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Introduction: This paper offers a multi-scale AITP-YOLO model, based on the

enhanced YOLOv10s model, to address the challenges of difficult identification

and frequent misdetection of tomatoes, facilitating ripeness detection under

realistic conditions.

Methods: A four-head detector incorporates a small target detection layer,

enhancing the model's capacity to identify small targets. Secondly, a multi-

scale feature fusion technique employing cross-level features is implemented in

the feature fusion layer to amalgamate convolutions of varying sizes, enhancing

the model's fusion capacity and generalization proficiency for features of diverse

scales. The bounding box loss function is modified to Shape-IoU, with the loss

computed by emphasizing the shape and scale of the bounding box, hence

enhancing the precision of bounding box regression, expediting model

convergence, and augmenting model correctness. Ultimately, the model is

compressed via Network Slimming puring,which removes redundant channels

while mataining detection accuracy.

Results: The experimental findings indicate that the enhanced model achieves

average precision, accuracy, and recall of 92.6%, 89.7%, and 87.4%, respectively.

In comparison to the baseline network YOLOv10s, the model weights are

compressed by 7.64%, while average precision, accuracy, and recall are

elevated by 4.6%, 5.8%, and 7.3%, respectively.

Discussion: The enhanced model features a reduced model size while exhibiting

superior detection capabilities, enabling more efficient and precise recognition

of tomato stages amidst complicated backgrounds, hence offering a valuable

technical reference for automated tomato harvesting technology.
KEYWORDS

target detection, image recognition, YOLOv10, small target detection head, multi-
scale, tomato
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1 Introduction

The precise identification of tomato ripening, as a significant

economic crop, pertains not only to the market value of agricultural

products but also to the safety and health of customers’ diets. China,

being a leading global producer of tomatoes (Li et al., 2021),

contributes 30% to the total worldwide output. Conventional

tomato harvesting predominantly depends on manual expertise to

assess ripeness, leading to diminished efficiency; this method is

highly subjective, making it challenging to guarantee consistency

and precision. With the expanding scale of tomato cultivation,

which can span hundreds or even thousands of acres, relying on

manual detection becomes inefficient, costly, and time-consuming.

As agricultural technology progresses, the adoption of picking

robots (Xiao et al., 2024) is increasingly replacing manual

harvesting. Given the brief harvesting period of tomatoes,

challenges in storage, and the potential health risks posed by

residual pesticides (El-Sheikh et al., 2023), the robot must possess

the capability to accurately classify tomatoes based on their varying

stages of ripeness to facilitate timely harvesting, thereby

significantly improving farmers’ income. Consequently, enhancing

model detection efficiency is crucial for achieving automated

tomato harvesting.

Recent technological advancements have generated much

research on automated systems for agricultural chores, frequently

employing image processing for the assessment of tomato quality

(Gastélum-Barrios et al., 2011), with a particular emphasis on tomato

ripeness detection. Conventional computer vision detection

algorithms assess tomato maturity by analyzing fruit color (Fawzia

Rahim and Mineno, 2021), size (Nassiri et al., 2016), and firmness

(Alenazi et al., 2020) in images. The detection process is hindered by

inadequate adaptability to complex environments, insufficient model

generalization, and constraints in feature extraction, resulting in

significant restrictions in detection speed and recognition accuracy,

which fail to satisfy practical requirements.

As people’s needs continue to evolve, deep learning techniques

are progressively transitioning toward smart agriculture

technologies, with rising applications in fruit recognition, hence

offering enhanced possibilities for tomato maturity detection.

Vasconez et al. (2020) introduced Faster R-CNN with Inception

V2, attaining a fruit counting performance of up to 93%, and SSDs

combined with MobileNet, obtaining a performance of up to 90.0%,

hence enhancing decision-making in agricultural practices. Jiang

et al. (2021) employed a semi-supervised hyperspectral imaging

technique to differentiate tomato ripeness, achieving a

discrimination accuracy of 96.78%. Wang et al. (2022) enhanced

the Faster R-CNN model with MatDet to augment recognition

accuracy in intricate situations by addressing the issue of imprecise

bounding box localization. Despite demonstrating high detection

accuracy and minimal leakage rates, these approaches entail greater

complexity in processing and reduced detection speed, hence

hindering their capacity to fulfill real-time processing needs.

With ongoing advancements in machine vision, YOLO (You

Only Look Once) demonstrates significant potential in agriculture
Frontiers in Plant Science 02
due to its superior real-time performance, effective use of global

information, balanced high accuracy and efficiency, and

adaptability for real-time target detection in complex

environments. Liu et al. (2020) employed a circular bounding box

(C-Bbox) for tomato localization in their study on tomato ripeness

identification and classification, as opposed to the conventional

rectangular bounding box. They developed a robust detection

algorithm based on YOLOv3, achieving a correct identification

rate of 94.58% under conditions of slight occlusion. Nonetheless,

the model possesses significant capacity, complicating deployment.

Zeng et al. (2023) developed a lightweight tomato target detection

algorithm and installed an Android-based real-time monitoring

application for tomatoes, facilitating deployment in practical

circumstances and enabling real-time observation. Kim et al.

(2022) created an autonomous robotic system for tomato

harvesting that incorporates a three-tier ripeness classification

and 6D bit position estimation for the target fruits, achieving a

collection success rate of 84.5%, thereby addressing issues related

to large model size and the challenges of implementing

practical robotic vision systems. Appe et al. (2023) devised

a tomato detection model utilizing YOLOv5, which incorporated

the CBAM attention mechanism into the network architecture

and employed DIoU with NMS to mitigate the leakage rate

of overlapping tomatoes. The proposed algorithm achieved an

accuracy rate of 88.1%; however, this study also encounters

the issue of low detection accuracy. Chen et al. (2024)

introduced a multi-task deep convolutional neural network for

detecting the maturity of cherry tomato bunches, incorporating

two supplementary decoders into YOLOv7 for fruit ripeness

identification, achieving a recognition accuracy of 86.6%. Wang

et al. (2024b) introduced an enhanced YOLOv8s network for the

real-time detection and segmentation of tomato fruits at various

ripening stages, incorporating a variable focus loss (VFL) function

alongside the regression loss function of Wise-IoU to address

detection challenges, achieving an average precision of 91.4%

(mAP@0.5). The processing velocity for simultaneous detection

and segmentation was 60.2 frames per second. (Li et al., 2024)

proposed a lightweight detection framework D3-YOLOv10 based

on YOLOv10, in which multiple adaptive convolutional kernels are

aggregated to extract locally effective features to adapt to the fruit

size, which more effectively meets the needs of real-time tomato

detection with a detection speed of 80.1 FPS.

