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Nighttime fluorescence
phenotyping reduces
environmental variability for
photosynthetic traits and
enables the identification of
candidate loci in maize
Fangyi Li1,2,3, Marcin Grzybowski2,3,4, Rebecca L. Roston1,3*

and James C. Schnable1,2*

1Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States, 2Department
of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States, 3Center for
Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States, 4Department of
Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of
Biology, University of Warsaw, Warsaw, Poland
Introduction: Photosynthesis is fundamental to agricultural productivity, but its

relatively low light-to-biomass conversion efficiency represents an opportunity

for enhancement. High-throughput phenotyping is crucial for unraveling the

genetic basis of variation in photosynthetic activity. However, the heritability of

chlorophyll fluorescence parameters measured during the day is often low as a

result of high levels of variation introduced by environmental fluctuations.

Methods: To address these limitations, we measured fluorescence phenotypes

at night, leveraging natural dark adaptation to minimize environmental noise.

Results: Night measurement significantly increased the heritability of

fluorescence traits compared to daytime measurements, with the maximum

quantum yield of photosystem II (Fv/Fm) showing an increase in heritability from

0.32 to 0.72. Genome-wide association studies (GWAS) conducted using three

photosynthetic fluorescence traits measured at night across two growing

seasons identified several significant single nucleotide polymorphisms (SNPs).

Notably, two candidate genes near SNPs linked to multiple fluorescence traits,

Zm00001eb271820 and Zm00001eb012130, have known roles in

photosynthesis regulation. Four of the significant signal nucleotide

polymorphisms identified in GWAS conducted using nighttime collected data

also exhibited statistically significant associations with the same phenotypes

during the day. In a majority of other cases, direction of effect was consistent

but greater variance in day measured data relative to night measured data

resulted in the differences not being statistically significant.
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Discussion: These results highlight the effectiveness of phenotyping

photosynthetic traits at night in reducing environmental noise and enhancing

the discovery of genomic intervals related to photosynthesis. While nighttime

data collection may not be applicable for all photosynthetic traits, it offers a

promising avenue for advancing our understanding of the genetic variation of

photosynthesis in modern crop species.
KEYWORDS

photosynthesis, dark-adaptation, GWAS, genetic association mapping, maize
1 Introduction

Photosynthesis captures light energy to create carbohydrates

from carbon dioxide and water, thereby generating chemical energy

for living organisms. While crops provide a primary source of food,

feed, and fiber, the efficiency of photosynthesis remains relatively

low, with a maximum of 6% of light energy being converted to

stored chemical energy in the form of plant biomass (Zhu et al.,

2008). Evolution optimized photosynthesis in the wild progenitors

of modern crop plants for natural environments, but enhancing

photosynthetic productivity in agricultural settings may be possible

(Croce et al., 2024). Given current and projected food demands,

boosting agricultural productivity is becoming more urgent (Pawlak

and Kołodziejczak, 2020). Improvements to photosynthetic

productivity could potentially increase agricultural production

without a concomitant increase in requirements of land or

agricultural inputs (e.g. fertilizer, water) (Zhu et al., 2010).

Light energy absorbed in the pigment antenna of photosystem

II (PSII) can be channeled into three primary pathways:

photochemistry, heat dissipation, or chlorophyll fluorescence

(Butler, 1978). Photochemistry, the productive output of

photosynthesis, uses the light energy to make reductant and ATP,

which ultimately fix carbon dioxide. Excess light that cannot be

captured by photochemistry is released as heat through multiple

processes including both regulated, non-photochemical quenching

(NPQ), and non-regulated mechanisms (PhiNO). Alternatively,

excess energy can be emitted as chlorophyll fluorescence. These

systems protect the plant from the highly reactive redox chemistry

involved in light harvesting (Butler, 1978; Buchanan et al., 2015). By

measuring the energy flux in any of these pathways, we gain insights

into the overall efficiency and balance of photosynthesis (Maxwell

and Johnson, 2000; Baker, 2008).

Since fluorescence emission data are easily captured optically,

they have become common measurements from ecophysiology to

basic science to applied agriculture (Maxwell and Johnson, 2000).

By using a ‘modulated’measuring system (Quick and Horton, 1984)

multiple fluorescence parameters can be analyzed as part of the

same experiment. The most commonly measured fluorescence-

based parameter is the maximum quantum yield of PSII (Fv/Fm),

which provides an estimate of photosynthetic efficiency (Fleischer,
02
1935; Kura-Hotta et al., 1987; Murchie and Lawson, 2013; Croft et

al., 2017). Fluorescence parameters are also widely used as

indicators of plant stress and tolerance. For instance, regulated

(NPQ) and non-regulated (PhiNO) energy dissipation, along with

functional energy use represented by Fv/Fm, are particularly

informative parameters in studies of environmental abiotic

stresses (Cornic and Briantais, 1991; Valentini et al., 1995;

Niinemets et al., 1999; Sharma et al., 2017; Oakley et al., 2018;

Itam et al., 2024).

