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Assessing and predicting the spatial-temporal characteristics of extreme climate 
events can effectively identify the impacts of climate change on crop production 
and propose targeted measures. This study systematically evaluates the intensity 
and spatiotemporal evolution of extreme climate events during critical 
phenological stages in China’s major rice-growing regions based on 11 
extreme climate indices (ECIs). The future climate data were obtained from 18 
Global Climate Models (GCMs) integrated in the Coupled Model Intercomparison 
Project phase 6 (CMIP6) with four shared socio-economic pathways (SSPs) to 
project the future changes of ECIs related rice production. The results indicate 
that the multi-model ensemble constructed via the Independence Weighted 
Mean method (IWM) significantly outperformed both the arithmetic mean 
method (AM) and individual GCMs in replicating observed trends of 11 ECIs 
during the historical period (1981–2014), with notable reductions in root mean 
square error (RMSE) for certain indices. The projections reveal that under the 
SSP585 scenario, the duration of extreme heat events (e.g., HD) in southern 
China will increase by 12–18 days by the 2080s compared to the historical period 
(1981–2014), representing the highest increase among all scenarios. The extreme 
drought events (e.g., D-Vgp) in northeastern China are projected to reach 14.8, 
9.7, and 9.7 days by the 2040s, further rising to 14.3, 10.0, and 10.3 days by the 
2080s. The extreme precipitation events are predominantly concentrated in 
southwestern and southern China, with consecutive wet days (CWD) showing 
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limited increase within 3 days. The findings highlight that China’s rice cultivation 
will face intensified extreme climate challenges in the future, particularly extreme 
heat stress, necessitating urgent adaptive strategies to mitigate the adverse 
impacts of climate change on rice production. 
KEYWORDS 

rice system, extreme climate indices, multi-model ensemble, global climate 
model, CMIP6 
1 Introduction 

The Special Report on Global Warming of 1.5°C from the 
Intergovernmental Panel on Climate Change’s (IPCC) Sixth 
Assessment Report indicates that anthropogenic climate change 
has already elevated global surface temperatures by approximately 
1.0°C (0.8–1.2°C) above pre-industrial levels. Furthermore, the 
report projects that global warming is likely to reach 1.5°C 
between 2030 and 2052 under current emission trajectories 
(IPCC, 2018). Several empirical studies confirm that rising 
temperatures do lead to an increase in the frequency and severity 
of extreme climate events (Almazroui et al., 2020; Dong et al., 2018; 
Wu et al., 2020). Previous research has found that changes in 
precipitation increased linearly with the increase in temperature, 
and the frequency of extreme precipitation also increased 
significantly (Knutti et al., 2016). Specially, China has witnessed a 
10% surge in extreme precipitation (extreme precipitation is 
determined by relative threshold method) since 2000 (Jian et al., 
2021), and this increase has been particularly significant in the 
middle and high latitudes (Allen and Ingram, 2002; Trenberth, 
2011). Agricultural production is sensitive to extreme climate 
events, which can significantly impact crop cultivation and 
jeopardizing food security (Bai et al., 2021; Xiao et al., 2022; Chen 
et al., 2024). Generally, the effects of extreme climate events on crop 
yield are stronger and more harmful than that of the average 
climate. Related studies analyzing historical data have indicated 
that extreme climate change has caused significant fluctuations in 
global food production on an annual basis, especially in South Asia 
and China (Shi et al., 2024; Donat et al., 2017; Gao et al., 2002; 
McPhillips et al., 2018; Orlowsky and Seneviratne, 2012). 

Rice production is critical for global food security, as it serves as 
a staple food for more than half of the world’s population (De Vos 
et al., 2023). As the world’s largest producer and consumer of rice, 
China produced over 28% of the total global rice supply, and more 
than 65% of Chinese households rely on rice as their staple food 
(National Bureau of Statistics of China, 2017). China’s production 
volatility directly impacts global markets (Godfray et al., 2010). In 
recent decades, the frequency and intensity of extreme climate 
events during the growth of rice have significantly increased, and 
their impact on rice production in China has become increasingly 
obvious (Zhai et al., 2005; Xiong et al., 2016; Tao and Zhang, 2013). 
02 
During the heading and flowering period of rice, the extreme high 
temperature may lead to a sharp decline in photosynthesis and an 
increase in transpiration, leading to flower and fruit abortion, 
resulting in a higher empty shell. In addition, low temperature 
damage at the filling period and maturity period may delay the 
maturity (Guo et al., 2019). The study have shown that rice yield has 
decreased by 1.5–9.7% due to heat stress over the past three decades 
in China (Shi et al., 2015; Zhang et al., 2016). In contrast, the 
average intensity of rice exposure to cold stress during the near 
future (2021–2050) under the Representative Concentration 
Pathways (RCP) 8.5 scenario is projected to be lower than that 
during the historical period of 1980–2008 (Wang et al., 2016). In 
addition, rice cultivation is highly sensitive to precipitation (Wang 
et al., 2018). Relevant studies indicated that the frequency of 
extreme precipitation decreased in the rice producing areas of 
northeast and southwest China from 1951 to 2004, while the 
frequency of extreme precipitation increased in the western 
region and the middle and lower reaches of the Yangtze River in 
South China (Jian et al., 2020). Rice-growing regions are also at risk 
of increasing drought trends in China (Li et al., 2009; Tao et al., 
2013a). In the future, rice will face more frequent extreme 
temperatures and simultaneous stresses of drought and flood 
during its critical development stages (Rang et al., 2011). 
Although existing study has clarified the correlation between 
extreme climate events and rice production in historical periods, 
there is a lack of quantitative analysis on future extreme climate 
events during rice phenological stages and their temporal and 
spatial variation characteristics. 

Global Climate Models (GCMs) have been widely used for 
climate change impact assessments (Jiang et al., 2012; Sillmann and 
Roeckner, 2008). However, their coarse temporal and spatial 
resolutions increase prediction uncertainties, particularly in 
China’s major rice-producing regions characterized by complex 
topography and intensive cultivation systems, where these 
limitations severely constrain agriculture impact assessments at 
regional scales (He et al., 2018). Therefore, it needs a method to 
optimize the limitations of different GCMs for assessing future 
climate condition (Knutti and Sedlacek, 2013; Tebaldi and Knutti, 
2007). Recent studies have demonstrated that multi-model 
ensemble approaches can optimize the limitations of individual 
GCM by combining their predictive strengths through weighted 
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methods (Asseng et al., 2013; Li et al., 2015a). Specifically, multi-

model ensembles could combine results from various GCMs using 
weighted methods such as Bayesian methods to reduce 
uncertainties (Tebaldi et al., 2005). Among these, the Independent 
Weighted Mean method (IWM) developed by Bishop and 
Abramowitz (2013) has shown superior performance over 
traditional arithmetic averaging method by accounting for inter-
model dependencies through error covariance matrices. Recent 
relevant empirical studies have proved that this progress is 
particularly valuable in the assessment of agricultural climate 
risks (Bai et al., 2021; Xiao et al., 2022; He et al., 2018). 