The aforementioned study demonstrates the viability of

recognizing and detecting tomato ripening with deep learning;

nonetheless, some issues remain: Various sizes, both proximal

and distal, together with diminutive targets and intricate shapes,

are frequently misdiagnosed, excluded, and susceptible to

inaccurate detection; the model architecture is intricate and

comprises a substantial number of factors; furthermore, the

recognition accuracy diminishes in complex scenarios. This

research presents a novel AITP-YOLO model to address the

aforementioned issues. The model may achieve excellent

detection accuracy while being lightweight. This manuscript

presents the subsequent key contributions:
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1. A tomato ripening detection model, termed AITP-YOLO,

was suggested, distinguished by its high accuracy and

lightweight construction in complex backgrounds.

2. The incorporation of a diminutive target detection head

enhances the model’s capacity to identify minute targets;

employing a multi-scale feature fusion strategy amalgamates

convolutions of varying dimensions, thereby augmenting the

model’s generalization capability; modifying the bounding

box loss function to Shape-IoU, which assesses loss by

emphasizing the shape and scale of the bounding box,

results in more precise bounding box regression.

3. The pruning technique known as Network Slimming

eliminates “unimportant” channels by sparsifying the scale

factor, with the objective of compressing the model, enhancing

accuracy, and further diminishing model complexity.
2 Materials and methods

2.1 Data set

2.1.1 Data acquisition
The dataset was gathered from the Tomato Farm Picking

Garden, Longhui Town, Neijiang City, Sichuan Province, China

(102.99°N, 29.97°E). The shooting occurred between 2:00 p.m. and

4:00 p.m. in a greenhouse, ensuring consistent lighting conditions.
tiers in Plant Science 03
A total of 3,154 pairs of images of tomatoes, featuring various plants

and ripeness levels, were captured using a Canon R5 camera. The

various shooting distances and angles for the plants resulted in the

acquisition of single-fruit photographs, multi-fruit images, images

featuring branch and leaf shade, one-sided lateral telephoto images,

and two-sided forward telephoto images. Following the screening

process, 3107 pairs of high-resolution images (4032 pixels × 3024

pixels) were acquired. Figure 1 illustrates the primary categories of

images within the dataset.

2.1.2 Tomato ripening classes
The ripeness of tomatoes significantly influences their

transportation, processing techniques, and flavor, making

accurate classification of tomato ripeness essential. The maturity

of tomato fruit, by agronomic standards and harvest criteria, is

categorized into four stages: green ripening, color turning, firm

ripening, and complete ripening. These stages are designated as

green, turning, lighted, and red, respectively, as detailed in Table 1.

2.1.3 Data preprocessing
This study employs data augmentation techniques, including

color inversion, level flipping, brightness adjustment, Gaussian blur,

and affine transformation, to enhance network training efficacy,

improve model generalization, and mitigate overfitting. The dataset

is randomly combined and expanded, with several enhanced images

depicted in Figure 2. Following data augmentation, a total of 6,214
FIGURE 1

Dataset image type. (A) Single, (B) Multiple, (C) Branches and leaves cover, (D) Multiple and shaded by branches leaves cover, (E) Single perspective,
(F) Double perspective.
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TABLE 1 Description of tomato ripening classifications.

Rank Ripeness RGB images Labels Explicit description

1 Green period green
The fruit’s firm flesh and lime-green peel make it ideal for long-

distance transportation.

2 Color change period turning
The fruit becomes more suitable for short-distance transportation as its surface
turns from green to light crimson and its sugar content rises.

3 Firm and ripe period lighted
The fruit exhibits a red coloration over 75% of its surface area, indicating
optimal ripeness for consumption and suitability for short-distance transport.

4 The fully ripe period red
The fruit exhibits a uniform red coloration across its surface and possesses the
highest sugar content, rendering it appropriate for proximity.
F
rontiers in P
lant Science
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FIGURE 2

Effects of data augmentation. (A) Original, (B) Color inversion, (C) Flip horizontal, (D) Intensity control, (E) Caussian Blur, (F) Affine variation.
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sample images were acquired and randomly allocated into the

training set and the test set in an 8:2 ratio.

The settings for the data augmentation approach are established

as follows: Color inversion is accomplished by ‘IAA.Invert(0.3,

per_channel=0.5)’, indicating a 30% application probability and a

50% independent inversion probability for each color channel (red,

green, and blue), hence augmenting the model’s robustness to color

information. The horizontal flip is executed using ‘IAA.Fliplr(0.5)’,

with a 50% probability to simulate varying lateral observation

effects, thereby augmenting data diversity. Brightness is adjusted

to 1.3 times to replicate intensified lighting conditions, enhancing

the model’s adaptability to diverse illumination environments.

Gaussian blurring is applied with a standard deviation of 2.0 to

mimic image distortion resulting from camera shake. The affine

transformation translates the image by 15 pixels in both horizontal

(x) and vertical (y) directions while scaling the image to 0.9 times its

original size, which improves the model’s adaptability to target

position variations and enhances generalization capability.

The datasets for this investigation were gathered in greenhouses

in Southwest China under predominantly consistent light

conditions. The primary attributes of tomatoes in this region

include distinct color gradient variations throughout ripening, a

regulated growth environment with natural shade, and variations in

scale, rendering this datasets somewhat specific. To address the

issue of geographic generalization, future studies may increase the

datasets by gathering data from various regions or using transfer

learning techniques to refine the model, enhancing its applicability

across diverse geographic areas.

2.1.4 Distribution of ripeness categories
Upon concluding data preparation, the picture data

corresponding to the various ripening stages of tomatoes were

meticulously quantified, with the count of image labels in each

category and their respective percentages presented in Table 2.