Natural variation within populations for different photosynthetic

parameters have been reported in a number of plant species (Flood

et al., 2011; Hao et al., 2012; Strigens et al., 2013; Fiedler et al., 2016;

Ortiz et al., 2017). Genome-wide association studies (GWAS) have

identified genetic loci associated with variation in a range of

photosynthesis related phenotypes, including genes involved in

processes beyond photosynthesis itself, such as anatomical

responses and central metabolism, in addition to identifying genes

encoding components of the photosynthetic apparatus (Croce et al.,

2024). However, few loci are consistently identified consistently

across different studies, presumably due to differences in

populations, standing functional genetic variation, environmental

conditions, and experimental design. The repeated identification of

new loci responsible for photosynthetic variation implies that there

are many unrealized limitations on photosynthetic efficiency or

productivity in many crop species.

To expand our understanding of genetic limitations of

photosynthesis, we need more studies with strong associations

collected in a diverse range of field-relevant environments.

However, the heritability—or proportion of total phenotypic

variation explained by differences between genotypes—of

photosynthetic parameters tends to be relatively low, especially in

field studies (Hao et al., 2012; Dramadri et al., 2021; Liu et al., 2023)

because many photosynthetic parameters are responsive to even

small environmental changes. While collecting data in controlled

environments (e.g., greenhouses or growth chambers) can provide

higher heritability (Strigens et al., 2013; Ortiz et al., 2017), in many

contexts it can be unclear how well data from these controlled

environments translate to the field. Attempts to control for field

variability typically include extra treatments such as dark adaption,

but these treatments create a trade-off between collection efficiency
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(Dramadri et al., 2021; Liu et al., 2023) and data quality (Araus et al.,

1998; Hao et al., 2012).

Here, we investigated the potential for phenotyping

photosynthetic florescence parameters in the field using a low-cost

handheld fluorescence meter with and without night-induced dark-

adaption. We collected measurements of multiple fluorescence traits

from maize diversity panels across three years, including two years of

data collected at night, and one year of data collected during the day.

We used GWAS analysis to identify genetic markers associated with

variation in photosynthetic fluorescence traits and explore the

function of annotated genes in the genomic intervals surrounding

those markers. We conclude that, with limitations, night

measurements minimize environmental fluctuations during

measurement, functionally increasing trait heritability and

improving our ability to identify specific genomic intervals which

explain variation in photosynthetic parameters in field environments.
2 Methods and materials

2.1 Field experiment

Field experiments were conducted at the University of

Nebraska-Lincoln’s Havelock Research Farm (Lincoln, NE, USA)

over three consecutive years, 2020 (40.85°N, 96.62°W), 2021 (40.51°

N, 96.36°W), and 2022 (40.86° N, 96.60° W). In each year, maize

diversity panels were grown in a randomized complete block design

with two blocks. The field experiments included 752, 785 and 382

maize genotypes in 2020, 2021 and 2022 respectively. There were

665 common genotypes between 2020 and 2021, and 250 between

2021 and 2022. In 2020 and 2021, each block consisted of 840 plots

(1,680 plots total), and 2022, each block consisted of 362 plots (724

total), with the majority of genotypes included once in each block

and the remaining plots consisting of a repeated check genotype.

Each plot consisted of two rows of 7.5 feet long with the spacing of

30-inch between each other, the spacing between two sequential

plants was 4.5 inch, and the alleyways between two sequential plots

was 30 inches. The planting dates were May 6th, May 7th, and May

20th for 2020, 2021 and 2022.
2.2 Field data collection

Measurement of photosynthetic fluorescence traits was

performed using a set of MultiSpeQ V2.0 instruments (Kuhlgert

et al., 2016) running the Photosynthesis RIDES 2.0 protocol. In 2020,

the photosynthesis fluorescence data was collected during the

daytime from 09:00 to 14:30 over 4 days (July 23rd, 24th, 25th, and

28th) and used 6 instruments simultaneously as described (Ali et al.,

2024). In both 2021 and 2022, photosynthetic fluorescence data was

collected at night, with measurement beginning at 23:00,

approximately 2 hours after sunset. Measurements were completed

in 3 nights (August 5th, 6th, and 8th) using 6 instruments in 2021, and

1 night (August 4th) using 8 instruments in 2022. In all three years,
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the dates chosen corresponded to the period in which most plants in

the field experiment were post flowering but had not yet reached the

R5 (dent) stage. For each plot, 3 representative plants were semi-

randomly selected, with the exceptions that lodged plants were always

excluded and edge plants were excluded whenever sufficient numbers

of non-edge plants were present. Measurements were collected from a

fully expanded leaf. In 2021 and 2022 samplers were specifically

instructed to score the leaf immediately above the first (uppermost)

ear or ear shoot if present and intact. For night measurement,

researchers involved in data collection employed green LED

headlamps (~500–570 nm) to allow visibility while minimizing the

disruption to photosynthesis, as green light has minimal overlap with

the primary absorption peaks of chlorophyll a and b (430–450 nm

and 640–680 nm, Taiz et al., 2015).

MultiSpeQ measurement of photosynthetic parameters

followed the Pulse-Amplitude-Modulation (PAM) method

(Schreiber, 2004), and obtained multiple fluorescence (F) values

after stimulation of photosynthesis at different light inputs,

including actinic illumination, fluorescence excitation, and far red

(Kuhlgert et al., 2016). From MultiSpeQ outputs of F, we selected

the following traits, maximum quantum efficiency (Fv’/Fm’), non-

regulated energy dissipation (PhiNO), and the fraction of light

dedicated to nonphotochemical quenching (PhiNPQ) (Genty et al.,

1989; Kuhlgert et al., 2016).