Despite these methodological advancements, existing research 
predominantly focuses on single climatic factors, lacking 
comprehensive analysis of combined climate stresses (e.g., heat 
stress, cold damage, drought and flooding) during critical rice 
phenological stages, especially the quantitative and spatio
temporal evolution characteristics of extreme climate events 
during rice production under different emission scenarios (Zhao 
et al., 2022). The extreme climate index (ECI) can characterize the 
intensity and frequency of extreme climate events stress during rice 
growth period. The scientific assessment of extreme climate events 
during key phenological periods in major rice producing areas in 
China based on ECI can provide a reference for the government and 
farmers to rationally arrange rice production and cope with climate 
risks. Therefore, this study employs daily climate data from 18 
GCMs provided by the Coupled Model Intercomparison Project 
Phase 6 (CMIP6), combined with the Independent Weighting 
Method (IWM) to construct 11 representative ECIs. These indices 
quantitatively characterize climate stress intensity and frequency 
across the entire rice growth, spanning historical (1981-2014) and 
future periods (2031-2060, 2071-2100) under four SSP scenarios. 
The primary objectives of this study are: (1) to predict the stress of 
extreme climate events (e.g., heat stress, cold stress, drought stress, 
and precipitation stress) defined by ECIs in the 21st century; (2) to 
explore projected temporal trends and spatial patterns of future 
ECIs under different warming scenarios. The findings will enhance 
understanding of climate change risks, particularly the impacts of 
extreme climate events on China’s rice cultivation regions, and 
facilitate the translation of climate projections into actionable 
agricultural adaptation strategies. 
2 Materials and methods 

2.1 Study area 

The study areas in China exhibit diverse environments and rice 
planting structures, characterized by varying cropping intensity and 
cultivation practices. Taking these differences into account, the 
entire study area was divided into five subregions according to 
rice cropping system and growing environment (Supplementary 
Table S1). Specifically, the early-rice and single-rice areas include 
Zone I, Zone II, Zone III, Zone IV and Zone V, and the late-rice 
areas include Zone III, Zone IV and Zone V (Luo et al., 2020). Due 
to the spatial overlap of the planting areas of early-rice and late-rice, 
Frontiers in Plant Science 03 
in order to facilitate the display of results, we classify early-rice and 
single-rice into one category, and late-rice into one category. To 
ensure clarity in result visualization, early-rice and single-rice were 
amalgamated into a single legend category based on their spatial 
overlap characteristics (Figure 1). 
2.2 Climate data 

We selected 18 GCMs (Table 1) which provided both historical 
and future climate projections from CMIP6 based on the availability 
and completeness, focusing on daily total precipitation, daily mean 
temperature (Tmean) and maximum temperature (Tmax). The 
historical data from 1981–2014 were selected as the historical 
period. In order to capture representative climate scenarios in the 
future, four Shared Socioeconomic Pathways (SSPs), including 
SSP126, SSP245, SSP370 and SSP585, were selected in this study. 
The SSP126 represents the updated Representative Concentration 
Pathway 2.6 (RCP2.6) scenario, assuming that sustainable 
development is achieved through global cooperative governance 
and a radiative forced stability of 2.6 W m-2 is realized by 2100. The 
SSP245 represents the mid-path development trajectory of climate 
policy implementation, corresponding to the moderate socio
economic challenges and 4.5 W m-2 forcing of RCP4.5. The 
SSP370 maintains a regional competition path characterized by 
the adoption of lenient climate policies and the mitigation of 
greenhouse gas emissions, combining a strong reliance on fossil 
fuels with 7.0 W m-2 forcing in 2100. Finally, the SSP585 reflects the 
fossil fuel development model of RCP8.5, predicting unconstrained 
growth driven by high energy demand to reach 8.5 W m-2 in 2100, 
presenting the worst-case scenario without policy intervention 
(Eyring et al., 2016; Meinshausen et al., 2011). This scenario 
selection can conduct a comprehensive assessment of climate 
impact under different emission limits and social response 
frameworks. To address differences in spatial resolution among 
the different GCMs, we employed the Double Line Interpolation 
Method (DLIM) to interpolate the data onto a uniform grid of 
0.25°×0.25°. Subsequently, the Delta Change Method (DCM) was 
applied to perform monthly deviation correction for CMIP6 data, 
using the historical period of 1981–2014 as the base for 
deviation correction. 

To evaluate the ability of each GCM in simulating extreme 
climatic events in rice-growing areas of China over historical 
periods, daily total precipitation, daily mean temperature and 
maximum temperature data (https://cds.climate.copernicus.eu/) 
from the reanalysis dataset ECMWF Reanalysis v5 (ERA5) were 
used as observations. ERA5 was the latest reanalysis dataset by the 
European Centre for Medium-Range Weather Forecasts (ECMWF), 
offering a spatial resolution of 0.25°×0.25° and a temporal 
resolution of 1 hour. Its high resolution is particularly suitable for 
capturing regional climate variability in China, including the rice-
growing areas. ERA5 has been extensively validated against 
observational data in previous studies, demonstrating its 
reliability for temperature, precipitation, and extreme climate 
event analysis in East Asia, including China (Xu et al., 2022). 
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2.3 Phenology data 

In order to accurately assess extreme climate events during rice 
growth period, three key phenological stages of rice (i.e., 
transplanting date, heading date and maturity date) were 
combined in this study. Rice phenology data are sourced from the 
ChinaCropPhen1km dataset (https://figshare.com/), which is a 
comprehensive dataset of crop phenology dataset in China from 
2000 to 2019. The dataset was developed using Global Land Surface 
Satellite (GLASS) Leaf Area Index (LAI) products and has been 
validated against agricultural meteorological stations operated by 
the China Meteorological Administration, demonstrating high 
accuracy with an error of less than 10 days (Luo et al., 2020). In 
this study, the multi-year average values of the three phenological 
stages from 2000 to 2019 were calculated, with a spatial resolution 
of 1km. Subsequently, the average phenological values were 
aggregated at the 0.25°×0.25° grid scale to obtain the rice 
phenological data used in this study (Supplementary Figures 
Frontiers in Plant Science 04
S1, S2). Due to different growth stages of rice have different 
sensitivity to climate conditions, we divided the whole growth 
stage into two stages, namely vegetative growth period from 
transplanting to heading, and reproductive growth period from 
heading to maturity. 
2.4 Extreme climate indices 

To systematically assess the frequency and intensity of extreme 
climate events during critical phenological phases of rice, this study 
selected 11 Extreme Climate Indices (ECIs) with explicit agronomic 
significance based on rice physiological vulnerability and disaster 
chain transmission mechanisms. The definitions of these indices are 
based on a synthesis of previous research and national climate and 
crop standards. Details of these 11 ECIs are shown in Table 2. These  
ECIs include 7 extreme temperature indices, i.e., hot days (HD), 
consecutive hot days (HCD), extreme heat days (EHD), consecutive 
FIGURE 1 

The spatial distribution region of rice cultivation in China. The specific rice system is shown in the table at the bottom left of the figure. 
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TABLE 2 Definitions of the 11 extreme climate indices (ECIs) used in this study. 