From the statistical results, it can be seen that the category

distribution of the four stages of tomato ripeness (“green”,

“turning”, “lighted” and “red”) is relatively balanced. The quantity

of image labels in the green ripening stage is 15,487, representing

34.06%; in the turning stage, there are 8,909 labels, constituting

19.59%; in the firm ripening stage, the count is 9,047, accounting for

19.88%; and in the finished ripening stage, there are 12,023 labels,

which comprise 26.48%. This more equitable distribution of

categories can effectively mitigate the bias of a predominant

category during model training, hence establishing a robust data

foundation for steady training and precise detection in the

succeeding model.
Frontiers in Plant Science 05
2.2 Experimental environment and
parameter setting

The apparatus employed for the experimental training in this

work consisted of two NVIDIA RTX 3080 GPUs. In the experiments,

PyTorch 2.3.0, CUDA 12.1, and Python 3.8 were utilized, with the

other hyperparameters configured as indicated in Table 3.
2.3 Model evaluation metrics

In order to evaluate the performance and lightweight capability of

the model, seven metrics were used in this study: precision (Equation

1), recall (Equation 2), mAP@0.5 (Equation 3), mAP@0.5:0.95

(Equation 4), GFLOPs (Equation 5), Weight, and FPS (Equation 6).

Precision = True_Positives (TP)
True_Positives (TP)+False_Positives (FP) (1)

Recall = True_Positives (TPÞ
True_Positives (TP)+False_Negatives (FN) (2)

mAP@0:5 = 1
No

N

i=1
APi (3)

mAP@ 0:5 : 0:95 = 1
10 o

0:95

t=0:5
mAP@t (4)

FPS = 1
Inference_Time_per_Frame (5)

Precision refers to the ratio of samples identified by the model

as positive cases that are indeed positive, serving as a measure of

prediction accuracy. It is calculated using True_Positives ðTPÞ and
False_Positives ðFPÞ. Recall is the ratio of correctly predicted

positive cases to the total actual positive cases, assessing the

model’s effectiveness in identifying the positive class, and it

accounts for False_Negatives ðFNÞ. mAP@0:5 represents the

average accuracy at an IoU threshold of 0.5, with higher values

indicating superior model performance. Conversely, mAP@0:5 :

0:95 calculates the average accuracy across a range of IoU

thresholds from 0.5 to 0.95 in increments of 0.05, providing a

more comprehensive assessment of model performance under

stringent accuracy conditions. GFLOPS quantifies the
TABLE 3 Hyperparameter settings for the experiment.

Hyperparameter Details

epochs 300

image size 640 × 640

batch size 16

workers 8

optimizer SGD

lr0 0.01

lr1 0.01
TABLE 2 Proportion of tomato ripeness labels.

Categories Value Ratio

green 15487 34.06%

turning 8909 19.59%

lighted 9047 19.88%

red 12023 26.48%
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computational complexity of a model, indicating the number of

floating-point operations executed per second, specifically in

billions of floating-point operations. Weights denote the storage

size of model parameters; a smaller size indicates a simpler model.

FPS denotes the number of frames processed per second by the

model or system, serving as a critical metric for assessing inference

speed. Inference_Time_per_Frame indicates the duration necessary

for the model to process an individual image frame.
3 Related work

3.1 Proposed AITP-YOLO object detection
model

The YOLOv10 model (Wang et al., 2024a), depicted in Figure 3,

is a real-time, end-to-end object detection model that markedly

enhances accuracy and efficiency while preserving rapid detection

through a novel dual-label assignment strategy and architectural

advancements, thereby enabling real-time object detection and

facilitating deployment and inference across various platforms.

Nonetheless, precise detection of tomato fruits in intricate

surroundings remains a significant challenge.

This study presents the AITP-YOLO model for tomato ripeness

detection, employing multi-strategy enhancements to address the

challenges of accurate identification and misdetection of tomatoes

in natural conditions, thereby offering substantial support for
Frontiers in Plant Science 06
automated tomato harvesting technology. The model is refined

according to the YOLOv10s architecture, guaranteeing elevated

accuracy alongside rapid detection speed.

The network architecture primarily consists of a trunk, neck,

and head. The backbone component adopts the design of

YOLOv10, so guaranteeing the model’s fundamental performance

and stability, while effectively extracting essential characteristics

from the image. The neck component employs a multi-scale

strategy, integrating convolutions of varying dimensions to

establish a bidirectional complementary connection between

superficial detailed aspects and profound semantic information,

thereby enhancing the capacity to represent multi-scale features.

The head employs a four-head detection architecture and

incorporates a P2/4-tiny detecting layer specifically designed for

small targets. This design significantly improves the network’s

capacity to identify minute targets. By integrating shallow and

deep feature information, the model enhances its ability to

accurately capture the intricate contour aspects of the target,

hence improving recognition of small targets while preserving

detection performance for medium- and large-sized targets. The

model enhances the bounding box loss function by utilizing the

Shape-IoU loss function in place of the original CIoU loss function.

This approach emphasizes the shape and scale of the bounding box,

resulting in more precise bounding box regression, expedited model

convergence, and improved overall accuracy. The model is

concurrently compressed utilizing the Network Slimming pruning

technique, which diminishes model redundancy and complexity
FIGURE 3

Structure of YOLOv10 network.
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while enhancing detection accuracy. Figure 4 depicts the

architecture of the AITP-YOLO model developed in this research.
3.2 Four detection heads

This study’s tomato ripening datasets comprise a diverse array

of image formats, featuring a substantial quantity of little target

tomatoes. The abundance of small targets complicates the accurate

identification of these targets by conventional models and their

usual detection heads. The YOLOv10 model’s standard detection

head comprises three layers: P3, P4, and P5, with each detector head

tailored for targets of varying scales. The P3/8-small detector head

possesses an extensive feature map and high resolution, primarily

identifying small targets ranging from 8×8 to 16×16 pixels; the P4/

16-medium detector head experiences greater downsampling and

leverages an increased channel count to capture rich semantics,

detecting medium targets from 16×16 to 32×32 pixels; the P5/32-

large detector head exhibits the most robust semantic

characterization and sensory field, identifying large targets of 64

pixels. The P5/32-large detector head possesses the most robust

semantic characterization and sensory field, capable of detecting

large targets of 64×64 pixels or greater.

