.
2.3 Statistic analysis

We analyzed the phenotypic data using the linear mixed-effects

model described by Henderson (1949) and Henderson (1950).

Estimation of variance components was performed using the
frontiersin.org
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Araújo et al. 10.3389/fpls.2025.1594736
TABLE 1 Summary statistics of 37 environmental features grouped into geographical, climatic, and soil-related categories.

Class Features ID Unit Min Mean Max

Geographical Altitude alt meters (m) 70.00 1039.00 1359.00

Climatic Mean temperature tmean °C 17.57 21.90 26.29

Maximum temperature tmax °C 24.23 27.11 31.27

Minimum temperature tmin °C 11.59 17.60 23.68

Precipitation prec mm/day 0.02 5.66 11.63

Wind speed wsm m/s 1.60 2.27 4.07

Relative humidity rhm % 49.96 77.31 88.06

Dew point temperature tmdew °C 9.19 17.13 21.43

Longwave radiation lw MJ/m2/day 28.96 32.41 35.77

Shortwave radiation sw MJ/m2/day 16.79 20.08 22.89

Growing degree days gdd °C d−1 10.33 14.36 18.38

Radiation use efficiency fue – 0.47 0.65 0.84

Temperature range tmrange °C day 4.67 9.52 13.94

Vapor pressure deficit vpd kPa 0.43 0.84 1.81

Slope of vapor pressure curve spv kPa/°C 0.13 0.17 0.20

Potential evapotranspiration etp mm/day 7.63 9.02 10.38

Precipitation deficit petp mm/day -9.29 -3.36 3.19

Total precipitation totprec mm 2.69 772.73 1451.87

Average precipitation aveprec mm/day 0.02 5.66 11.63

Evapotranspiration tolerance etptol mm 847.00 1300.00 2185.00

Water balance watbal mm -1802.70 -526.80 376.20

Soil Bulk density of fine earth bdod kg/m3 120.00 142.60 155.00

Cation exchange capacity cec cmol/kg 60.00 89.28 142.00

Coarse fragments volume cfvo % 2.00 23.62 67.00

Clay content clay % 105.00 205.40 436.00

Nitrogen content nit g/kg 84.00 118.00 170.00

Organic carbon density ocd kg/m3 165.00 210.90 257.00

Soil pH (H2O) phh2o – 54.00 61.19 64.00

Sand content sand % 336.00 653.10 811.00

Silt content silt % 63.00 141.50 257.00

Soil organic carbon soc g/kg 115.00 153.70 206.00

Soil water content at 10 kPa wv0010 – 249.00 308.30 383.00

Soil water content at 33 kPa wv0033 – 184.00 230.90 331.00

Soil water content at 1500 kPa wv1500 – 68.00 104.20 199.00

Soil temperature tsoil °C 226.17 253.46 292.83

Temperature seasonality sts °C 86.10 155.20 255.70

Isothermality iso – -84.60 13.67 30.70

Mean diurnal range mdr – -2.00 1.17 2.40
F
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Data were collected from soybean varieties evaluated in Malawi and Zambia during the 2017–2024 seasons through the Pan-African Trials Network. Climatic features were obtained from NASA
POWER, and soil variables from SoilGrids.
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residual maximum likelihood (REML) method (Patterson and

Thompson, 1971). The model was implemented using the ASReml-

R package (version 4.1.2) (Butler et al., 2018) within the R software

environment (R Core Team, 2022). Prior to model fitting, we assessed

the validity of key model assumptions through standard residual

diagnostics. The normality of residuals was evaluated using quantile–

quantile (Q-Q) plots, as recommended by Kozak and Piepho (2018).