ID Abbreviation Index Definition Units 

1 HD Hot days The number of days with Tmean ≥ 30 °C from heading to maturity d 

2 HCD Consecutive hot days The number of days with three or more continuous days of Tmean ≥30 °C from heading 
to maturity 

d 

3 EHD Extreme heat days The number of days with Tmax ≥ 35°C from heading to maturity d 

4 ECD Consecutive extreme heat days The number of days with three or more continuous days of Tmax ≥ 35°C from heading 
to maturity 

d 

5 HDD Heat degree days The sum of the degrees by which Tmax ≥ 35°C over three or more continuous days from 
heading to maturity 

°C 

6 MCD Mild cold days The number of days with two or more continuous days of Tmean ≤ 17 °C from transplanting 
to heading 

d 

7 SCD Severe cold days The number of days with three or more continuous days of Tmean ≤ 22 °C from heading 
to maturity 

d 

8 D-Vgp Drought events in 
vegetative phases 

The number of days with daily precipitation<1 mm with ten or more days from transplanting 
to heading 

d 

9 D-Rgp Drought events in 
reproductive phases 

The number of days with daily precipitation<1 mm with ten or more days from heading 
to maturity 

d 

10 HPD Heavy precipitation days The number of days with daily precipitation ≥ 50 mm from transplanting to maturity d 

11 CWD Consecutive wet days The number of days with five or more continuous days of daily precipitation ≥ 20 mm from 
transplanting to maturity 

d 
F
rontie
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TABLE 1 The 18 global climate models (GCMs) used in this study. 

Code GCM name Abbreviation Country Spatial resolution 

1 ACCESS-CM2 ACC1 Australia 1.88°×1.25° 

2 ACCESS-ESM1-5 ACC2 Australia 1.88°×1.25° 

3 CanESM5 CAN Canada 2.81°×2.79° 

4 CMCC-ESM2 CMC Italy 1.25°×0.94° 

5 EC-Earth3 ECE1 Europe 0.7°×0.7° 

6 EC-Earth3-Veg ECE2 Europe 0.7°×0.7° 

7 EC-Earth3-Veg-LR ECE3 Europe 1.13°×1.12° 

8 FGOALS-g3 FGO China 2.8°×2.8° 

9 CFDL-ESM4 GFD United States 1.25°×1° 

10 INM-CM4-8 INM1 Russia 2°×1.5° 

11 INM-CM5-0 INM2 Russia 2°×1.6° 

12 IPSL-CM6A-LR IPS France 2.5°×1.27° 

13 KACE-1-0-G KAC South Korea 1.88°×1.25° 

14 MIROC6 MIR Japan 1.41°×1.4° 

15 MPI-ESM1-2-HR MPI1 Germany 0.94°×0.94° 

16 MPI-ESM1-2-LR MPI2 Germany 1.88°×1.86° 

17 MRI-ESM2-0 MRI Japan 0.94°×0.94° 

18 NorESM2-MM NOR Norway 1.25°×0.94° 
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extreme heat days (ECD), heat degree days (HDD), mild cold days 
(MCD) and severe cold days (SCD). The seven temperature-related 
indices were developed according to the national standard file 
and previous empirical study (GB/T 27959-2011, 2012; He et al., 
2018; Huang et al., 2017). In addition, the vegetative phase drought 
index (D-Vgp) and the reproductive phase drought index (D-Rgp) 
were established following the standard of classification for drought 
severity (SL424-2008, 2009), and 2 extreme precipitation indices, 
heavy precipitation days (HPD) and consecutive wet days (CWD) 
from the definition and classification of rainstorm by China 
Meteorological Administration to evaluate waterlogging and disease 
risks (CMA, 2012). Based on the average phenology of rice from 2000 
to 2019, we calculated these ECIs for the historical period and the 
future period across the five rice-growing subregions. 
 

 

2.5 Bias correction 

GCMs have been used in many studies of historical climate 
evolution and climate change projections under future different 
emission scenarios (Hamadalnel et al., 2022). However, the 
systematic deviation of GCM will greatly affect the reliability of 
historical simulation and future prediction, so it is an effective 
means to improve the evaluation effect of regional climate change 
model by correcting the systematic error of GCMs and then 
conducting simulation and prediction. The Delta Change Method 
(DCM) was commonly method used to conduct bias correction 
(Maraun and Widmann, 2018). The formula for temperature 
variables as follows (Equation 1): 

TDCM 
obs(m) − TThis 

sim (y, m, d) =  Tsim(y, m, d) + (TThis 
sim(m)) (1) 

Precipitation is bounded below by zero and covers different 
orders of magnitude across different regions. A multiplicative rather 
than additive bias correction is therefore more common when 
applying the DCM for precipitation, which corresponds to 
applying the simulated relative change to the observations 
(Maraun and Widmann, 2018). The formula for precipitation is 
estimated as (Equation 2): 

Phis 

PDCM T
obs (m)

sim (y, m, d) =  Psim(y, m, d) X 
Phis (m) 

(2)T
sim 

where y (y = 1981, 1982… 2100) denotes the year; m (m = 1, 2… 
12) is the mth month of the yth year; d is the dth day of the mth 
month of the yth year. obs was the observational data (i.e., ERA5 
data); his was the history data of GCMs; sim was the simulated data 

Phisof GCMs. Tobs(m) is the multi-year monthly average precipitation of 
mth month of the observation data during the historical period 

Phis(1981–2014); Tsim(m) is the multi-year monthly average 
precipitation of mth month of GCMs during the historical period 
(1981–2014); TThis 

obs(m) is the multi-year monthly average daily 
temperature of mth month of the observation data during the 
historical period (1981–2014); TThis 

sim(m) is the multi-year monthly 
average daily temperature of mth month of GCMs during the 
Frontiers in Plant Science 06
historical period (1981–2014). PDCM (y, m, d) and  TDCM (y, m, d)sim sim 

were used for bias correction of precipitation data and daily 
temperature  (e.g. ,  average  temperature  and  maximum  
temperature) data, respectively. 
 