Due to the large proportion of small targets in the datasets, to

improve the accuracy of small target detection, a specialized small

target detection head (Chen and Zhang, 2024) P2/4-tiny is introduced

on top of the original three detection heads to form a four-head

detection head architecture to better cope with the complexity of the
Frontiers in Plant Science 07
datasets, which have a large number of small targets. This detection

head is specifically optimized for tiny targets from 4×4 to 8×8 pixels,

and this optimization effectively makes up for the shortcomings of the

original model in tiny target detection. As shown in Figure 5, the four-

head detection head significantly improves the model’s small-target

detection capability by fusing shallow and deep feature information,

especially enabling the model to better capture the detailed contour

features of the target, thus improving the detection accuracy. This

improvement not only enhances the model’s ability to recognize small

targets but also maintains the performance advantage of the original

detection head in medium and large target detection.
3.3 Multi-scale feature fusion

In natural settings, detecting tomato ripeness encounters

numerous challenges: the visual characteristics of the turning and

illuminated stages of tomatoes are similar, leading to potential

confusion; accurately identifying fruit ripeness is complicated by

overlapping fruits and obstructions from branches and leaves;

additionally, there is considerable scale variability among tomato

specimens, with pronounced size discrepancies across different

growth stages and varieties, exacerbated by the effects of shadows

and other environmental elements. Environmental factors,

including shadow interference, considerably affect the accurate

detection of tomato ripening.

This study addresses the scale diversity and environmental

interference of tomato targets in complex natural scenes by
FIGURE 4

Structure of AITP-YOLO network.
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proposing a multiscale feature fusion method for cross-level

features (Quan et al., 2023). This method enhances the

characterization capability of multiscale features by establishing a

bidirectional complementary link between shallow detailed features

and deep semantic information. The multi-scale feature fusion

technique is employed at the feature fusion layer to integrate

convolutions of varying dimensions. As indicated by the red (Xu,

2023) arrows in Figure 1, following extensive experimental

modifications, the feature map output from the convolution

operation of the twofold C2f module is concatenated and

integrated with the feature map output from the convolution

operation of the single C2f module. The resultant fused feature

map maintains the convolutional scale while doubling the number

of channels, thereby offering enhanced feature information for the

subsequent target detection task.

During the feature extraction phase of the backbone network,

low-level features encompass intricate details such as the texture

and edge contours of the fruit’s surface, whereas deep-level features

encapsulate high-level semantics, including the overall morphology

of the fruit and the color distribution associated with ripeness. This

fusion approach enables the efficient extraction of deep-level

features to shallow-level features.

Multi-scale fusion is enhanced in three key dimensions:
Fron
1. By incorporating low-level spatial information, the model

improves its ability to identify fine details, like the local

color gradient of ripening fruits and contour remnants

concealed by branches and foliage.;

2. Employ semantic guidance to leverage the ripening

discriminative information in deep features to correct the

tendency for misjudgment in shallow features under

complex lighting circumstances.;

3. Dynamic adaptation: utilizing deformable convolution to

establish the feature interaction layer, allowing the network

to independently adjust the weights of the feature fusion

regions to effectively tackle challenges such as fruit overlap

and distant view deformation.
The experimental findings demonstrate that the multi-scale

fusion method significantly improves the model’s mean average

precision (mAP), especially in the small target detection task, where
tiers in Plant Science 08
both recall and accuracy are notably increased. The multi-scale

feature fusion technique, through multi-level feature interaction,

enhances the model’s ability to understand targets at different

scales, hence improving overall detection effectiveness. The model

excels in target detection inside complex environments and

dramatically improves the detection of small, unclear, and

obscured targets. This technology is applicable not only for

identifying tomato maturity but also provides substantial

technological assistance for many other automated agricultural

detection jobs.
3.4 Bounding frame loss function Shape-
IoU

In the tomato target detection task, the dataset contains two

types of images, near-view and far-view, where the tomato target in

the far-view is smaller, and the loss function needs to be optimized

to improve the model’s performance for detecting the ripeness of

smaller tomatoes. The original YOLOv10s model uses the CIoU

(Zheng et al., 2020) bounding box loss function, and CIoU is

designed to take the shape information of the target box into

account, but in the prediction box regression process, if the aspect

ratio of the prediction box and the real box (Ground Truth box) is

linearly proportional, the penalty in the CIoU loss function

degrades to 0 and becomes ineffective.

The corresponding bounding box regression loss for CIoU

(Equation 6) is calculated as follows:

LCIoU = 1 − IoU + r2(b,  bgt )
c2 + ∂v (6)

where v is the parameter used to measure the consistency of the

aspect ratio (Equation 7), defined as follows:

v = 4
p2 (arctan wgt

hgt − arctan w
h )

2 (7)

This study advocates for the utilization of the Shape-IoU

(Zhang and Zhang, 2023) loss function in place of the CIoU loss

function. Shape-IoU incorporates centroid distance and width-to-

height ratio while also introducing shape similarity, a useful metric

for assessing shape disparity by quantifying the variations in width

and height between the anticipated and actual frames. Furthermore,
FIGURE 5

Schematic diagram of the four-head detection head.
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the implementation of exponential decay processing allows the

form loss to more accurately represent shape variations,

mitigating the issue of the loss function being overly sensitive to

minor discrepancies. This enhanced Shape-IoU loss function

increases regression accuracy and accelerates model convergence,

resulting in superior performance in complicated scenarios.

The corresponding bounding box regression loss for Shape-IoU

(Equation 8) is calculated as follows:

LShape−IoU = 1 − IoU + distanceshape + 0:5�W shape (8)

The distance shape calculation formula (Equation 9) is as follows:

distanceshape = hh� (xc − xgtc )2=c2 + ww � (yc − ygtc )2=c2 (9)

The shape loss calculation formula (Equation 10) is as follows:

W shape = o
t=w,h

(1 − e−w t )q , q = 4 (10)

Figure 6 illustrates the efficacy of CIoU and Shape-IoU in

practical scenarios, with red representing the actual bounding box

and green denoting the anticipated bounding box. Although the

CIoU loss function incorporates the aspect ratio to enhance

bounding box shape alignment, it fails to ensure precise

identification of targets with varying shapes. In contrast, Shape-

IoU emphasizes both the shape and size characteristics of the

bounding box, effectively capturing the intrinsic attributes of

diverse targets (e.g., aspect ratio, area) by directly modeling the

discrepancies in the geometric properties of predicted and actual

boxes, thereby enhancing regression accuracy.
3.5 Prune

3.5.1 The principle of pruning
The enhanced model for tomato ripeness detection markedly

increases detection accuracy while maintaining minimal alterations

in model size and computational demands; however, redundancy

persists due to its backbone and convolutional architecture,
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resulting in a substantial resource burden on prospective

embedded devices. To enhance the model’s efficiency and

accelerate inference, the Network Slimming (Liu et al., 2017)

approach is employed for model compression.