Light Adapted Maximum Quantum Efficiency (Fv
0 =Fm

0 ) = (Fm
0 −F0

0 )=Fm
0

Non� regulatory Energy Dissipation (FNO) = Fs=Fm
0

Fraction of light dedicated to NPQ (FNPQ) = 1 −FPSII –FNO

In 2021 and 2022, the natural dark adaptation of night, combined

with the near-instantaneous light induction from the fluorometer

suggested that the collected values of Fm’, Fv’, and F0’ were equivalent

to dark-adapted parameters, Fm, Fv, and F0 (Schreiber, 2004).

Specifically, under dark-adapted conditions, F0 represents the

minimal chlorophyll fluorescence yield when all PSII reaction

centers are fully open, with primary quinone acceptor (Qa) fully

oxidized (Maxwell and Johnson, 2000; Baker, 2008), a condition

frequently achieved by night (e.g., Niyogi et al., 2001; Demmig-

Adams et al., 2012). Similarly, Fv’/Fm’ should approximate the

maximum quantum yield of photosystem II (Fv/Fm) and the

photosystem II operating efficiency (FPSII), while FNO and FNPQ
should approximate their dark-adapted values (Schreiber, 2004).
2.3 Data processing and BLUP calculation

Empirically determined cutoffs based on manual examination

of trait distributions were employed to remove extreme or

biologically implausible values (Supplementary Table S1). We

noted that in 2022, the range of Fv/Fm values included many

lower values than in 2021 and the range of FNPQ included many

higher values than in 2021, likely as a result of the more severe

environmental stress experienced during the 2022 field season. Raw
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datasets for each trait were trimmed by removing values which did

not meet the cutoff criteria described in Supplementary Table S1.

After trimming of extreme values, BLUPs for each trait were

calculated using the 2D spline based spatial correction model

implemented in the SpATS R package (Rodrıǵuez-Álvarez et al.,

2018) with the identity of the specific MultiSpeQ instrument used to

collect a given datapoint fit as an additional random effect

(Supplementary Table S3). Generalized heritability for each trait

in each environment was also calculated using the SpATS

R package.
2.4 Genome wide association

The genetic marker data used for the genome-wide association

studies (GWAS) described here were generated subsetting published

genetic marker data generated using resequencing data of 1,515 maize

lines (Grzybowski et al., 2023) relative to the B73_RefGen_v5 reference

genome (Hufford et al., 2021). This marker set included data on 772 of

the 785maize genotypes planted in 2021 and 306 of the 382maize lines

planted in 2022. Two marker sets were created, one for 2021 and one

for 2022, by using VCFtools (Danecek et al., 2011) to filter the

published dataset to include only maize lines present in both the

genetic marker and phenotype files and to include only single-

nucleotide polymorphisms (SNPs), excluding InDels and other

structural variants, with a minor allele frequency of at least 0.05 and

a heterozygous genotype call frequency of 5% or less among those

subsets of maize lines. These criteria resulted in subsets of 9,427,065

SNPs for 772 maize lines in 2021, and 9,672,830 SNPs for 306 maize

lines in 2022. The effective number of independent tests represented by

these two markers sets was estimated to be 2,774,165 for the 2021

marker set and 3,214,685 for the 2022 marker set via GEC (Li et al.,

2012). GWAS analyses were conducted using the FarmCPU algorithm

(Liu et al., 2016) as implemented in the R package rMVP (v.1.0.6; Yin

et al., 2021), with the first three principal components calculated from

the genetic marker data included as covariates. A bootstrap resampling

procedure was employed to estimate the stability of significant

associations (Valdar et al., 2009) in FarmCPU analysis. For every

trait, 100 analyses were run, each using a randomly chosen 90% of

phenotype values. SNPs were considered significantly associated in

each bootstrap if they exceeded a Bonferroni corrected a=0.05
threshold based on the effective SNP number in each dataset, which

corresponded to a p-value cutoff of 1.80 * 10–8 in 2021 and 1.56 * 10–8

in 2022. The resampling model inclusion probability (RMIP) for a

given SNP was calculated by dividing the total number of iterations in

which a given SNPwas significantly associated with a trait of interest by

the total number of iterations conducted.
2.5 Candidate gene exploration and marker
effect validation

Genetic markers which exceeded an RMIP threshold of 0.1 were

considered trait associated markers for the purposes of candidate

gene exploration. Candidate genes were defined as those within ten
Frontiers in Plant Science 04
kilobases up or downstream of the position of a trait associated

marker. The significance of the phenotypic difference between sets

of genotypes carrying different alleles of a given trait associated

marker was assessed using unpaired two-tailed t-tests considering

the BLUPs calculated for all maize genotypes homozygous for either

the reference or alternative allele.
3 Results

3.1 Variation in photosynthetic
fluorescence traits collected during the
day or night

In 2020, a set of 5,053 daytime fluorescence measurements were

collected of which with 4,940 measurements including at least one

measurement of 746 genotypes remained after data quality control

(see Materials and Methods; Ali et al., 2024). To compare these

results with nighttime measurements, we collected similar data

collection efforts in 2021 and 2022, resulting in 4,687 (of 772

genotypes) and 2,057 (of 306 genotypes) measurements after data

control (Supplementary Table S1), where all the remaining

genotypes have the genetic marker data for the GWAS analysis.