Residual independence was assumed, and heteroscedasticity across

environments was addressed by specifying a diagonal residual

covariance matrix, allowing each environment to have its eown
residual variance. The applied model follows Equation 6.

y = m1n + X1s + X2b + Z1g + Є (6)

In which y(n�1) is the vector of phenotypic data across t

environments, where n =ot
j=1nj, and nj is the number of

observations in each environment j; m is the model intercept; s(t�1)

is the vector of fixed effects for environments; b(b�1) is the vector of

fixed effects for the blocks, where b =ot
j=1bj and bj is the number of

blocks within environment j;  g(v�1) is the vector of random effects for

the v genotypes evaluated across environments, where g ∼ MVN(0,

G⊗ Iv). Although genotypes are conceptually common across

environments, the factor analytic (FA) model implicitly nests

genotypes within environments by modeling the genotype-by-

environment interaction through the G matrix, which captures the

variance–covariance structure among environments. Є(n�1) is the

vector of residual effects, where Є ∼ MVN(0,R⊗ In). Here, R is a

diagonal matrix of order t, allowing for heterogeneous residual

variances across environments, i.e., R = diag(s 2
Є1
,s 2

Є2
,…,s 2

Єt
).

X(n�t)
1 , X(n�b)

2 , and Z(n�v)
1 , represent the incidence matrices of the

vectors accompanying them in the model. 1(n�1)
n is a vector of ones;

and Iv and In areidentity matrices of orders v and n, respectively.

The genotypic effect vector g, for an FA model of order

K , is then expressed in Equation 7:

g = (L̂ ⊗ Iv)f̂ + d (7)

where L̂ (t�K) is the matrix containing the K factor loadings for

each of the t environments (l1, l2,…, lt), f̂
(Kv�1) is the vector

containing the v factor scores of genotypes in each environment

½fT1 , fT2 ,…, fTv �T, and d̂ (tv�1) is the vector representing the model’s

lack of fit. The joint distribution of f̂ and d̂ is given in Equation 8:

f̂

d̂

 !
∼ N

0

0

 !
,

IK ⊗ Iv 0

0 Y⊗ Iv

 !" #
(8)

In which Y(t�t) is the diagonal matrix of specific variances

(Y1,Y2,…,Yt) for each environment, i.e., what the factors

couldn’t capture.

The selection of the most parsimonious model was based on the

explained variance vkt , which was utilized for all K factors and for

each factor per environment (k-th) (Equation 9) (Smith et al., 2015),

and the average semi-variance ratio (ASVR) (Equation 10) (Piepho,

2019; Chaves et al., 2023), respectively.
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vkt =
l̂ ⋆2

kt dk

oK
k=1l̂

⋆2

kt dk + ŷ t

� 100 (9)

ASVR =
2

t�(t−1)ot−1
t=1ot

t0=t+1
1
2
� (oK

k=1l̂
⋆2

kt +oK
k=1l̂

⋆2

kt0 ) −oK
k=1l̂

⋆
kt l̂

⋆
kt0

2
t�(t−1)ot−1

t=1ot
t0=t+1

1
2
� ½(oK

k=1l
⋆2

kt + yt) + (oK
k=1l̂

⋆2

kt0 + yt0 )� −oK
k=1l̂

⋆
kt l̂

⋆
kt0 �1

(10)

The generalized heritability by Cullis et al. (2006) was obtained

through the Equation 11:

H2 = 1 −
�nBLUP
2s2

g

 !
(11)

Where �nBLUP is the average pairwise prediction error variance,

and s 2
g is the genotypic variance.

The coefficient of variation was calculated using Equation 12.

CV =
ŝ e

m̂
(12)

Where ŝ e is the estimated residual standard deviation, and m̂ is

the overall mean of each environment.

We estimated the genetic correlation between pairs of

environments as described by Cullis et al. (2010), given by

Equation 13:

rgtt 0 =  o
K
k=1ltklt 0 kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ 2

gtŝ 2
gt 0

q = DGD (13)

where, ŝ 2
gt and ŝ 2

gt 0 represent the genotypic variance

components in environments t and t 0 respectively, while the

matrix D is a diagonal matrix composed of the reciprocal square

roots of the diagonal elements of matrix G.