In the implementation of the Network Slimming approach, the

Batch Normalization (BN) layer in the network model is first

sparsely trained to eliminate insignificant channels, which are

autonomously recognized and pruned during training to attain

rapid convergence and enhanced generalization performance. The

Network Slimming method introduces a scaling factors (g) for each
channel, which is multiplied with the output of the channel as a

sparsity-induced penalty term, which is combined with the normal

training loss, and then sub-gradient descent is used as an

optimization tool to drive the model training process toward the

desired goal of efficient evolution. The loss function L (Equation 11)

is formulated as follows:

L = o
(x,y)

l (f (x,W), y) + l o
g∈G

g(g ) (11)

In this context, (x, y) represents the training input and goal, W

signifies the trainable weights, g(g) symbolizes the penalty function

for the scaling factor, and l indicates the equilibrium factor of the

two components, namely the sparsity rate. In this study, g(s) is

defined as sj j, corresponding to the L1 paradigm number.
3.5.2 Model pruning steps
The hyperparameter values influence the extent of L1

regularization applied to the scaling factor of the batch

normalization layer during training, thus affecting the weights of

the model’s BN layer about the average accuracy. To ascertain the

suitable scaling factor, l, which governs the intensity of sparse

regularization, values of 0.0005, 0.001, and 0.01 are assigned for the

sparse experiments. The results, depicted in Figure 7, demonstrate

that l = 0.01 approaches 0, exhibiting the highest speed and optimal

sparse effect. Because the tomato dataset has many categories, rich

data, complicated structure and low redundancy, l = 0.01 is finally

adopted for the sparse regularization operation.
FIGURE 6

Comparison between the CIoU loss function and the Shape-IoU loss function.
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After the sparse training phase, channels with scaling factors

below this threshold and their associated connections and weights

are removed, resulting in a more compact model structure. Since

the pruning process may trigger a decrease in model accuracy, it is

necessary to ensure the model accuracy with the help of fine-tuning

means. Meanwhile, through multiple iterations of pruning and

training, after each pruning, the narrow network is re-trained

with sparse regularization, and then the pruning operation is

implemented again to gradually realize the deep compression of

the model.
4 Results and analysis

4.1 Detection head comparison experiment

To further validate the impact of the four-head detection head

on model performance, comparative experiments were conducted

using two-head, three-head, and four-head detection heads using

the dataset of this study. The P3/8-small detection head, utilized for

identifying small targets, has been removed from the two-head

detection head trials. The findings are presented in Table 4.

Analysis of the results in Table 4 reveals that all indices of the

dual-head detection system are inferior to those of the conventional

triple-head detection system, hence underscoring the critical

importance of small target identification in the experiment. In

comparison to the regular three-head detection head, the four-

head experimental head enhances accuracy, recall, mAP@0.5, and

mAP@0.5:0.95 by 2.9%, 4.7%, 2%, and 4.9%, respectively. The

model with an additional small target detection head

demonstrates superior detection outcomes and markedly

improves its capacity to identify minute targets.
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4.2 IoU loss function comparison
experiment

To further validate the generalization and efficacy of the Shape-

IoU loss function, YOLOv10s serves as the experimental

benchmark model. The Shape-IoU loss function is evaluated

against currently prevalent loss functions, including CIoU, EIoU

(Zhang et al., 2022), and WIoU-v3 (Tong et al., 2023), utilizing the

dataset of this study, with results illustrated in Figure 8.

Figure 8 illustrates that the Shape-IoU loss function demonstrates a

significant advantage in the mAP@0.5 metric without augmenting the

model parameters or computational demands. This is attributable to its

shape similarity metric mechanism, which enhances matching accuracy

by precisely quantifying the shape disparity between the predicted and

actual frames, thereby enabling Shape-IoU to excel in scenarios involving

significant shape variations and to be more suitable for detection tasks

involving small targets and extreme shapes. The experimental results

indicate that the Shape-IoU loss function surpasses the prevailing

mainstream loss function in the tomato dataset characterized by a

complicated background and ambiguous maturity.
4.3 Comparison of pruning effects

This research compares the Network Slimming pruning approach

with two other pruning techniques: LAMP (Lee et al., 2020) and

Pruning Filters (Filters’importance, D, 2016). Eight distinct trimming

rates of 5%, 10%, 15%, 20%, 25%, 30%, 40%, and 50% were established

for the experiment, with the comparative results presented in Table 5.

The experimental results derived from the two methodologies, LAMP

and Pruning Filters, indicate that model compression and a

corresponding enhancement in accuracy cannot be concurrently
TABLE 4 Comparative experiment of three types of detection heads.

Detection head P/% R/% mAP@0.5/% mAP@0.5:0.95/%

two-detection heads 85.6 78.6 86.2 64.4

three-detection heads 83.9 80.1 88 69.1

four-detection heads 86.8 84.8 91 74
FIGURE 7

Setting the change in scaling factor g for different regular term coefficients l. (A) l = 0:0005, (B) l = 0:001, (C) l = 0:01.
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attained, even under optimal conditions for each method. Network

Slimming has superior attributes; hence, this method is selected for

executing pruning operations on the model in this study.

In the experiments conducted on Network Slimming, it was

observed that when the pruning rate is less than 10%, the network

slimming retains most of the important channels, which does not

have much impact on the accuracy. When the pruning rate is more

than 10%, although the number of model parameters decreases

more obviously, the loss of accuracy is correspondingly more, and

when the pruning rate is too high, the accuracy also decreases but

the number of parameters decreases less. Specifically, when the

pruning rate surpasses 20%, the detection accuracy decreases

linearly as the pruning rate increases, due to a greater number of

channels in the detection layer for small targets and fewer channels

in the effective layer, resulting in the cropping of effective channels.
TABLE 5 Comparison of pruning results.