Fluorescence traits measured during the day in 2020 were

substantially correlated with variation in a number of

environmental parameters including ambient humidity and

temperature, leaf temperature, and time of day. However, for

fluorescence traits measured at night in 2021 and 2022,

correlations with these same environmental parameters were

either substantially lower or absent (Figure 1). For example, the

correlation between Fv’/Fm’ and ambient temperature in 2020 was

statistically significant, with a p-value below 0.05 and a correlation

coefficient of -0.21, while Fv/Fm was insignificantly correlated with
FIGURE 1

Correlations between environmental factors and photosynthetic
fluorescence traits in datasets collected in different years. Pearson
correlations were calculated between the values of environmental
factors ambient humidity, ambient temperature, leaf temperature,
and time of day, and the values of photosynthetic phenotype Fv’/Fm’

or Fv/Fm, FNO, and FNPQ in 2020, 2021 and 2022 datasets. All
values for one single measurement were recorded simultaneously
by MultiSpeQ. Intensity of the color to represent the strength and
hue represents direction of the Pearson correlation coefficient (r).
Red indicates a positive correlation. Blue indicates a negative
correlation. *=P<0.05; **= <0.01; ***=P <0.001.
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temperature in 2021 and 2022 (-0.026 and -0.036, respectively,

Supplementary Table S2). In 2021, nighttime ambient temperatures

ranged from 25.3 to 33.6°C, whereas daytime temperatures in 2020

ranged from 25.2 to 39.5°C. Other environmental factors also

showed a similar narrower range during the night. This indicates

that nighttime measurements relieved the most significant effects of

measured environmental variation on photosynthetic traits.

To estimate the generalized heritability of fluorescence trait

measurements collected in different years and environments, we

first determined the best-performing model, defined as the one that

controlled for the fewest factors – day, time of day, light, ambient

temperature, leaf temperature, humidity, field spatial arrangement

and variation in measurements across individual instruments

(Supplementary Table S3) – while yielding the highest heritability.

For the 2020 daytime measurements, the best-performing model

accounted for the field’s spatial arrangement, instrument, day of

measurement and leaf temperature. For the 2021 and 2022 nighttime

measurements, the best-performing model controlled only for the

spatial arrangement of the field and instrument. (Supplementary

Table S3). Across all models, heritability of daytime measurements

was consistently lower than nighttime measurements (Supplementary

Table S3). In the best-performing models, nighttime heritability

values ranged from 0.67 to 0.74 across years and traits, while

daytime measurements ranged from 0.22 to 0.37 (Table 1).
3.2 Candidate gene identification for
photosynthetic fluorescence traits

Prior to conducting GWAS, we evaluated the consistency of

photosynthetic fluorescence trait best linear unbiased predictor

(BLUP) values for the same genotypes (n=248) scored during the

night in two different years (2021 and 2022, Figures 2A–C). The

most correlated trait between the two years was FNO, however,

even for this trait the Pearson correlation coefficient was 0.34

(Figure 2B). This limited correlation observed across years

indicated that, while genotypes exhibited some similarity in

phenotype across years, substantial variation also existed between
Frontiers in Plant Science 05
these two growing seasons. Indeed, stronger stress conditions in

2022 led to statewide decreases in corn yields relative to previous

and subsequent years (USDA NASS, 2022 Census of Agriculture).

Due to the limited similarities between seasons, we chose to perform

separate GWAS analyses using data from each of the two

years independently.

Conducting GWAS with three photosynthetic traits scored in 2021

identified 22 SNPs which exceeded the confidence threshold

(resampling model inclusion probability, RMIP, of greater than or

equal to 0.1) (Figure 3A, Supplementary Table S4). Notably, two SNPs

were associated with variation in all three photosynthetic fluorescence
frontiersin.or
TABLE 1 Generalized heritability of photosynthetic fluorescence traits
for 2020, 2021, and 2022.

H2 Fv’/Fm’or Fv/Fm FNO FNPQ

2020, Day 0.12 (0.32) 0.35 (0.37) 0 (0.22)

2021, Night 0.72 (0.72) 0.69 (0.69) 0.74 (0.74)

2022, Night 0.7 (0.7) 0.74 (0.74) 0.67 (0.67)
Heritability (H2) values were estimated using the SpATS mixed model using the best
performing models for night collected data and day collected data. The night model
included genotype and the identity of the specific MultiSpeQ instrument as effects, while
the day model additionally included day of collection and leaf temperature as additional
effects.Values shown are heritability estimates from the night model, and the values in
parentheses are the heritability estimates from the day model. Fv’/Fm’ estimated maximum
quantum yield of photosystem II, Fv/Fmmaximum quantum yield of photosystem II, FNO
quantum yield of non-regulated energy loss, FNPQ quantum yield of regulated non-
photochemical energy loss.
FIGURE 2

Correlation between photosynthetic fluorescence trait values
measured for the same genotypes in 2021 and 2022. (A)
Relationship between Fv/Fm BLUPs calculated for 2021 and 2022
for 250 maize genotypes phenotyped in both years. Sold red line
indicates the regression line fit to this data. R = Pearson correlation
coefficient p = statistical significance of the correlation across years.
(B) Relationship between 2021 and 2022 FNO BLUPs. (C)
Relationship between 2021 and 2022 FNPQ BLUPs.
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traits tested. Conducting GWASwith three photosynthetic traits scored

in 2022 identified 15 SNPs associated with one or more traits that were

past the confidence threshold (Figure 3B).