The crosser interaction was estimated using Equation 14:

s2
gerk = 1 −

s 2
ffiffiffiffiffiffi
s 2
gt

q� �
s2
ge

(14)

The variance component for the genotype-by-environment G

�E interaction, denoted as s 2
ge, was estimated using a compound

symmetry (CS) model. In this structure, the variance-covariance

matrix of the genetic effects is definedas s 2
g J + s2

geIj, where J is a

matrix of ones. The CS model was adopted following the

conceptual framework proposed by Cooper and Delacy (1994),

which enables the partitioning of G×E interaction into simple

(related to genotypic response consistency) and crossover (due to

changes in genotype ranking) components. By assuming equal

genetic variances and covariances across environments, the CS

structure provides a neutral and interpretable baseline, from

which deviations can be attributed to crossover interaction. This

approach avoids conflating model-derived correlation structures,

such as those in FA models, with the theoretical decomposition of

the G×E variance.
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2.4 Factor Analytic Selection Tools

To address identifiability issues and enable biological

interpretability in factor analytic (FA) models, we adopted the

constraints implemented in ASReml-R (Butler et al., 2018), as

described by Smith et al. (2021). Specifically, for models with

more than one factor (K > 1), the upper triangular elements of

the loading matrix L were set to zero, and the factor scores were

assumed to have a diagonal covariance matrix with decreasing

elements. The constrained loading matrix is denoted as L∗, and the

corresponding factor scores as f ∗. To recover the original (rotated)

parameterization while preserving the variance structure implied by

the model, we performed a singular value decomposition (SVD) of

L∗ as follows in Equation 15:

L* = UL1=2V⊤, (15)

where U and V are orthonormal matrices of dimensions t � K

and K � K , respectively, and L is a diagonal matrix with singular

values sorted in decreasing order. The final rotated loading matrix is

then obtained as L = L*VL−1=2 = U, and the diagonal matrix of

factor variances is D = L. Accordingly, the scores f are

reconstructed as (L1=2V⊤ ⊗ Iv)f *, ensuring that the variance of

the factors satisfies var(f ) = D⊗ Iv , as required for proper

modeling of the random effects in the FA structure. These

constraints faci l i tate identifiabil i ty and maintain the

interpretability of the latent dimensions while preserving the

implied genetic covariance structure across environments.

To support genotype selection within the environments

evaluated, we used FA Models and applied the selection tools

proposed by Smith and Cullis (2018). Specifically, the overall

performance (OPv) (Stefanova et al., 2009) of the v-th genotype

was calculated using Equation 16:

OPv =
1
t o

T

t=1
l̂ ∗
1t
~f ∗1v (16)

In the provided equations, l̂ *1t represents the rotated factor

loading associated with the t-th environment for the first latent

factor, and ~f *1v denotes the rotated score of the v-th genotype for the

first latent factor.

The remaining factors evaluate the stability parameter. The

overall stability of the v-th genotype can be calculated by the root

mean square deviation (RMSDv) using the following Equation 17:

RMSDi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t o

T

t=1
Є∗
t

s
(17)

In the given expressions, Є∗
vt represents the deviation of the

prediction associated with the first factor, which can be obtained as

follows: Є∗
vt = ~bvt − l̂ ∗

1t
~f *1v , where

~bvt is the linear combination of

loadings and factor scores from all factors except the first.

The responsiveness of genotype v to the k-th factor (REvk) was

computed as shown in Equation 18:

REvk = (�l∗
k −

�l∗
k−)f

∗
vk (18)
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where �l∗
k+ and

�l∗
k− represent the mean of the positive and negative

rotated loadings, respectively, associated with the k-th latent factor.

We evaluated the reliability of each genotype using Equation 19:

Rv = 1 −
PEVv

�s 2
g

(19)

In which PEVv is the prediction error variance of the v-th

genotype, and �s 2
g is the mean genotypic variance across environments.

An ideal genotype should present both high overall

performance (OPv) and low root mean square deviation (RMSDv).