2.6 Multi-model ensemble method 

Due to the complexity of the climate system, an individual 
global climate model (GCM) often fails to adequately and accurately 
describe climate change. The combined results from multiple 
models are based on the underlying assumption that errors tend 
to cancel out when the models are independent (Wang et al., 2016). 
In this study, Arithmetic Mean (AM) and Independence Weighted 
Mean (IWM) (Bishop and Abramowitz, 2013) are employed to 
generate multi-mode ensemble of ECIs. The IWM determines the 
optimal weighted coefficients for each GCM by minimizing the 
Mean Square Error (MSE) between the ensemble results 
and observed values. The calculation formula is as follows 
(Equations 3 and 4): 

J 
j j)2(me − y (3)o 

j=1 

K 
j T j jme = w x = owkxk (4) 

k=1 

where j (j = 1, 2… j) is the time interval of ECIs, k (k = 1, 2… k) 
is the number of GCM pattern categories (in this study, j=34 and 

jk=18); me is the multi-model ensemble result of ECIs in the jth year; 
yj is the ECIs observed in the jth year; w = ½w1, w2,  …, wk,  …, wK ]T ; 
j j j j jx = ½x1, x2, …xk, …xK ]T ; wk is the coefficient of the kth linear 
combination of GCMs; xj is the ECIs of year j in the kth GCMk K 
model. In addition, in order to make sure owk = 1, this constraint 

k=1term is solved using the Lagrange multiplier (l): 

F(w, l) =  1 
2 

1 
J−1 o 

J 

j=1 
(mj 

e − yj)2 

" # 
− l

 
o 
K 

k=1 

wk

 
−1

 ! 
(5) 

The solution of Equation 5 can be expressed as: 

A−11w = (6)
1TA−11 

K (xj−yj)(xj−yj)T 
k=1A = o (7)

J−1 

where 1T = ½1, 1, …, 1]; A is the sample-based estimate of the 
covariance of the bias-corrected errors between all the ensemble 
members (Equations 6 and 7). 

However, due to the characteristics of HDD, certain regions 
may not be affected by extreme climatic events, resulting in some 
GCM data from CMIP6 having no value at specific grid points. 
Hence, when performing the multi-model ensemble using IWM, 
the simulation results for HDD will be missing. Therefore, we only 
calculate the arithmetic mean of multiple GCMs for HDD. 
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2.7 Data evaluation method 

The Taylor diagram (Taylor, 2001) is a graphical representation 
that allows for a visual comparison the differences between model 
data and observed data. In this study, the observational reference 
data were obtained from the ERA5 reanalysis dataset provided by 
the European Space Agency (ESA). The ERA5 dataset serves as a 
benchmark for evaluating the statistical performance of model 
outputs, including metrics such as correlation coefficients, 
standard deviation, and root-mean-square error (RMSE) relative 
to actual observations. 

In this study, the Taylor diagram is used to assess the reliability 
of the 11 ECIs calculated from the 18 GCMs, the multi-model 
ensemble results using Arithmetic Mean (AM), and Independent 
Weighted Mean (IWM). The correlation coefficient (R), standard 
deviation (SD) and root mean square error (RMSE) between the 
ECIs simulated by CMIP6 model and the ECIs calculated by ERA5 
data were analyzed for the historical period (1981-2014). The RMSE 
is defined by the following formula (Equation 8): 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
n oj=1

(Xsim,j−Xobs,j)
2 

(8)RMSE = n 

where Xsim,j is the simulation value of the jth year, Xobs,j is the 
corresponding reanalysis data for the jth year. 
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Overall, Figure 2 illustrates the flow chart to project future 
extreme climate stress for rice based on CMIP6 projections under 
different warming scenarios in China. 
3 Results 

3.1 Spatiotemporal variation of historical 
extreme climate events affecting rice 
production 

During the historical period from 1981 to 2014, based on the 
ERA5 reanalysis dataset, extreme heat stress became the primary 
threat in the critical period of rice growth, and it was most significant 
in Zone III and Zone IV. In contrast, the duration of HD was limited 
to around 8 days in other regions such as Zone I, Zone II, and Zone V 
(Figure 3a). The highest temperature of HDD varied across the five 
zones, with values of 0.4 °C, 6.0 °C, 21.5 °C, 9.9 °C and 2.25 °C for 
Zone I, Zone II, Zone III, Zone IV and Zone V, respectively 
(Figure 3e). The central of Zone III, encompassing the Yangtze 
River basin, experienced the highest accumulated temperature, 
which is the major rice producing area in southern China. On the 
other hand, the late-rice in south China experienced less extreme heat 
stress than single-rice and early-rice in the growth period due to its 
FIGURE 2 

Flow chart of multi-model ensemble of CMIP6 projections for future extreme climate stress on rice under different climate scenarios in China. 
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later growing period (Figures 4a, e). Overall, the spatial distribution of 
HCD, EHD and ECD showed similar characteristics (Figures 3b–d, 
4b–d), while the southern rice growing area was more exposed to 
extreme heat stress than the northern one. 
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For single-rice and early-rice, cold stress was concentrated in 
Zone I and Zone IV (Figures 3f, g). The maximum duration of SCD 
was 62.4 days, 67.4 days, 36.2 days, 103.0 days and 1.5 days for Zone 
I, Zone II, Zone III, Zone IV and Zone V, respectively. As for late-
FIGURE 3 

The spatial distribution of extreme heat stress (a-e), extreme cold stress (f, g), extreme drought stress (h, i) and extreme precipitation stress (j, k) for 
single-rice and early-rice during historical period. 
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rice, the maximum duration of SCD was 69.8 days, 74.2 days and 
37.6 days (Figure 4g). The intensity and extent of cold stress were 
higher for SCD compared to MCD (Figures 4g, f). 

For single-rice and early-rice, the most pronounced drought stress 
areas located in the western of Zone I, with other affected areas 
Frontiers in Plant Science 09
including the western of Zone II, and the southern of Zone IV and 
Zone V in D-Vgp (Figure 3h). Severe drought stress was observed in 
west-southern of Zone I, as well as from the eastern of Zone II to Zone 
III, the eastern of Zone IV also cannot be ignored drought stress either 
in D-Rgp (Figure 3i). In the case of late-rice, the duration of drought 
FIGURE 4 

The spatial distribution of extreme heat stress (a–e), extreme cold stress (f, g) extreme drought stress (h, i) and extreme precipitation stress (j, k) for 
late-rice during historical period. 
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stress exceeded that of D-Vgp in terms of both spatial distribution and 
intensity persistence in D-Rgp (Figures 4h, i). The maximum values of 
the D-Rgp were 42.2 days, 16.0 days and 26.7 days in Zone III, Zone IV 
and Zone V, respectively. 