SNPs exceeding the confidence threshold were further

investigated for their proximity to candidate genes potentially

influencing photosynthesis. We chose to define genes within 10

kilobases of a trait-associated SNP as potential candidate genes

based on the observation that average linkage disequilibrium in the

Wisconsin Diversity panel decays below 0.25 between genetic

markers separated by 10 kilobases (Grzybowski et al., 2023). A

total of 17 genes near 12 trait-associated SNPs identified using trait

data collected in 2021 met these criteria as did 11 genes close to 7

trait-associated SNPs identified from analysis of 2022 trait data

(Table 2). Two genes with established roles in photosynthesis were

located near significant SNPs identified in 2021. First, the SNP at

chr01:39,614,496, associated with FNO (RMIP=0.11), was located

271 base pairs upstream of Zm00001eb012130, which encodes a

chloroplast RNA polymerase sigma factor, ZmSIG2B, involved in

light-dependent gene expression (Lahiri et al., 1999; Kanamaru

et al., 2001; Fu et al., 2021). Second, the SNP at chr06:91,357,973,

linked with both Fv/Fm (RMIP=0.12) andFNPQ (RMIP=0.11), was

located 1,465 bp upstream of Zm00001eb271820, which encodes a

protein involved in the stability of photosystem II (Chotewutmontri

et al., 2020). The relevance of this gene to those phenotypes is

demonstrated by the high chlorophyll fluorescence phenotype of

the hcf136 loss-of-function mutant in Arabidopsis (Meurer et al.,

1998), and the reduction of photosystem II complexes in loss-of-

function mutants of both maize and Arabidopsis (Plücken et al.,

2002; Covshoff et al., 2008).
3.3 SNP Effects on photosynthetic
fluorescence traits across years

While significant trait-associated SNPs were identified via

GWAS in both years, after multiple testing correction, no

common signals were independently detected in both years, with

the shortest distance separating 2021 and 2022 trait-associated

SNPs exceeding 130kb. However, due to the stringent control for

false positives and the millions of independent statistical tests

conducted in GWAS a high false negative rate is expected

(Sebastiani et al., 2009). To further investigate trait effects

between years, we conducted single-locus tests, comparing BLUP

values between individuals homozygous for the reference or

alternative alleles of SNPs identified in one year across all years

(Table 3). Despite not controlling for the effects of other loci

elsewhere in the genome, as FarmCPU does, these simpler tests

still identified statistically significant differences in the same trait

and year of all but one SNP originally identified by GWAS

(Table 3). Furthermore, for most trait-associated SNPs identified

using nighttime measurements, the direction of the difference

between reference and alternative alleles remained consistent
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across both daytime and nighttime measurements in different

years (Table 3).

Next, we considered markers which passed the separate inclusion

criteria for both populations to identify year-to-year consistency of

effect. For the 18 qualified SNPs identified in the 2021 GWAS analysis,

16 demonstrated the same direction of effect across all years. Among

these, several also were significant effects in 2022, including four SNPs

associated with Fv/Fm, two SNPs associated with FNO, and four SNPs
associated with FNPQ. Notably, two SNPs associated with Fv/Fm and

one SNP associated with FNO were significant across all years,

including night and day measurements (Table 3). For the 12

qualified SNPs identified in the 2022 GWAS analysis, eight showed

an identical direction of effect across all years, and one of these

remained significant in 2021 (Table 3). These findings suggest that

while some genetic variants have consistent effects on photosynthetic

fluorescence across years, others are more influenced by environmental

factors, such as daytime-induced factors in 2020 and the more extreme

environmental conditions encountered in 2022.
FIGURE 3

Results of resampling-based GWAS analysis of photosynthetic
fluorescence traits in maize. (A) Analysis of genetic markers linked to
variation in Fv/Fm, FNO and FNPQ using genetic marker and trait
data for 772 maize genotypes grown in a replicated yield trial in
Lincoln, NE in 2021. The position of circles on the x-axis indicates
the position of a given marker on the maize genome
pseudomolecules (B73: RefGen:V5). The position of circles on y-axis
indicates the resampling model inclusion probability (RMIP) assigned
to the same marker. The color of circles indicates the trait each
marker is associated with. Only markers with a RMIP≥0.01 are
shown. The maximum potential RMIP was 1.0. The y-axis is
truncated at 0.65 to improve readability. Horizontal dashed line
indicates the RMIP≥0.1 cutoff employed in this paper to prioritize
markers with strong evidence of an association between the
genomic interval and the trait(s) of interest. (B) Results of an
equivalent GWAS conducted for the same three phenotypes using
data from 306 maize genotypes collected in 2022.
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4 Discussion

Phenotyping of photosynthetic traits across large populations is a

powerful tool to identify genetic regions associated with photosynthetic

activity, however, collecting comparable traditional daytime

measurements from large populations in the field is often hindered

by environmental fluctuations. This study explored the potential of

nighttime fluorescence phenotyping as a more robust approach. By

leveraging natural dark adaptation and minimizing environmental

variability, nighttime measurements resulted in higher heritability

values for fluorescence traits and stronger signals in the GWAS

analysis (Table 1). Our study identified 37 SNPs associated with

photosynthetic fluorescence parameters in a maize diversity panel
Frontiers in Plant Science 07
over two field seasons (Figure 3, Table 2). Notably, two of these SNPs

were located near genes with known roles in photosynthetic efficiency

(Table 2), reinforcing the validity of nighttime phenotyping to identify

genetic regulators of variation in photosynthetic traits. Additionally,

several SNPs identified in 2021 were also associated with consistent

differences in photosynthetic traits in the data collected in 2022, through

consistent phenotypic trends in 2022 (Table 3), underscoring the

reproducibility of our findings. These results further support the

robustness of nighttime fluorescent phenotyping.