Pruning method Pruning rate P/% R/% mAP@0.5 mAP@0.5:0.95 Weight/MB GFLOPs

None (v10s-AITP) 0 88.7 86.4 92.1 70 16.3 37.3

LAMP

50% 42.8 41.1 35.8 23.5 8.22 16.2

40% 85.1 79.7 87.8 69 9.98 19.2

30% 88.9 85 91 74.4 11.4 22.8

25% 89.2 85.5 91.4 75.6 12.3 25.4

20% 90.1 86.6 92.1 77 13.1 27.7

15% 91 86.4 92.3 77.6 13.8 29.6

10% 90.3 86.9 92.2 77.8 14.5 31.5

5% 89.9 87.8 92.2 78.4 15.4 33.8

Network Slimming

50% 43.9 40.7 37.4 24.8 8.22 16.2

40% 81.5 78.3 85.7 66.1 9.98 19.2

30% 88 83.1 90 72.9 11.4 22.8

25% 88.5 86.6 91.8 76.5 12.3 25.4

20% 89.8 86 91.8 76.6 13.1 27.7

15% 89.9 87.1 92.1 77.4 13.8 29.6

10% 89.7 87.4 92.6 78.2 14.5 31.5

5% 89.9 87.4 92.2 78.3 15.3 33.6

pruning filters

50% 43.9 41.5 37 24.7 8.22 16.2

40% 84.4 78.6 86.6 67.3 9.98 19.2

30% 88.8 84.2 90.8 73.8 11.4 22.8

25% 89.3 85.2 91.3 75.3 12.3 25.4

20% 90.6 84.9 91.9 76.5 13.1 27.7

15% 90.3 86.1 91.9 77.4 13.8 29.6

10% 90.5 86.8 92.3 78 14.5 31.5

5% 90.4 871. 92.4 78.2 15.3 33.6
The bolded values indicate the best results obtained using the Network Slimming (10% pruning rate) pruning method.
FIGURE 8

Comparison of loss functions.
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When the pruning rate surpasses 20%, detection accuracy declines

linearly due to an increase in channels within the small target

detection layer and a reduction in channels inside the effective layer.

A pruning rate of 10% is ultimately used to optimize the

equilibrium between model compression and accuracy.

After pruning using the Network Slimming method, the

number of channels in the front and back layers is shown in

Figure 9, which shows that the number of channels in “Before

pruning” is generally higher than that in “After pruning” in each

layer, which indicates that the pruning operation has reduced the

number of channels in the model to a certain extent. After the

experiment, it can be found that most of the channels are

compressed to a certain extent, and the results show that the

pruning algorithm is effective for the model.
4.4 Ablation experiments

This work established a standardized environment and

experimental conditions for eight sets of ablation experiments,

with the objective of thoroughly and precisely evaluating the
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effects of various techniques on tomato ripening detection. The

YOLOv10s model was chosen as the baseline and assessed using

eight assessment measures, with the results presented in Table 6.

From the results in Table 6, it can be seen that Experiment 1

uses the baseline model YOLOv10s, the precision of ripeness

detection for multi-stage tomato is 83.9%, the recall is 80.1%, the

mAP@0.5 is 88%, the mAP@0.5:0.95 is 69.1%, the model weight is

15.7MB, the floating-point operation is 24.8GFLOPs, and the FPS

is 103.09; Experiment 2 uses the four head detection heads and

adding small target detection heads, the precision, recall and

mAP@0.5 are improved by 2.9, 4.7 and 3 percentage points

respectively compared to Experiment 1, but the model weights

are elevated; Experiment 3 uses a multi-scale fusion method, the

mAP@0.5 is improved by 1.9 percentage points, which improves

the detection precision by a small margin, and the frame rate is

improved by 3.64%; Experiment 4 replaces the Shape-IoU loss

function, the precision, recall and mAP@0.5 are improved,

indicating that Shape-IoU helps to accelerate model convergence

and improve model precision; experiment 8 using a combination of

the three strategies achieves the best detection effect with the

improved model compared to the baseline network, with the

precision, recall, and mAP@0.5 improved by 4.8, 6.3, and 4.1

percentage points, respectively, and the detection performance is

significantly improved, even though the model weight and the

amount of operations are increased, improved significantly. The

comprehensive ablation experiment results demonstrate the

positive significance of the optimization strategy proposed in this

study for the YOLOv10s network.
4.5 Comparison of model performance
before and after improvements

In order to verify the effectiveness of the model improvement,

the average accuracy and the loss function of the model before and

after the improvement are compared and analyzed. As shown in

Figure 10A, AITP-YOLO performs significantly better than the
FIGURE 9

Comparison of channel number.
TABLE 6 Results of ablation studies for the improved model.

Numbers
Four-

detection
heads

Multi-
scale

Shape-
IoU

P/% R/%
mAP@0.5/

%
mAP@0.5:0.95/

%
Weight/

MB
GFLOPs FPS

1 × × × 83.9 80.1 88 69.1 15.7 24.8 103.09

2 √ × × 86.8 84.8 91 74 16.2 37.1 92.59

3 × √ × 87.6 82.7 89.9 72.7 15.9 25 106.84

4 × × √ 89 82.9 90.3 67.7 15.7 24.8 102.3

5 √ √ × 87.8 84.8 91.1 74.4 16.3 37.3 96.89

6 √ × √ 88.2 85.9 91.2 68.5 16.3 37.1 94.16

7 × √ √ 87.6 83.7 89.7 67.5 15.9 25 108.45

8 √ √ √ 88.7 86.4 92.1 70 16.3 37.3 95.97
frontie
“×”This policy is not used; “√” to use this policy.
The bold values indicate the optimal results in the ablation experiment.
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baseline model YOLOv10s at the beginning of the training period,

and its average accuracy improves faster and the accuracy curve is

smoother, showing higher stability and robustness. As shown in

Figure 10B, replacing Shape-IoU as the loss function accelerates the

convergence of the model, the loss value continues to decrease, and

the overlap between the predicted bounding box and the real

bounding box increases significantly, thus effectively improving

the overall performance of the model.

To further validate the performance of the AITP-YOLO model, a

comparative analysis of the confusion matrices of the models before

and during the enhancement is conducted, as illustrated in Figure 11.