Precipitation stress showed a greater variation in the five zones. 
For single-rice and early-rice, the southern regions, primarily Zone 
III, Zone IV and Zone V, faced more intense precipitation stress in 
terms of HPD (Figure 3j). In general terms, the average number of 
CWD across five zones was less than 1 (Figure 3k). As for late-rice, 
the prolonged duration of precipitation stress in terms of HPD was 
distributed along the edges of Zone III, Zone IV, Zone V (Figure 4j). 
The maximum days of precipitation stress also occurred in western 
of Zone IV for CWD (Figure 4k), but the average number days was 
0.7 days, 0.3 days, 0.8 days, respectively. In summary, both the 
duration and intensity of precipitation stress for late-rice were 
greater than that for single-rice and early-rice. 
3.2 Comparison between observed and 
simulated extreme climate indices in 
1981–2014 

Figure 5 showed the Taylor diagram which were deviation-
corrected of each GCM, AM and IWM for 11 extremes indices 
during 1981–2014 of single-rice and early-rice. Deviation correction 
helps increase the correlation coefficient between the simulation 
results of certain ECIs and the reanalysis data, with the highest 
correlation coefficient reaching 0.9. Table 3 showed the root-mean

square error (RMSE) values which were calculated between each 
GCM, AM, IWM and observations for 11 extreme climate indices 
during 1981–2014 of single-rice and early-rice. The RMSE of some 
ECIs also decreased significantly (such as MCD, SCD etc.) 
(Table 3). IWM optimizes the weights by error covariance, which 
is more flexible than AM, but relies on a complete error covariance 
estimate. For variables with missing data, such as HDD, AM is more 
suitable because of its simplicity and stability. In addition, ECIs with 
low spatial coefficient are still greatly improved after multi-mode 
ensemble, which shows the effectiveness of the method. Overall, 
after applying deviation correction to each GCM, the simulation 
ability of extreme climate events is improved (Figure 5; 
Supplementary Figure S3). In terms of RMSE, the simulation 
ability of each GCM and its multi-model set results for extreme 
temperature events was also higher than that for extreme 
precipitation events. In addition, the IWM ensemble results 
calculated from GCM data with bias correction outperform the 
AM results in terms of RMSE (Table 3; Supplementary Table S2). 
These results suggest that deviation correction can reduce the errors 
and uncertainties associated with extreme climate events simulated 
by GCMs to a certain extent, and the IWM ensemble results, 
obtained using bias corrected GCM data, can better reproduce 
each extreme climatic event. In cases where the IWM cannot be 
used of multi-mode collection at certain raster points, the ensemble 
result from the AM can be used as a suitable alternative. 
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3.3 Multi model ensemble projections of 
extreme climate events in the 21st century 

Relative to the historical period, spatial-temporal changes in 
IWM simulated extreme climate indices under 4 future climate 
scenarios were shown as Figure 6; Supplementary Figure S4. Under 
different climate scenarios for four extreme stress events, the trend 
change of ECIs was significantly different. 

Compare to the historical period, it is obvious that extreme heat 
stress showed similar change characteristics during the key 
phenological period of single-rice and early-rice in all zones 
(Figures 6a–e, Supplementary Figures S5a–e, S6a–e, S7a–e, 
S8a–e). Cold stress exhibited a significant decreasing trend across 
all scenarios in Zone I. This trend is consistent with observed 
warming patterns and projected climate change impacts, potentially 
influencing rice cultivation practices and phenological timing in 
Zone I (Figures 6f, g). Drought stress and precipitation stress 
exhibited slight fluctuations overall, particularly HPD and CWD 
in Zone I (Figures 6h–k). The intensity of extreme heat stress and 
drought stress in Zone II is stronger than Zone I (Supplementary 
Figures S5a–e, S5h, i) and intensity of cold stress is lower than it, but 
the precipitation stress showed a more evident intensity of single-
rice and early-rice (Supplementary Figures S5j,k). In general, the 
extreme heat stress in Zone III was severe (Supplementary Figures 
S6a–e), the cold stress in Zone IV is the longest (Supplementary 
Figures S6f,g), the drought stress fluctuation is not obvious 
(Supplementary Figures S6h, i, S7h, i, S8h, i), and the 
precipitation stress displayed an upward trend in Zone III, Zone 
IV and Zone V (Supplementary Figures S6j, k, S7j, k, S8j, k). 

Regarding the trends of 11 ECIs in Zone III of late-rice, the 
variation of HD, HCD appeared to be more pronounced compared 
to EHD, ECD and HDD of extreme heat stress (Supplementary 
Figures S4a–e). The duration of MCD and SCD varied across 
regions, with Zone III, Zone IV, and Zone V exhibiting extended 
periods (Supplementary Figures S4f, g, S9f, g, S10f, g). The drought 
stress of late-rice exhibited slight temporal fluctuations, with 
distinct stress intensity patterns observed during D-Rgp and D-
Vgp (Supplementary Figures S4h, i, S9h, i, S10h, i). Precipitation 
stress all showed a slight upward trend in Zone III, Zone IV and 
Zone V under 4 different climate change scenarios (Supplementary 
Figures S4j, k, S9j, k, S10j, k). 

In the 2080s, extreme heat stress duration for single-rice and 
early-rice was higher than in the 2040s, especially in Zone III, Zone 
IV and Zone V (Figures 7a–e). Additionally, severe cold stress 
occurred in Zone I under MCD in the 2040s and in Zone IV under 
SCD in the 2080s (Figures 7f, g). Drought stress has evident impact 
in Zone II, which may be affected by the climate and location, it is 
also shows that the impact of less precipitation need to be studied. 
In general, the change amplitude of the Zone IV is more obvious, 
the Zone I is more stable (Figures 7h–k). The significant changes of 
extreme heat stress and cold stress index are consistent with the 
trend of future climate warming, which verifies the rationality of 
ECIs. Similarly, the high emissions scenario brings more dramatic 
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climate fluctuations. For late-rice, the duration of extreme heat 
stress in Zone IV is shorter, but the increasing trend of Zone III and 
Zone V in the 2080s is more obvious than that in the 2040s 
(Supplementary Figures S11a–e). MCD showed a significant 
descend change under 2080s than 2040s, while SCD showed 
descend trend in Zone IV (Supplementary Figures S11f, g). The 
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performance of drought stress and precipitation stress in Zone V is 
more obvious. In contrast, Zone III and Zone IV show more 
modest changes, with Zone IV generally showing the least 
change (Supplementary Figures S11h–k). Overall, the ECIs 
changes in different zones will be more drastic under the high 
emission scenario. 
FIGURE 5 

Taylor diagram for 11 extremes indices (a–k) of single-rice and early-rice during 1981–2014 for GCM (1-18), AM (19) and IWM (20). (C for observed 
data, • and • are simulation results without and with deviation correction treatment). 
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TABLE 3 Root mean square error between each GCM, the multi-model arithmetic mean, independence weighted mean and observed values for the 11 extreme climate indices during 1981–2014 of single-rice 
and early-rice, the shaded table is the RMSE of the GCM corrected for deviation, and the non-shaded table is the RMSE of the GCM not corrected for deviation. 
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11.3 11.4 9.8 10.3 10.4 8.6 2.1 2.0 1.9 3.8 

7.4 6.0 12.7 10.7 13.5 10.1 2.0 2.2 2.0 2.9 

8.2 11.6 10.6 11.1 11.0 8.2 1.9 2.5 2.1 3.6 
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GCMs HD (d) HCD (d) EHD (d) ECD (d) HDD (°C) MCD (d) 