The challenge of measuring photosynthetic traits in comparable

ways across large populations in the field is explained, at least in

part, by the high sensitivity of photosynthesis to environmental

factors. Nighttime measurements offered a more stable
TABLE 2 Candidate genes close to significant SNPs.

Significant
SNP

Trait (RMIP) Year Candidate Genes Distance (bp) NCBI Gene Description

chr1:39614496 FNO (0.11) 2021 Zm00001eb012130 271
sigma-like factor2B, RNA polymerase

sigma factor

chr3:7881477
Fv/Fm (0.42);
FNPQ (0.22)

2021 Zm00001eb121540 5822
AGC (cAMP-dependent cGMP-dependent
and protein kinase C) kinase family protein.

chr5:1903250 FNPQ (0.11) 2021 Zm00001eb211140 2373 Biotin/lipoate A/B protein ligase family

chr5:188171960 FNPQ (0.18) 2021 Zm00001eb247160 2637 uncharacterized LOC100278954

chr6:91357973
Fv/Fm (0.12);
FNPQ (0.11)

2021 Zm00001eb271810 3316 no NCBI corresponding gene

2021 Zm00001eb271820 1465
photosystem II stability/assembly factor

HCF136, chloroplastic

chr6:170168594 Fv/Fm (0.19)
2021 Zm00001eb292850 2813 O-methyltransferase ZRP4

2021 Zm00001eb292870 3823 no NCBI corresponding gene

chr7:179748683 FNO (0.11)
2021 Zm00001eb329550 3823 uncharacterized protein family (UPF0114)

2021 Zm00001eb329560 9103 uncharacterized LOC100384059

chr10:61529016 FNO (0.15) 2021 Zm00001eb413410 5366 Transcription factor GTE7

chr4:172155326 FNO (0.22) 2022 Zm00001eb190300 8959 no NCBI corresponding gene

chr7:165666120 FNO (0.1) 2022 Zm00001eb323840 1175 CYCD6

chr1:62661444
Fv/Fm (0.49);
FNPQ (0.49)

2022 Zm00001eb017580 8745
glucose-1-phosphate adenylyltransferase

large subunit 2, chloroplastic/
amyloplastic-like

2022 Zm00001eb017590 2458
probable low-specificity L-threonine

aldolase 2

2022 Zm00001eb017600 2615 uncharacterized LOC100281999

chr4:18671778 FNPQ (0.17) 2022 Zm00001eb169300 2776 Galactolipase DONGLE chloroplastic

chr5:18763852 Fv/Fm (0.17) 2022 Zm00001eb218900 9120 nucleotide-binding protein pseudogene

chr10:147695751 Fv/Fm (0.11)
2022 Zm00001eb432170 3740 cysteine protease 1

2022 Zm00001eb432180 8025 no NCBI corresponding gene

chr9:54893176 Fv/Fm (0.14)
2022 Zm00001eb382440 4516 no NCBI corresponding gene

2022 Zm00001eb382450 9969 no NCBI corresponding gene
The following information is provided for each candidate gene: Trait (RMIP), the resampling model inclusion probability (RMIP) value from GWAS associated with the corresponding
fluorescence trait. Year, the year in which the SNP was identified in the GWAS analysis. Candidate gene, the name of the candidate gene(s) within 10 kb of the marker from the B73 genome (Zm-
B73-REFERENCE-NAM-5.0: Zm00001eb.1). Distance(bp), the physical distance between the marker and the center of the gene coding region in base pairs. NCBI Gene Description, indicates the
Gene description assigned to the gene by the National Center for Biotechnology Information. Traits are Fv/Fm, maximum quantum yield of photosystem II,FNO, quantum yield of non-regulated
energy loss, and FNPQ, quantum yield of regulated non-photochemical energy loss.
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environment with a narrower range of ambient temperatures (25.3

to 33.6°C) and humidity (43.2% to 75.5%) compared to daytime

(25.2 to 39.5°C and 36.7% to 75.4%). Additionally, the natural dark-

adaptation inherent to nighttime conditions provides a

standardized starting point for measurement across all samples

and is a recommended method of dark adaptation (Kalaji et al.,

2014). This is because during dark adaptation, photosystem II
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reaction centers return or remain in an ‘open’ state, ready to

absorb light and initiate photosynthetic electron transport (Baker,

2008). Nighttime collection standardized all plants to this initial

state, and the consistent modulated light protocol applied by the

MultiSpeQ measuring instrument minimized the impact of varying

light intensity during daytime collection. Light intensities vary

meaningfully in field conditions as wind alters shadows cast by
TABLE 3 Consistency of SNPs Effects Across Years.