Analyzing the confusion matrices of YOLOv10s and AITP-YOLO

reveals disparities in category recognition accuracy and

misclassification rates. AITP-YOLO consistently enhances

recognition accuracy across all four maturity groups as compared to

YOLOv10s, which exhibits a comparatively elevated misclassification
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rate in each category, particularly in erroneously categorizing samples

as belonging to the background category. This indicates that the final

model has successfully minimized misclassification among categories

through optimization, hence enhancing its capacity to differentiate

between categories and that the optimization approaches have

significantly improved its classification performance.

The results in Table 7 indicate a considerable enhancement in

the detection of tomato maturity at each stage, both before and

following the improvement. In comparison to the baseline model

YOLOv10s, the enhanced AITP-YOLO model improved

recognition accuracy for the four ripening stages of tomatoes by

3.5%, 5.4%, 4.5%, and 4.7%, respectively, while reducing the model’s

weight by 7.64%. This resulted in increases of 5.8, 7.3, 4.6, and 9

percentage points in accuracy, recall, and detection precision

mAP@0.5 and mAP@0.5:0.95, respectively, thereby providing

robust technical support for tomato ripeness.
FIGURE 10

Training curves before and after model improvement. (A) the average precision curve, (B) the box loss function.
FIGURE 11

Improved pre- and post-model confusion matrices (A) YOLOv10s and (B) AITP-YOLO. The matrix was used to compare the performance of the two
tomatoes in detecting ripeness (green, turning, lighted, red, and background categories), with darker colors representing higher
prediction probabilities.
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4.6 Comparative experiments of different
detection models

This study validates the efficacy of the AITP-YOLO model by

comparing it with mainstream target detection models from the

YOLO family and assessing their compatibility with the AITP

model. This study conducted comprehensive comparisons of the

AITP-YOLO model with other prominent convolutional neural

network target detection models, including the two-stage target

detection model Faster R-CNN (Ren et al., 2015) and the single-

stage target detection algorithm SSD (Liu et al., 2016), to further

validate the model’s efficacy. The findings are displayed in Table 8.

The trials demonstrated that the AITP-YOLO model attains the

greatest mAP@0.5 value, reaching 92.6%. The AITP model and the

YOLO series of detection frameworks exhibit excellent interoperability,

facilitating seamless integration with various backbone structures, and

demonstrate substantial performance enhancements across the board.

The Faster R-CNN and SSD models exhibit subpar performance in
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identifying small targets within intricate surroundings, with their

detection efficacy markedly inferior to that of the YOLO series

models. The results unequivocally illustrate the benefits and efficacy

of the AITP-YOLO model in target identification tasks.
4.7 Model visualization results

Figure 12 illustrates the disparity in detection performance

among the YOLOv5s, YOLOv8s, YOLOv10s, YOLOv11s, and

AITP-YOLO models, primarily highlighting their detection

capabilities in scenarios involving single fruits, multiple fruits,

dense fruit clusters, and occlusions caused by branches and

leaves. The Faster R-CNN and SSD models are susceptible to

missed and incorrect detections in scenarios including dense

fruits and occlusion by branches and leaves. The YOLOv5s model

exhibits low overall identification accuracy, making it challenging to

reliably identify tomato types. The YOLOv11s model struggles to
TABLE 7 Comparison of results before and after the model is improved.

Category P/% R/% mAP@0.5/% mAP@0.5:0.95/%

YOLOv10s

all 83.9 80.1 88 69.1

green 86.8 85.5 91.7 68.2

turning 82.6 81.6 88.1 72.1

lighted 82.2 77.4 85.9 72.1

red 83.9 76 86.4 69.1

Category P/% R/% mAP@0.5/% mAP@0.5:0.95/%

AITP-YOLO

all 89.7 87.4 92.6 78.2

green 90.9 91.4 95.2 76.5

turning 91.4 87.8 93.5 81.1

lighted 86.9 85.8 90.4 80.5

red 89.7 84.8 91.1 74.5
TABLE 8 Comparison experiments of different models.

model P/% R/% mAP@0.5 mAP@0.5:0.95 Weight/MB GFLOPs FPS

Faster R-CNN 58.5 67 65 35.89 136.8 401.8 24.10

SSD 77.3 61.4 73.5 49.56 92.1 274.5 46.99

YOLOv5s 83.1 79.1 86.9 67.2 17.6 24 118.76

YOLOv8s 87 82.3 89.1 71.6 21.4 28.7 125

YOLOv10s 83.9 80.1 88 69.1 15.7 24.8 103.09

YOLOv11s 86 82.6 89.2 71.5 18.3 21.6 111.36

v8s-AITP 89.1 85.6 91.3 68 20.7 37.2 116.82

v10s-AITP 88.7 86.4 92.1 70 16.3 37.3 95.97

v11s-AITP 88.5 84.4 91.1 67.5 18.8 29.4 103.31

AITP-YOLO 89.7 87.4 92.6 78.2 14.5 31.5 97.61
The bold values represent the results of the optimal model AITP-YOLO in each comparison experiment.
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reliably identify tomato fruits obscured by branches and leaves. The

overall accuracies of YOLOv8s, YOLOv10s, and YOLOv11s are

inferior to those of the AITP-YOLO model, which exhibits the best

overall detection accuracy and is less prone to omissions or

misdetections. Consequently, the AITP-YOLO model achieves

both a lightweight design and an enhanced detection capability.
4.8 Edge device deployment

In the current advancement of agricultural intelligence, edge

devices are important for achieving real-time data processing in the

field due to their low power consumption and high adaptability.
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This study evaluates the suitability of the final model AITP-YOLO

for deployment on edge devices by utilizing the Jetson Orin Nano

Super (Gomes et al., 2022), a compact edge device, to achieve high

frame rate operation of the AITP-YOLO model using a self-

constructed tomato ripening dataset, thereby offering robust

support for practical agricultural applications.

