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Flavonoids are a diverse class of plant polyphenols with essential roles in

development, defense, and environmental adaptation, as well as significant

applications in medicine, nutrition, and cosmetics. However, their naturally low

abundance in plant tissues poses a major barrier to large-scale utilization. This

review provides a comprehensive and forward-looking synthesis of flavonoid

biosynthesis, regulation, transport, and yield enhancement strategies. We

highlight key advances in understanding transcriptional and epigenetic control

of flavonoid pathways, focusing on the roles of MYB, bHLH, and WD40

transcription factors and chromatin modifications. We also examine flavonoid

transport mechanisms at cellular and tissue levels, supported by emerging spatial

metabolomics data. Distinct from conventional reviews, this review explores how

plant cell factories, genome editing, environmental optimization, and artificial

intelligence (AI)-driven metabolic engineering can be integrated to boost

flavonoid production. By bridging foundational plant science with synthetic

biology and digital tools, this review outlines a novel roadmap for sustainable,

high-yield flavonoid production with broad relevance to both research

and industry.
KEYWORDS

flavonoid biosynthesis, transcriptional regulation, plant cell factory, metabolic
engineering, artificial intelligence
1 Introduction

Flavonoids are a widespread class of polyphenolic compounds found across the plant

organs, including fruits, vegetables, grains, bark, roots, stems, and flowers (Chandra et al.,

2016). Synthesized through the phenylpropanoid pathway, these compounds are celebrated for

their health-promoting properties, making them valuable in industries like nutraceuticals,

pharmaceuticals, and cosmetics (Roy et al., 2022). Their benefits include antioxidative, anti-

inflammatory, anti-mutagenic, and anti-carcinogenic properties, as well as the ability to

modulate key cellular enzyme functions (Chandra et al., 2016; Ekalu and Habila, 2020);
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Flavonoids have demonstrated capacities in free radical scavenging,

prevention of coronary heart disease, hepatoprotective, anti-

inflammation, and anticancer activities (Kumar and Pandey, 2013

2013). More recently, research has uncovered their potential as

antiviral agents, adding another layer to their therapeutic promise

(Zhang et al., 2023).

In plants, flavonoids are indispensable. They help fend off

oxidative stress, regulate growth, and contribute to processes like

auxin transport, root and shoot development, pollination, and the

management of reactive oxygen species (ROS). They’re also key

players in the signaling that underpins the symbiotic relationship

between legumes and nitrogen-fixing Rhizobium bacteria (Weston

and Mathesius, 2013). Beyond this, flavonoids shape how plants

interact with their surroundings—whether with microbes, animals,

or other plants—and bolster resilience against environmental

challenges (Mierziak et al., 2014). Recent work has shown they can

enhance soil chemistry in the rhizosphere, improve nutrient uptake,

and even attract beneficial microbial communities, underscoring their

ecological significance (Wang et al., 2022). Flavonoids prevent ROS

generation by suppressing singlet oxygen, inhibiting ROS-generating

enzymes such as cyclooxygenase, lipoxygenase, monooxygenase, and

xanthine oxidase, chelating transition metal ions such as Fe2+ and Cu2

+, and recycling other antioxidants (Baskar et al., 2018).

Flavonoids are associated with a decreased risk of chronic diseases

such as cardiovascular disease and have been linked to improved

cognitive function. Research indicates that flavonoids can reduce the

risk of cardiovascular disease, type II diabetes, and cancer by inhibiting

the activation of certain proteins, specifically protein kinases and

phospholipid kinases. This inhibition disrupts their normal function,

leading to reduced oxidation, inflammation, gene mutations, and

cancer development. The wide range of beneficial properties of

flavonoids has led to their use in various industries, including food,

pharmaceutical, and nutraceutical sectors. In the food industry,

flavonoids serve as preservatives, pigments, and antioxidants. In the

pharmaceutical industry, their anti-aging, antioxidant, anti-

inflammatory, and anticancer properties make them valuable

ingredients in numerous products (Dias et al., 2021). However, high

purity and quality are essential for the industrial application of

flavonoids (Addi et al., 2022). Despite their vast potential for

industrial application, flavonoids face challenges that necessitate the

development of strategies to improve bioavailability, create sustainable

extraction and refinement technologies, and establish stability

procedures to broaden their applicability (Albuquerque et al., 2021).
2 Structure, diversity, and biosynthesis
of flavonoids