ACC1 5.0 3.7 4.6 3.6 4.2 3.3 3.7 3.2 4.6 4.7 16.3 5.5 

ACC2 4.9 3.9 4.6 3.8 4.5 4.0 4.0 3.8 8.0 8.0 8.6 5.6 

CAN 5.2 3.8 4.6 3.7 4.5 3.7 3.9 3.5 4.5 4.1 8.4 5.2 

CMC 4.9 3.8 4.5 3.7 4.2 3.6 3.8 3.4 4.3 4.7 9.0 5.4 

ECE1 4.7 4.0 4.3 4.0 4.2 3.7 3.7 3.6 4.5 5.7 14.9 5.2 

ECE2 4.8 4.1 4.4 4.2 4.3 3.9 3.8 3.8 4.6 5.6 13.7 5.6 

ECE3 4.9 4.4 4.4 4.3 4.3 4.0 3.8 3.8 4.5 5.7 15.7 5.2 

FGO 8.6 4.1 8.1 3.9 12.2 3.7 11.3 3.4 22.9 4.4 17.1 5.3 

GFD 4.9 3.8 4.4 3.8 4.3 13.6 3.7 12.9 4.2 28.6 16.6 5.3 

INM1 5.0 4.3 4.4 3.9 4.3 4.0 3.6 3.4 4.1 4.1 7.3 5.3 

INM2 5.0 4.2 4.4 3.8 4.3 3.9 3.7 3.5 4.2 4.3 7.2 5.3 

IPS 4.9 4.0 4.4 3.7 4.3 3.9 3.8 3.5 4.6 4.1 10.3 5.2 

KAC 6.0 4.5 5.8 4.5 8.4 6.0 8.0 5.5 19.9 10.8 11.8 6.4 

MIR 5.3 15.7 4.9 15.2 8.2 4.3 6.9 3.8 11.8 6.1 6.9 7.9 

MPI1 5.1 8.6 4.6 8.7 4.4 6.2 3.8 6.1 4.3 9.0 8.0 6.7 

MPI2 5.0 16.3 4.4 16.6 4.3 12.8 3.6 12.8 4.1 26.7 13.0 8.0 

MRI 4.6 3.7 4.4 3.7 4.7 3.5 4.3 3.4 6.1 4.3 8.0 5.3 

NOR 7.0 16.9 6.7 16.8 7.4 14.4 6.7 13.5 9.8 35.0 7.2 8.1 

AM 4.2 3.8 3.9 3.8 3.7 3.4 3.4 3.3 4.4 5.6 8.1 3.9 

IWM 3.6 2.8 3.5 2.8 3.4 2.7 3.2 2.6 NA NA 5.3 3.7 

NA signifies the lack of the particular ECI. 
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Focusing on single-rice and early-rice, it can be observed that 
under 2040s the main extreme heat stress observed in the central of 
Zone III and the northeastern of Zone IV (Figures 8a, c, e, g). There 
is a significant increase in the strength of HD (Figures 8b, d, f, h), 
particularly in the southern of Zone V in SSP585 under 2080s 
(Figures 8h), with a linear increase in the intensity of HD as the 
social emission scenarios. The average number days of HD in four 
scenarios is 6.1 days (SSP126), 9.6 days (SSP245), 13.3 days 
(SSP370), 17.8 days (SSP585), respectively, which spatial 
distribution and duration intensity of HCD, EHD, ECD exhibit 
similar patterns to HD (Supplementary Figures S12–S14). However, 
the average number days of HDD differs notably under 2080s is 7.4 
days (SSP126), 10.5 days (SSP245), 14.3 days (SSP370), 21.4 days 
(SSP585), respectively (Supplementary Figures S15b, d, f, h). Global 
warming has become the dominant driver of extreme heat stress in 
rice production, with critical impacts concentrated during flowering 
and grain-filling stages. 
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For cold stress of single-rice and early-rice, the variation trend 
between MCD and SCD showed a sharp decline. The severe regions 
with severe cold stress were concentrated in western of Zone IV and 
dispersed in Zone I and eastern of Zone III (Supplementary Figure 
S16, S17). Due to the climatic change, the maximum number of 
days with MCD under 2040s is projected to be 109.4 days (SSP126). 
By the 2080s, the minimum number of days with MCD is 72.8 days, 
which is about two-thirds of the number projected for the 
2040swhich is about two-thirds of the number projected for the 
2040s (SSP585) (Supplementary Figures S16a, h). SCD has a wider 
spatial extent of cold stress than MCD, mainly affecting Zone IV 
and Zone I, which also reflects the potential influence regions of 
future temperature changes. 

Regarding the distribution of D-Vgp, drought stress is more 
severe in the southern region compared to the northern region and 
in western of Zone II is also affected by drought stress 
(Supplementary Figure S18). Regarding the distribution of D-Rgp, 
FIGURE 6
 

The trends of 11 extreme climate indices (ECIs) (a–k) in Zone I during the historical period and 4 future climate scenarios of single-rice and early-rice.
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the main affected region is Zone II, northern of Zone III and eastern 
of Zone IV, while lower drought stress is observed in Zone I and 
southern of Zone V. The maximum number of days with D-Rgp in 
these zones is 14.8 days (Zone II), 9.7 days (Zone III) and 9.7 days 
(Zone IV) under 2040s, which is 14.3 days (Zone II), 10.0 days 
(Zone III) and 10.3 days (Zone IV) under 2080s (Supplementary 
Figure S19). 
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Regarding the distribution of HPD, the overall stress intensity is 
lower than in historical periods, which is consistent with the pattern 
of global climate change (Supplementary Figure S20).Regarding the 
distribution of CWD, the duration is higher in Zone III, Zone IV 
and Zone V than the other two zones, the maximum duration is 2.5 
days (Zone III), 30.5 days (Zone IV) and 5.3 days (Zone V) under 
2040s, which is 2.9 days (Zone III), 33.0 days (Zone IV) and 6.9 days 
FIGURE 7 

The changes in the 11 extreme climate indices (ECIs) (a–k) in 2040s and 2080s under the 4 future climate scenarios compared to the historical 
periods of single-rice and early-rice. 
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(Zone V) under 2080s (Supplementary Figure S21), which 
indicating the limited effect of extreme precipitation in the future. 

For extreme heat stress of late-rice, there is an evident 
increasing trend in Zone III and Zone V in two periods. Zone III 
is the main region affected by HD, with average number of days is 
12.4 days (SSP126), 17.5 days (SSP245), 21.8 days (SSP370) and 25.9 
days (SSP585) projected for the 2080s (Figure 9). The spatial 
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distribution and intensity duration of HCD, EHD and ECD are 
similar to HD (Supplementary Figures S22, S23). Compared to basis 
line, this represents a rise of 4.9 days (2040s) and 12.4 days (2080s) 
in SSP585 (Supplementary Figure S24h ). As for the intensity of 
HDD, severe stress is observed in Zone III. Compared to basis line, 
this represents a rise of 8.0 °C (SSP126), 11.1 °C (SSP245), 14.7 °C 
(SSP370) and 14.9 °C (SSP585) under 2080s, respectively 
FIGURE 8 

The spatial distribution of HD at 2040s (a, c, e, g) and 2080s (b, d, f, h) under 4 future climate scenarios of single-rice and early-rice. 
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(Supplementary Figure S25).  It  is  evident that rice  will be

significantly stressed by extreme heat stress in the future. 
Compared to baseline, the difference in cold stress between MCD 

and SCD is evident. The value of MCD is 1.2 days (SSP126), 1.1 days 
(SSP245), 1.0 days (SSP370), 0.9 days (SSP585) under 2040s, and in 
the 2080s, the variation is 0.9 days (SSP126), 0.4 days (SSP245), 0.05 
days (SSP370), -0.2 days (SSP585) respectively (Supplementary 
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Figure S26). The value of SCD is -20.0 days (SSP126), -20.2 days 
(SSP245), -20.3 days (SSP370), -20.7 days (SSP585) under 2040s and 
-20.3 days (SSP126), -21.5 days (SSP245), -22.4 days (SSP370), -22.9 
days (SSP585), respectively, which indicates a significant difference 
compared to the baseline (Supplementary Figure S27). 