During the deployment procedure, the AITP-YOLO model files,

formatted in PyTorch and trained on the self-assembled tomato

ripening dataset, are initially sent to the edge device. Thereafter, the

model is transformed into TensorRT format with the conversion tool

offered by the YOLO framework, which significantly enhances model

inference speed. The FP16 mixed-precision quantization technique is

subsequently employed to transform themodel weight data type from
FIGURE 12

Comparison of visual inspection results of different models (A) original (B) Faster R-CNN (C) SSD (D) YOLOv5s (E) YOLOv8s (F) YOLOv10s (G)
YOLOv11s (H) AITP-YOLO.
FIGURE 13

Jetson Orin Nano Super in action.
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FP32 to half-precision floating-point integers, thereby enhancing

inference speed while maintaining precision loss within acceptable

limits. Upon finalizing the model deployment, the device is utilized to

identify the target within the video stream. Figure 13 illustrates the

demonstration effect of the actual test.

The AITP-YOLO model operates consistently at an average

frame rate of 27.15 FPS on the Jetson Orin Nano Super, as

evidenced by the aforementioned data. This frame rate excels in

edge device applications and satisfies real-time needs.

This study conclusively demonstrates the appropriateness of the

AITP-YOLO paradigm for implementation on edge devices by

deploying it on the Jetson Orin Nano Super. Its consistent frame

rate, robust stability, and effective adaptability to compact edge

devices offer a dependable technical solution for practical

applications like smart agricultural harvesting, which holds

significant potential for widespread use.
5 Conclusion and prospect

In recent years, with the advancement of agricultural

modernization, tomato ripeness detection has gradually become a

research hotspot, and many researchers are committed to developing

target detection algorithms for tomato ripeness detection. The

YOLO family of models is rapidly utilized in this domain due to

its notable advantages of high real-time performance, balanced

accuracy, and adaptability. Nonetheless, an examination of

previous studies indicates that there remains potential for

enhancement regarding accuracy, weight efficiency, and detection

velocity. Some models exhibit issues related to substantial capacity

and challenging deployment, while others attain lightweight or

specialized features, their detection accuracy remains inadequate.

This work presents a lightweight AITP-YOLO model, enhanced

from the YOLOv10s model. This model incorporates several multi-

strategy enhancements: first, it integrates deep and shallow features

by introducing a minor target detection layer to improve small target

detection; second, it employs a multi-scale fusion strategy to address

complex backgrounds; third, it substitutes the loss function with

Shape-IoU to refine bounding box regression; and finally, it utilizes

the Network Slimming pruning method for channel pruning and

fine-tuning, thereby compressing the model and enhancing detection

accuracy. Ablation studies on the proprietary Tomato dataset

substantiate each enhancement. In comparison to the prevalent

YOLO models, including YOLOv8s, YOLOv10s, and YOLOv11s,

the mAP@0.5 of AITP-YOLO exhibits enhancements of 2.2%, 4.1%,

and 1.9%, respectively. Consequently, AITP-YOLO demonstrates

enhanced accuracy in detecting tomato ripeness amidst intricate

backgrounds, achieving real-time detection at 97.61 FPS and 27.15

FPS on the Jetson Orin Nano Super edge device, making it suitable for

deployment on mobile terminals or edge segments, thereby offering

an efficient technological solution for intelligent fruit harvesting in

agriculture. Effective technological solution for intelligent fruit

harvesting in agriculture.

Despite the AITP-YOLO model’s commendable performance,

opportunities for enhancement remain. Due to the potential for
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background confusion to result in misdetection and omission, the

feature fusion module will be tuned to enhance accuracy, and more

sophisticated model compression techniques will be investigated.

The model is currently validated solely through computer

simulation and has not been used in practice. Future trials will be

conducted in tomato cultivation fields using picking robots to assess

the robots’ practicality and reliability. The findings of this research

align with existing peer studies, focus on enhancing the efficacy of

tomato ripeness detection, and provide superior accuracy, reduced

weight, and increased detection speed in integrated performance.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

WH: Data curation, Visualization, Writing – original draft,

Investigation, Methodology, Validation, Conceptualization. YL:

Investigation, Conceptualization, Methodology, Visualization,

Writing – original draft. PW: Methodology, Validation, Writing –

original draft. ZC: Conceptualization, Investigation, Data curation,

Methodology, Writing – original draft. ZY: Visualization, Writing –

original draft. LX: Funding acquisition, Resources, Supervision,

Conceptualization, Writing – review & editing. JM: Funding

acquisition, Resources, Supervision, Project administration,

Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. Innovation and

Entrepreneurship Training Program for University Students

(No. XX202410626012).
Acknowledgments

We acknowledge the support given by all reviewers.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1596739
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2025.1596739
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 17
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Alenazi, M. M., Shafiq, M., Alsadon, A. A., Alhelal, I. M., Alhamdan, A. M.,
Solieman, T. H., et al. (2020). Non-destructive assessment of flesh firmness and
dietary antioxidants of greenhouse-grown tomato (Solanum lycopersicum L.) at
different fruit maturity stages. Saudi J. Biol. Sci.27, 2839–2846. doi: 10.1016/
j.sjbs.2020.07.004

Appe, S. N., Arulselvi, G., and Balaji, G. (2023). CAM-YOLO: tomato detection and
classification based on improved YOLOv5 using combining attention mechanism.
PeerJ Comput. Sci.9, e1463. doi: 10.7717/peerj-cs.1463

Chen, D., and Zhang, L. (2024). SL-YOLO: A stronger and lighter drone target
detection model. arXiv preprint arXiv:2411.1147. doi: 10.48550/arXiv.2411.11477

Chen, W., Liu, M., Zhao, C., Li, X., and Wang, Y. (2024). MTD-YOLO: Multi-task
deep convolutional neural network for cherry tomato fruit bunch maturity detection.
Comput. Electron. Agric.216, 108533. doi: 10.1016/j.compag.2023.108533

El-Sheikh, E.-S. A., Li, D., Hamed, I., Ashour, M.-B., and Hammock, B. D. (2023).
Residue analysis and risk exposure assessment of multiple pesticides in tomato and
strawberry and their products from markets. Foo.12, 1936. doi: 10.3390/foods12101936

Fawzia Rahim, U., and Mineno, H. (2021). “Highly accurate tomato maturity
recognition: combining deep instance segmentation, data synthesis and color
analysis,” in AICCC '21: Proceedings of the 2021 4th Artificial Intelligence and Cloud
Computing Conference. 16–23.

Filters’importance, D (2016). Pruning filters for efficient convNe. In CLR 2017,
Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG).
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