The ideal genotype is selected based on the construction of an index

(FASTv) (Chaves et al., 2023; Cowling et al., 2023) (Equation 20):

FASTv = 2� OPv − �OPffiffiffiffiffiffiffiffiffiffi
s 2
(OP)

q −
RMSDv − R �MSDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2
(RMSD)

q
0
B@

1
CA� Rv (20)
3 Results

Environmental kernel-based analyses incorporated climate and

soil data from trials between 2017 and 2024. Principal component

analysis (PCA) explained 52.7% of the total variance, with 33.1%

attributed to the first principal component (PC1) and 19.6% to the

second (PC2) (Figure 2A). Ten environmental features contributed

most to climate variation among trials, with growing degree days

(gdd), mean temperature (tmean), and photosynthetically active

radiation use efficiency (fue) showing the strongest loadings in PC1

(Figure 2B). Hierarchical clustering applied to environmental

similarities (based on the XGBoost model) suggested three mega-

environment groups (Figure 2C). Regarding yield, the variables fue

(radiation use efficiency), spv (seasonal precipitation variation), and

tmrange (thermal amplitude) were associated with the largest

regression coefficients. Additionally, fue, tmdew (mean dew point),

wsm (soil moisture), and rhm (mean relative humidity) showed

statistically significant associations with yield (p< 0.05) (Figure 2D).

The M4 model, with a factor analytic (FA) variance-covariance

structure consisting of four factors (Table 2), exhibited the best fit for

the dataset (Supplementary Figure S2). This selection was based on a

threshold of 82.44% of the explained variance and 81.95 (%) of ASVR

for the model with four factors (FA4). This criterion considered not

only the explanatory capacity of the data but also the parsimony.

The Pan-Africa Trial Network demonstrated high experimental

precision, with values ranging from 0.07 (M18s2E006) to 0.50

(M21s1E051). Broad-sense heritability coefficients (H2) were also

substantial, ranging from 0.46 (M19s2E015) to 0.85 (Z21s2E059)

(Figure 3). Based on the distribution, the coefficient of variation

(CV) showed a median of 0.229, with first and third quartiles of

0.183 and 0.272, respectively. Similarly, H2 values had a median of

0.768, with Q1 = 0.710 and Q3 = 0.789 (Supplementary Figure S3).

The average yield across the trials was 2,508.54 kg ha−1; however,

there was considerable variation among the experiments, ranging

from 523.82 kg ha−1 (Z19s2E027) to 4,410.92 kg ha−1 (M22s2E062)

(Supplementary Table S1). Considering the two countries
frontiersin.org

https://doi.org/10.3389/fpls.2025.1594736
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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individually, the average yield in Malawi was 3,171.10 kg ha−1, while

in Zambia it was 2,555.94 kg ha−1.

Figure 4 shows a heatmap of pairwise genetic correlations

between environments based on the factor analytic (FA) model.

The strongest negative correlation was observed between trials

Z19s2E028 and Z22s2E067 (r = −0.99), indicating a strong

crossover interaction. Environments Z21s2E059, Z21s2E056, and

Z21s2E057 showed high variability in correlations with other trials

(SD > 0.48), suggesting inconsistent genotype responses. In

contrast, Z19s2E024 and Z22s2E065 were among the most stable

environments, with the lowest standard deviation in correlations

(SD< 0.23). Trials such as Z20s2E046 and M20s2E039 exhibited the
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highest mean correlations with other environments (mean r > 0.20),

highlighting their potential as representative environments for

genotype recommendation. These results reflect substantial

heterogeneity in genotype-by-environment interactions across

trials conducted in Malawi and Zambia from 2017/18 to 2023/24,

emphasizing the importance of environment-specific selection.

The varieties V020, V075, V137, V158, V035, V025, and V031

exhibited the best performance, as indicated by the highest OP

values (Y-axis). Regarding stability, V013 showed the best fit, with

the lowest RMSD values (X-axis) according to the FAST index.

Varieties V025, V035, and V158 demonstrated high yield and

reliability but exhibited medium stability (Figure 5).

Figure 6 presents the response of the variables to the second

(Figure 6A), third (Figure 6B), and fourth (Figure 6C) factors.