Severe drought stress is mainly concentrated in the southern of 
Zone IV, Zone V in D-Vgp, as well as northern of Zone III and 
FIGURE 9 

The spatial distribution of HD at 2040s (a, c, e, g) and 2080s (b, d, f, h) under 4 future climate scenarios of late-rice. 
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southern of Zone V. These indicate severe stress in all scenarios 
under the 2040s in D-Vgp, which is consistent with the drought 
stress projected for the 2080s. And there is an evident change of D-
Rgp (Supplementary Figure S28). The change of D-Rgp compared 
to basis line is -10.8 days (SSP126), -10.7 days (SSP245), -10.7 days 
(SSP370) and -10.7 days (SSP585) under 2040s and -10.8 days 
(SSP126), -10.7 days (SSP245), -10.6 days (SSP370) and -10.7 days 
(SSP585) under 2080s (Supplementary Figure S29), which indicates 
a decreasing tend. This indicates the effects of extreme drought 
events on different phenological stages of late-rice in the future. 

Compared to the baseline, there is a difference in precipitation 
between HPD and CWD. The extreme precipitation stress occurs in 
Zone IV, with a maximum duration of 9.7 days (SSP126), 10.1 days 
(SSP245), 9.8 days (SSP370) and 10.1 days (SSP585) under 2040s. In 
the 2080s, the stress becomes more evident than the 2040s, and the 
most intense stress is still observed in Zone IV of HPD 
(Supplementary Figure S30). In terms of the spatial distribution 
of CWD, it is concentrated in the western of Zone IV and the 
northern of Zone V. The average number days of CWD is 0.8 days 
(Zone III), 1.9 days (Zone IV), 1.3 days (Zone V), indicating a 
significant difference among the three zones in SSP585 
(Supplementary Figure S31h). 
4 Discussion 

4.1 Performance of bias correction and 
multi-model ensemble 

Related studies used global and regional climate models to 
assess the change in extreme climate events and possible impacts 
as global warming continues (Pan et al., 2022; Shiru et al., 2022; 
Zamani et al., 2020). In the future, climate change is expected to 
exacerbate changes in precipitation and temperature, especially the 
occurrence of extreme climate events, potentially increasing rice’s 
exposure to climate-related hazards. Generally, extreme climate 
events greatly impact rice yield and quality, particularly during 
the sensitive stages of rice development (Li et al., 2015b; Chen et al., 
2016). Accurate and quantitative predictions of extreme climate 
risks can provide information to agricultural producers and 
policymaker to mitigate the impacts of extreme climates. 

In the study of using GCMs, there are large deviations in the 
simulation of temperature and precipitation, so it is necessary to use 
DCM to construct future climate scenarios. The DCM is commonly 
used method for bias correction of climate models, and it performs 
well in temperature and precipitation noise reduction in this study. 
The correlation coefficients, which calculated using GCM data after 
bias correction, and the reanalyzed data are higher than those 
without bias correction, which can be better in multi-model 
ensemble. This occurs because bias correction reduces systematic 
errors in GCM outputs, such as mean biases and variances, aligning 
them more closely with reanalyzed data. By adjusting these 
differences, bias correction improves the reliability of the GCM 
simulations, leading to stronger correlations with reanalyzed data. 
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Moreover, multi-model ensemble effective reduce the uncertainty of 
single GCM simulation (Bishop and Abramowitz, 2013). Overall, 
the IWM approach to ensemble ECIs from GCMs outputs of 
CMIP6 is superior than AM and has a good application effect in 
this study. Compared with CMIP5 model, CMIP6 model has been 
proved to be significantly improved, and the simulation of extreme 
climate events has also been improved (Eyring et al., 2016). This 
study provides more detailed spatial scenarios of future climate 
extremes in rice-growing regions of China than previous studies, 
and uses GCM to participate in multi-mode simulation of four SSPs 
to reduce the simulation uncertainty caused by the using fewer SSP 
or GCM (Lee et al., 2021). 
4.2 Extreme temperature stress affecting 
rice production 

Most of the previous studies focused on a single extreme climate 
event, or the combination of extreme heat stress and drought stress, 
extreme heat stress and cold stress, but there were few studies on the 
evaluation of extreme climate stress at the combined phenological 
stage in China’s rice growing areas. This study provides a 
comprehensive assessment of the risk to rice growth based on all 
stages from transplanting to maturity with global warming. We 
defined four extreme climate indices, including extreme heat stress, 
cold stress, drought stress and precipitation stress, through two 
climate variables, temperature and precipitation (Auffhammer et al., 
2012; Schleussner et al., 2018; Tao et al., 2013b; Xiao and 
Song, 2011). 