SNP REF Trait Year 2020(Day) 2021(Night) 2022(Night)

chr2:88492028 T Fv/Fm 2021 - (*) - (****) - (*)

chr8:37792190 G Fv/Fm 2021 - (**) - (****) - (*)

chr7:179748683 G FNO 2021 - (**) - (****) - (*)

chr6:91357973 A Fv/Fm 2021 - (ns) - (****) - (***)

chr8:93033455 C Fv/Fm 2021 + (ns) + (****) + (***)

chr1:39614496 C FNO 2021 - (ns) - (****) - (*)

chr2:88492028 T FNPQ 2021 + (ns) + (****) + (*)

chr2:88496754 G FNPQ 2021 + (ns) + (****) + (*)

chr6:91357973 A FNPQ 2021 - (ns) + (****) + (**)

chr8:93045879 G FNPQ 2021 + (ns) + (***) + (**)

chr5:188171960 G FNPQ 2021 + (*) + (****) + (ns)

chr3:7881477 T Fv/Fm 2021 - (ns) - (****) - (ns)

chr5:21861350 G FNO 2021 + (ns) + (****) + (ns)

chr10:61529016 A FNO 2021 - (ns) - (ns) - (*)

chr3:7881477 T FNPQ 2021 - (ns) + (****) - (ns)

chr4:151549745 C FNPQ 2021 - (ns) - (***) - (ns)

chr5:1903250 T FNPQ 2021 + (ns) + (****) + (ns)

chr7:10158810 A FNPQ 2021 + (ns) + (****) + (ns)

chr5:18763852 T Fv/Fm 2022 - (ns) - (***) - (***)

chr6:18990067 G Fv/Fm 2022 - (ns) + (ns) - (**)

chr6:18990114 T Fv/Fm 2022 - (ns) + (ns) - (**)

chr9:54893176 T Fv/Fm 2022 - (ns) - (ns) - (*)

chr4:172155326 C FNO 2022 - (ns) - (ns) - (***)

chr7:165666120 T FNO 2022 + (ns) + (ns) + (****)

chr10:61377705 A FNO 2022 + (ns) + (ns) + (****)

chr10:61394529 A FNO 2022 + (ns) + (ns) + (****)

chr4:18671778 A FNPQ 2022 - (ns) - (ns) - (***)

chr5:210726575 C FNPQ 2022 + (ns) + (ns) + (**)

chr6:18990067 G FNPQ 2022 + (ns) - (ns) + (**)

chr9:11153053 T FNPQ 2022 + (ns) - (ns) + (***)
Summarized unpaired two-tailed t-tests comparing photosynthetic fluorescence phenotype best linear unbiased prediction (BLUP) values for individuals carrying either the reference or
alternative alleles of significant SNPs present in both marker sets. SNP indicates chromosomal position. Bolded SNPs had the same direction of effect across all years, and all effects were
significant. REF indicates the base of the reference allele. Traits are Fv/Fm, maximum quantum yield of photosystem II, FNO, quantum yield of non-regulated energy loss, and FNPQ, quantum
yield of regulated non-photochemical energy loss. Year indicates the season each SNP was identified as significant by GWAS. In 2020, 2021, and 2022 columns, results of t-tests between
fluorescence trait BLUPs comparing reference and alternative alleles within that year are reported. "-" or “+” indicate that individuals with reference alleles have higher or lower BLUP values,
respectively. Significance is indicated by asterisks (*, p<0.05; **, p<0.01; ***, p<0.001). ns, non-significant.
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the plant and cloud cover, and varying light intensity has strong

impacts on photoinhibition and photosynthetic efficiency (Alter

et al., 2012; Han et al., 2023). While some instruments attempt to

correct for this by using far-red light to approximate a measurement

of Fv/Fm during daytime (e.g., LI-COR, MultiSpeQ used here), we

observed relatively higher FNPQ and FNO values coupled with

lower Fv/Fm in non-normalized fluorescence values in daytime

versus nighttime measurements. This effect was consistent with

that observed previously in pre-dawn measurements versus field

daytime measurements (Demmig-Adams et al., 2012). These

differences provide direct evidence that dark adaptation at night

is a more consistent measurement of photosynthetic fluorescence,

likely because of its effectiveness at resetting short-term

energy dissipation strategies (i.e., NPQ and NO) and opening

reaction centers.

Previous research reported heritability of photosynthetic

fluorescence traits ranging from 0.08 to 0.38 in field experiments,

with variations depending on the specific traits measured and

phenotyping methods used. For Fv/Fm in Hao et al., 2012 using

different chlorophyll meter; FNO and FNPQ in Dramadri et al.,

2021 using MultiSpeQ; Fv’/Fm’, FNO and FNPQ in Liu et al., 2023

using MultiSpeQ. By minimizing environmental effects through

nighttime measurement (Figure 1, Supplementary Table S1), we

observed higher heritability values for fluorescence traits compared

to daytime collection (Table 1). Higher heritability led to stronger

signals in the GWAS analysis (Figure 3). Despite the smaller and

only partially overlapping population phenotyped in 2022 and the

challenging growth conditions in Nebraska that year (USDA NASS,

2022 Census of Agriculture), nearly half of the significant SNPs

identified in the 2021 GWAS analysis replicated their effects on

fluorescence phenotypes in 2022 (Tables 2, 3).
4.1 Genetic factors contributing to maize
photosynthetic parameters