Responsiveness to specific factors facilitates the identification of

environmental conditions associated with the environments that

contribute to these factors. In this context, varieties V075, V020,

and V137 demonstrated high overall performance and stability

across factors 2, 3, and 4, respectively. Conversely, genotypes

exhibiting low reliability (< 0.4%), such as V029, V110, V100,

and V105 (Figure 5), also consistently demonstrated the poorest

overall performances across all four evaluated factors, highlighting

their limited adaptability and potential. Additionally, the variety

V13 maintained the best fit in terms of OP, suggesting a higher

stability and suitability under the tested conditions (Figure 6). These

findings suggest that the associated factors may reflect meaningful

environmental characteristics that can be leveraged for

specific adaptation.
TABLE 2 Log-likelihood (LogL), deviance, number of parameters (Par.),
explained variance (var%), and average semi-variance ratio (ASVR) for the
models tested.

Model LogL Deviance Par. var (%) ASVR (%)

M1 -57739.31 115478.62 174 37.23 34.00

M2 -57621.79 115243.58 260 65.52 62.58

M3 -57487.28 114974.56 345 77.31 77.17

M4 -57395.72 114791.44 429 82.44 81.95

M5 -57317.67 114635.34 512 87.90 87.58

M6 -57230.54 114461.08 594 93.11 92.83
The deviance (D) was calculated as D = −2 × log L. The model in bold is the selected one. The
selection threshold was set at 80% for both explained variance (Var%) and ASVR(%),
balancing goodness-of-fit and parsimony.
FIGURE 2

The (A) displays a principal component analysis (PCA) based on the environmental kernel, where the colors green, black, and red correspond to
mega-environments, Mega 1, Mega 2, and Mega 3, respectively. The (B) highlights the environmental variables that contribute the most across all
evaluation sites. The (C) presents a dendrogram based on the XGBoost model, used to test cluster mega-environments in Malawi and Zambia during
the 2017 to 2023/24 growing seasons. Meanwhile, the (D) represents the variables with the greatest influence on yield performance in the trials.
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4 Discussion

In this study, we applied FAST tools for selecting soybean

varieties with high overall performance and stability in grain yield

across METs. Additionally, we utilized GIS and envirotyping tools to

explore associations between environmental features and grain yield,

and to define mega-environments. Integrating environmental data
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into genetic-statistical models facilitated the characterization of G×E

interaction patterns and their association with yield performance

(Tolhurst et al., 2022). Furthermore, identifying environmental

similarities between the experimental network and the TPE can

enhance genetic gains through selection (Chaves et al., 2024).

The yield components of soybean are strongly influenced by the

environmental effect (Araújo et al., 2024), thus being subject to the
FIGURE 4

Heatmap showing pairwise genotypic correlations between environments based on the factor analytic (FA) model. Each cell represents the genetic
correlation between two trials, with a color scale ranging from −1 to 1. Trial names are shown along both axes, and the figure emphasizes patterns
of genetic similarity across environments. The evaluations were conducted in Malawi and Zambia from the 2017/18 to 2023/24 seasons, focusing on
soybean grain yield.
FIGURE 3

Scatterplot showing the relationship between the coefficient of variation (CV) and heritability (H2) across 83 soybean yield trials conducted in Malawi
and Zambia. Each point represents an environment (trial), positioned according to its heritability (X-axis) and CV (Y-axis), with labels indicating the
environment codes.
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FIGURE 6

Overall performance (OP) vs. stability (RMSD) for all 169 soybean varieties from the Pan-African Trials Network. Biplot (A) represents responsiveness
to the second factor, (B) to the third factor, and (C) to the fourth factor. Each point represents a genotype, with color indicating the reliability of its
estimated performance–stability score. The color scale ranges from red (low reliability) to green (high reliability), as shown in the accompanying
legend. Axes labels and the reliability legend have been enlarged to enhance readability.
FIGURE 5

Graph showing the relationship between overall performance (OP) and stability, measured as root mean square deviation (RMSD), for soybean
varieties evaluated in the Pan-African Trials Network across the 2017–2023/24 seasons. OP represents the mean performance of each genotype
across environments, while RMSD quantifies the deviation from the average response, with lower values indicating higher stability. Each point
corresponds to a genotype, and colors represent the reliability of the estimated performance–stability values, with the color scale ranging from red
(low reliability) to green (high reliability). Axes labels and the legend have been enlarged to improve readability. This visualization summarizes results
from the FAST (Factor Analytic Selection Tools) analysis.
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Araújo et al. 10.3389/fpls.2025.1594736
G × E interaction (Meyer et al., 2024; Agoyi et al., 2024; Abebe et al.,