Extreme temperature stress, encompassing both heat and cold 
stress events, has shown significant correlations with global 
warming patterns. Extreme heat stress, characterized by 
temperatures above a critical threshold, causes irreversible 
damage to crop growth and development (Wahid et al., 2007). 
Generally, rice responses differently to high temperatures 
depending on the stage of their development, and the most 
affected period usually occurs from heading to maturity. Based on 
this, we determined more suitable extreme heat stress indices for 
rice growth, taking into account phenological information and 
critical crop temperatures thresholds. During critical growth 
stages of rice such as booting and heading, sustained high 
temperatures  exceeding  35°C  can  severely  impact  rice  
development. Such thermal stress may induce multiple 
physiological  disorders  including  incomplete  panicle  
differentiation, significant reduction in pollen viability, and 
fertilization failure that ultimately leads to the formation of empty 
grains (Huang et al., 2017). The CMIP6 models project a significant 
increase in the frequency and duration of extreme heat stress in 
rice-growing areas in China, particularly in Zone III and Zone V 
(Supplementary Figures S4, S8), compared to the baseline. The 
conclusion is consistent with the enhancement of extreme heat 
stress for rice caused by global warming observed in previous 
studies (Ding et al., 2022; Guo et al., 2021; He et al., 2018; Ke and 
Wen, 2009). This study spanned a long period from 2015 to 2100 
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and utilized ECIs specifically defined through rice phenological 
growth stages. Although the time periods we used to define and 
analyze heat stress differ from previous studies, these results remain 
scientifically reliable and provide valuable references (Xiong et al., 
2016; Chou et al., 2021). In addition, the extreme heat stress of rice 
growth is still very serious under the background of future climate 
change. Therefore, the influence of extreme heat stress on rice yield 
and the improvement of heat resistance of rice varieties should be 
emphasized in the follow-up research. In regions with adequate 
resource availability, implementation of supplemental irrigation 
and optimized fertilizer application should be prioritized to 
mitigate adverse impacts on rice productivity and yield stability. 
Cold events, particularly during the reproductive growth period of 
rice, can lead to incomplete panicle exertion, high spikelet sterility 
and cause substantial yield loss (Espe et al., 2017; Lesk et al., 2016; 
Yamamori et al., 2021). Compared to the historical period, the cold 
stress duration in Zone I, Zone II and Zone IV of single-rice and 
early-rice, in Zone IV of late-rice is longer in the 21st century 
(Figure 6; Supplementary Figures S5, S7, S9). Under various climate 
scenarios, the trend of cold stress indicates a significant weakening 
in the northeast and southwest regions. In contrast, other regions 
either maintain a low level of cold stress or experience its near 
disappearance, particularly in the southeast of China. This 
observation is consistent with previous conclusions that cold 
stress is diminishing at the provincial scale in the southeastern 
region of China (Wang et al., 2022). The increase of the duration of 
cold stress in some areas of rice revealed that in the context of global 
warming, it is still necessary to adjust sowing date or improve cold 
tolerance to alleviate the damage caused by cold stress (Moura et al., 
2017; Olesen et al., 2011). 
4.3 Extreme precipitation stress affecting 
rice production 

Drought events and heavy precipitation events represent the 
two primary extreme precipitation stresses influencing rice 
production. The occurrence of these events during the rice-
growing period is determined based on national extreme event 
standards and is directly related to the intensity and duration of 
precipitation (Wang et al., 2018; SL424–2008, 2009). Drought is 
closely related to precipitation, based on which this study defines 
the drought stress indices. Rice production is highly water 
dependent and vulnerable to extreme drought events caused by 
climate change (Piao et al., 2010). The development of rice roots 
and aerial parts, along with their physiological and biochemical 
processes, are constrained by drought. Under such conditions, the 
rice capacity for water uptake and nutrient acquisition is impaired, 
resulting in growth inhibition that ultimately compromises yield 
formation (Guo and Zhang, 2024). The results showed that the 
extreme drought stress increased significantly of single-rice and 
early-rice in Zone IV and Zone V, and there was also an increase of 
late-rice in Zone IV but less in Zone III (Supplementary Figures 
S6–S8). The impact of extreme drought on the vegetative stage of 
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rice in the future will be severe, particularly in northern and 
southwestern China, which is similar to the results of previous 
study (Guo et al., 2021). This indicates that there is evident 
agricultural water pressure in these areas, which will also affect 
local agricultural development. Therefore, it is possible to mitigate 
the impact of drought stress by cultivating and planting more 
drought-resistant rice varieties or by improving the management 
of farmland water usage, thus alleviating agricultural water pressure 
in severely drought-affected regions and better adapting to future 
climate change. 

Conversely, excessive precipitation intensity will cause physical 
damage to rice accompanied by low temperature and weak light, 
and will also increase the risk of diseases and pests, posing a threat 
to rice production (Choi et al., 2013). Under different situations, the 
frequency of extreme precipitation has increased, especially in the 
southern regions in China. Although rice plants require large 
amount of water during growth, too much precipitation can lead 
to a serious loss of rice yield (Panda and Barik, 2021). The results of 
this study are consistent with previous studies, and there is a strong 
correlation between increased extreme heat stress and extreme 
precipitation stress (Myhre et al., 2019). In conclusion, the effects 
of extreme climate stress can be mitigated by adjusting sowing dates 
during key growth periods, and by improving rice genes and 
breeding rice varieties with strong stress resistance. Additionally, 
adaptive irrigation, fertilization, and other management practices 
should be implemented in accordance with regional environmental 
and climatic variations. 
4.4 Limitations and uncertainties 

There were some limitations  in  this study. Firstly, future 
interannual changes in climate and occasional extreme events 
may lead to changes in rice phenology. We defined the extreme 
climate stress during rice growth period based on historical average 
phenological data and predicted the extreme climate during future 
rice-growth periods, but this study did not account for that the 
potential changes in rice phenology due to climate change, which 
could lead to some deviation in the prediction results. This study 
assumes that the future phenological stage is consistent with the 
historical period, which is still valuable for simulating extreme 
climate events faced by rice. In general, the result can reasonably 
reflect the extreme climate events that may arise during future rice-
growth. Besides that, there are also uncertainties in the assessment 
of changes in the extreme climate indices in this study, including the 
deviation correction methods for the GCM. Therefore, additional 
comparative evaluations of future climate extremes in rice growing 
regions in China through more GCMs, different multi-model 
ensemble methods, and improved bias correction techniques are 
warranted. In addition, the future calculation of extreme climate 
stress can pay more attention to the change of rice yield, and further 
refine the impact of extreme climate stress on rice yield under 
different future scenarios. Future studies of rice resistance genes are 
likely to reduce rice vulnerability to extreme climate, thus lowering 
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the risk compared to current estimates. And the combination of 
multiple factors (e.g. optimization of deviation method, adjustment 
of sowing date, changes in phenology, rice yield) will be able to 
better accurately assess the extreme climate stress faced by rice in 
later study. 
5 Conclusion 

This study conducted a comprehensive assessment of projected 
extreme climate characteristics and trends under four future 
scenarios using 18 selected Global Climate Models (GCMs) from 
CMIP6. By defining 11 Extreme Climate Indices (ECIs), we 
systematically evaluated potential climate risks in China’s rice-
growing regions during the 21st century. Through analyzing 
differential impacts of temperature and precipitation, distinct 
heterogeneity patterns of future extreme climate changes were 
identified across zones. The main findings are as follows: 
Fron
1.	 In the 21st century, extreme heat stress intensity is 
projected to significantly increase under different 
scenarios, especially in Zone III, Zone IV and Zone V for 
single-rice and early-rice and Zone III, Zone V for late-rice. 
Global warming poses a substantial threat to rice 
production in China, with varying levels of intensity 
across the entire region. Conversely, cold stress risks for 
single-rice and early-rice show declining trends due to 
warming, with late-rice in southern China expected to be 
rarely face severe cold stress by the late 21st century. 

2. Global warming is causing changes in temperature and 
precipitation patterns, which in turn have an impact on 
crop productivity. The projected increases in frequency and 
intensity of extreme precipitation stress are markedly less 
pronounced compared to extreme temperature stress. In 
the border region between Zone II and Zone III, which is 
the North Plain area of China, rice planting is most 
vulnerable to be affected by drought stress. Regarding 
extreme precipitation related stresses, southern China 
consistently demonstrates higher vulnerability than 
northern regions across all rice systems. 
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