The photosynthesis field has been aware of the value of night for

dark adaptation for some time (Logan et al., 1999; Demmig-Adams

et al., 2012). Intriguingly, it has been suggested that nighttime

measurements are more likely to report longer-term adaptation

responses (e.g., stress) more accurately than daytime measurements

(Kalaji et al., 2014). In support of this idea, Nunes and colleagues

compared pre-dawn and daytime measurements of Fv/Fm in

cowpeas treated with drought or control conditions, finding that

only pre-dawn measurements correlated with treatment (Nunes et

al., 2022). We applied this relatively simple idea to a maize diversity

panel to identify genes that might contribute to longer-term

adaptation in our field environments. Among the two candidate

genes with known links to photosynthesis, Zm00001eb271820,

located on chromosome 6 and near the SNP marker, was

significantly associated with Fv/Fm and FNPQ traits (Table 2),

and is particularly noteworthy. This gene is named after its

Arabidopsis homolog, whose mutant phenotype causes “high

chlorophyll fluorescence”, HCF136 (Meurer et al., 1998). It was

also identified and studied in maize through a transposon-tagging
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screen (Kolkman et al., 2005). Mutants lacking HCF136 in maize

and Arabidopsis have reduced levels of PSII complexes and altered

thylakoid grana in their mesophyll chloroplasts (Meurer et al., 1998;

Plücken et al., 2002; Covshoff et al., 2008). HCF136 directly affects

the levels of PSII complexes through its effect on D1 assembly

(Meurer et al., 1998; Covshoff et al., 2008) and synthesis

(Chotewutmontri et al., 2020). This highlights the role of HCF136

in maintaining photosystem II, providing a potential explanation

for its association with the photosystem II traits Fv/Fm and FNPQ

observed in our study (Table 2).

The second candidate gene, Zm00001eb012130, located on

chromosome 1, was associated with the FNO trait (Table 2). The

gene is named ZmSIG2B, and its function in maize is supported in

part by its similarity to its Arabidopsis homolog (AtSIG2), which

encodes an RNA polymerase sigma factor (Lahiri et al., 1999). In

plants, sigma factors regulate chloroplast gene expression and

differentiation (Fu et al., 2021). Arabidopsis lacking AtSIG2, sig2-

1, had a pale-green phenotype and reduced PSII proteins

(Kanamaru et al., 2001). Rather than directly affecting

transcription of the genes encoding PSII components, AtSIG2 is

involved in transcription of plastid-encoded tRNAs essential for

chloroplast development (Kanamaru et al., 2001; Fu et al., 2021).

Additionally, subcellular fractionation and in vitro transcription

assays have provided evidence that ZmSIG2B functions as a sigma

transcription factor in maize chloroplasts (Beardslee et al., 2002).

Expression analysis of closely related rice orthologs OsSIG2A and

OsSIG2B, confirmed that these SIG2 homologs are involved in

transcriptional regulation of chloroplast genes in rice (Kasai et al.,

2004; Fu et al., 2021). Collectively, the evidence points to ZmSIG2B

as a likely though indirect regulator of photosynthetic efficiency

through its involvement in chloroplast transcription.

The SNPs identified in our GWAS analysis tend to exhibit

consistent phenotypic effects across years, particularly for Fv/Fm and

FNO traits (Table 3), which is likely to be related to the higher

heritability in 2020 (Table 1). We examined if any SNPs overlapped

with previous research employing a different measurement assay in

the same maize population (Sahay et al., 2024). We did not identify

any identical SNPs, however, one SNP associated with Fv/Fm in our

study was located within a 50 kb interval containing 22 signals

reported in that study, where the nearest signal is 83bp away from

our SNP (Supplementary Table S5). In our study, this SNP also was

one of the most consistent, with statistically significant similar

effects across all three years of data employed in this study (Table 3).
4.2 Limitations of nighttime photosynthesis
measurements

While nighttime fluorescence measurements offer several

advantages for phenotyping, they also have certain inherent

limitations. First, nighttime measurements cannot capture traits

directly related to variable light environments, and other rapid

environmental shifts experienced during the day (Kalaji et al.,

2014). Second, there is a potential that the prolonged dark

adaptation of night induces physiological changes that may
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influence measurements. Finally, nighttime is unlikely to be an ideal

time to measure aspects of photosynthesis beyond fluorescence

parameters, such as carbon assimilation. This is because carbon

assimilation depends on stomatal opening, which increases at night

(Caird et al., 2007). However, our data suggest that stomatal closure

had little impact on fluorescence measurements. In C4 plants like

maize, the separation of light and carbon fixation limits the

influence of stomatal behavior, and dark adaptation further

stabilizes the system. Consistently high Fv/Fm, low NPQ values,

and stable environmental conditions across the field measurements

(Figure 1, Supplementary Table S2)support the reliability of

nighttime phenotyping in this context.
5 Conclusion

Our study demonstrates the advantages of nighttime

fluorescence phenotyping for identifying genetic factors associated

with a subset of photosynthetic traits. By minimizing environmental

variability and providing a standardized starting point for

measurements, nighttime phenotyping enhances the heritability of

fluorescence parameters and reduces the influence of non-genetic

factors. Despite the challenges posed by weather variations and the

limitations of GWAS analysis, we identified multiple SNPs

associated with photosynthetic traits. Notably, several of these

SNPs are located near genes with known roles in photosynthesis,

suggesting the potential for genetic improvement in this area. While

nighttime phenotyping has certain limitations, our findings

highlight its value as a tool for uncovering genetic regions related

to photosynthesis. By incorporating nighttime phenotyping into

breeding programs, researchers can accelerate the development of

crop varieties with improved photosynthetic efficiency.
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