2024). Over the years, overall performance and stability parameters

have been assessed using methods based on analysis of variance

(ANOVA) and linear regression. However, several limitations have

been identified, such as: (i) modeling the genotype effect only as

fixed; and (ii) the use of balanced data. We fitted a model of the

genotype effect as random, employing the factor analytic structure

(Piepho, 1997b; Smith et al., 2001a). This approach allows for the

estimation of genetic parameters, using the heterogeneous random

effect, enabling the evaluation of genetic progress over breeding

cycles in various locations, seasons, and different agricultural years

(Gogel et al., 2018; Chaves et al., 2023).

The genetic correlation heatmap in Figure 4 reveals high

heterogeneity in genetic variances and low genetic correlations

among environments, highlighting the crossover nature of the G × E

interaction (Cullis et al., 2010). In other words, as the intensity of the

interaction increases, the genetic correlation between pairs of

environments decreases. This phenomenon is explained by the

disparity in genetic variance values in each environment and

the covariance between pairs of environments (Cooper and Delacy,

1994). Heinemann et al. (2022) demonstrated, in the context of

crossover G×E interaction, the influence of environmental features

on yield components. This can be explained by the direct effect of

specific environmental variables on the adaptation of genotypes in

METs. Therefore, it becomes crucial to identify environmental factors

(climate, soil, spatial trends, among others) and genetic factors

influencing the G × E interaction. To achieve this, robust

methodologies are necessary to dissect this interaction and enable

more precise selection (Kang et al., 1989).

The FA model stands out for its efficiency in handling diverse

data structures (Piepho, 1998). This approach is commonly

employed in MET, particularly during the stages of cultivar

selection and recommendation (Kelly et al., 2007). This becomes

possible due to the derivation of orthogonal factors from a set of

correlated variables (Cullis et al., 2014). These factors represent

linear combinations of the factor loadings associated with each

environment, along with the corresponding scores for each cultivar.

It is worth noting that the structure of the FA model resembles that

of an unstructured covariance matrix but distinguishes itself by its

greater parsimony. A study conducted by Chaves et al. (2023)

demonstrated the effectiveness and flexibility of FAST in selecting

tropical maize genotypes, aiming for overall performance and

stability across different locations and seasons. The authors

suggested incorporating pedigree or genomic data into the

statistical model, applying optimization methods, and using

environmental features as strategies to enhance selection estimates.

The evaluation of genotypes with high overall performance and

stability can be done through latent regression graphs. Although

these graphs provide valuable information, selecting the best

cultivars using this methodology can be labor-intensive, as it

requires evaluating individualized regression for each genotype. In

order to overcome these limitations, Smith and Cullis (2018)

proposed FA selection tools, aiming to assess the overall

performance and stability of each genotype across the entire

dataset. Overall performance is achieved when the loadings of the
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first factor are positive and rotated, corresponding to the main

effects of the genotypes. In this scenario, there is no complex G × E

interaction, as the ranking of genotypes remains unchanged across

different environments. The RMSD is used to estimate stability by

measuring the deviation of each genotype from the line drawn by

the latent regression. In this study, weights were assigned to both

parameters since, for this specific dataset, productive performance

was deemed more critical than stability. Consequently, some studies

managed to achieve genetic gains using MET data, employing FAST

for cultivar recommendation (Smith and Cullis, 2018; Tolhurst

et al., 2019; Bakare et al., 2022).

The environmental and altitudinal characteristics of Malawi

and Zambia significantly influence local climatic conditions,

vegetation distribution, and land use (Supplementary Figure S4).

Both countries are situated in high-altitude regions, with Malawi

exhibiting altitudes ranging from 500 to 1,500 m, reaching 3,002 m

in the Mulanje Mountains (Lancaster, 1980), while Zambia

maintains an average altitude between 1,000 and 1,500 m, with

Mount Mafinga as its highest peak (2,339 m). These altitudinal

variations directly impact temperature regimes, precipitation

patterns, and agricultural potential, aligning with previous studies

on the influence of topography on African ecosystems. Higher

elevations in Malawi are associated with milder temperatures and

increased precipitation, which favor diverse vegetation and

agricultural systems. In contrast, low-altitude areas, such as

regions near Lake Malawi and the Shire Valley, experience

warmer and more humid conditions, influencing local

biodiversity and crop adaptability. Similarly, Zambia’s elevated

plateaus contribute to a moderate climate, reducing temperature

extremes and promoting stable precipitation levels (Rawlins and

Kalaba, 2020).

The analysis of mega-environments aims to identify target

regions or environments with consistent patterns of G×E

interaction over multiple years (Yan et al., 2023). When these

patterns are stable and repeatable, the target region can be

subdivided into sub-regions or mega-environments (Cooper and

Hammer, 1996). However, when data are limited to a single year,

the mega-environment concept may not be appropriate, as these

environments should represent repeatable G×E interaction patterns

(Basford and Cooper, 1998). In addition to yield data, incorporating

environmental variables such as edaphoclimatic characteristics

(elevation, temperature, precipitation, and soil type) can enhance

the delineation of mega-environments. These variables provide a

more comprehensive understanding of environmental influences on

genotype performance, facilitating more precise recommendation

strategies for different regions.

In this context, we observed that the variables growing degree days

(gdd), mean temperature (Tmean), photosynthetically active radiation

use efficiency (fue), seasonal precipitation variability (spv), and

temperature range (Tmrange) were the most important factors

influencing soybean grain yield in these environments. In tropical

and subtropical regions such as Malawi and Zambia, adequate GDD

accumulation is essential to ensure that soybean reaches maturity at

the appropriate time. Mean temperature directly affects soybean

metabolic rates, and excessively high temperatures can induce heat
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stress, negatively impacting photosynthesis and grain formation.

Factors such as light intensity, temperature, and water availability

influence fue. In regions with high solar radiation, such as Malawi and

Zambia, soybean has the potential for high fue, provided that other

factors, such as water and nutrient availability, are not limiting.

Irregular precipitation patterns, including severe droughts, can

adversely affect soybean development from germination to grain

filling. A moderate temperature range is beneficial for soybean,

promoting improved carbon assimilation and balanced growth.

Understanding the influence of environmental variables on soybean

cultivation and modeling the G×E interaction enables the

identification of specific adaptations, assisting breeders in decision-

making regarding which varieties can have their genetic potential fully

exploited (Araújo et al., 2024). Integrating robust statistical models,

machine learning techniques (Crossa et al., 2024), and crop growth

models (Bustos-Korts et al., 2022) can enhance the accuracy of

these recommendations.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

MA: Investigation, Conceptualization, Supervision, Writing –

review & editing, Data curation, Methodology, Software,

Visualization, Resources, Funding acquisition, Validation, Writing –

original draft, Project administration, Formal Analysis. BF: Writing –

original draft, Methodology, Writing – review & editing, Formal

Analysis. AS: Writing – review & editing, Writing – original draft,

Methodology, Formal Analysis. JPP: Formal Analysis, Writing –

review & editing, Methodology, Writing – original draft. NL:

Methodology, Writing – original draft, Writing – review & editing,

Formal Analysis. EL: Resources, Supervision, Conceptualization,

Writing – review & editing, Writing – original draft, Data curation.

MS: Project administration, Data curation, Conceptualization,

Writing – review & editing, Supervision, Writing – original draft.

PG: Validation, Writing – review & editing, Project administration,

Supervision, Writing – original draft, Funding acquisition,

Visualization. GC: Project administration, Supervision, Writing –

review & editing, Writing – original draft, Funding acquisition,

Resources. BD: Validation, Writing – original draft, Supervision,

Writing – review & editing. JBP: Conceptualization, Visualization,

Resources, Validation, Data curation, Project administration, Formal

Analysis, Methodology, Investigation, Writing – review & editing,

Writing – original draft, Software, Supervision, Funding acquisition.
Frontiers in Plant Science 12
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. Mauricio dos Santos
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