Flavonoids represent a diverse group of plant secondary

metabolites characterized by a remarkable variety of chemical

structures. At their core, these compounds feature a 15-carbon

skeleton, typically denoted as C6-C3-C6, which consists of two

phenyl rings (labeled A and B) linked by a heterocyclic ring (C)

containing an oxygen atom (Safe et al., 2021). This foundational
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structure undergoes extensive modifications, giving rise to the vast

diversity observed within the flavonoid family. Variations in

unsaturation, the attachment position of the B ring to the C ring,

levels of hydroxylation and oxidation, glycosylation patterns, and

additional substitutions account for the structural complexity of

these compounds (Dias et al., 2021). As a result, flavonoids are

classified into several subclasses, including flavanones, flavonols,

flavones, anthocyanidins, isoflavones, chalcones, aurones,

phlobaphenes, dihydroflavonols, leucoanthocyanidins, and

proanthocyanidins (Liu et al., 2021). To date, approximately

10,000 distinct flavonoid compounds have been identified in

plants, underscoring their evolutionary and ecological importance

(Dixon and Pasinetti, 2010).

The biosynthesis of flavonoids originates from the amino acid

phenylalanine, which is converted into cinnamic acid by the

enzyme phenylalanine ammonia-lyase (PAL), a cornerstone of the

phenylpropanoid pathway (Davies et al., 2024). Next, cinnamic acid

is hydroxylated to 4-coumaric acid by cinnamate 4-hydroxylase

(C4H), a cytochrome P450 enzyme. This is followed by activation to

4-coumaroyl-CoA via 4-coumarate: CoA ligase (4CL). The resulting

4-coumaroyl-CoA combines with three malonyl-CoA molecules

through the action of chalcone synthase (CHS) to produce

chalcone, a molecule with two phenyl rings. Chalcone is then

rapidly isomerized into flavanone by chalcone isomerase (CHI),

setting the stage for further diversification (Li et al., 2021). From

flavanone, the pathway splits into multiple branches. Flavanone 3-

hydroxylase (F3H) converts flavanone into dihydroflavonol, which

can then be directed toward flavonols by flavonol synthase (FLS) or

flavones by flavone synthase (FNS), contributing to the diversity of

flavonoids. For anthocyanin synthesis, dihydroflavonol is reduced

to leucoanthocyanidin by dihydroflavonol 4-reductase (DFR) and

subsequently oxidized to anthocyanidin by anthocyanidin synthase

(ANS). The final step involves glycosylation, typically catalyzed by

UDP-glycosyltransferases, which stabilizes anthocyanidin into

anthocyanin—the pigment responsible for the red, purple, and

blue colors in plants (Liu et al., 2021). Understanding the

flavonoid biosynthetic pathway provides a foundation for

metabolic engineering, allowing researchers to manipulate key

enzymes or transcriptional regulators to enhance the production

of targeted flavonoid compounds. This holds immense potential not

only for improving plant stress resistance and crop quality but also

for producing high-value bioactive molecules for pharmaceutical

and nutraceutical applications (Davies et al., 2024). However, the

intricate regulation of this pathway poses challenges, requiring

further investigation to fully harness its potential.
3 Deciphering flavonoid transport at
cellular and tissue-level perspective

Synthesized through cytosolic biosynthesis, flavonoids undergo

precisely regulated trafficking to their functional sites, including

vacuoles, cell walls, and the apoplast (extracellular space), via diverse

transport mechanisms. These processes span cellular compartments
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and intercellular spaces, and enable flavonoids to execute critical roles

in anthocyanin-mediated pigmentation, UV-B radiation shielding,

ROS scavenging, phytohormone signaling, and biotic/abiotic stress

resistance (Manzoor et al., 2023). This transport involves a network of
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membrane-bound transporters, vesicle trafficking systems, and

conjugation processes. At the cellular level, four distinct cellular

transport mechanisms have been identified for flavonoid

compartmentalization in plants (Figure 1A): (1) ATP-binding
FIGURE 1

Biosynthesis, transport, and regulation of flavonoid compounds. (A) Flavonoids, derived from phenylpropane, are synthesized by various enzymes
and transported to the vacuole via the endoplasmic reticulum or Golgi apparatus. (B) Other regulatory methods include the MWB complex binding
to target genes, direct regulation by inducers, and gene editing technology for knockout, knock-in, and fine-tuning of gene expression. (C) DNA
methylation influences flavonoid synthesis by regulating gene expression. Increased methylation inhibits, while demethylation enhances gene
expression. (D) Histone modification, including acetylation and methylation, can also regulate gene expression. (E) siRNA, formed by Dicer cutting
double-stranded RNA, binds to the AGO protein and degrades the mRNA of the target gene, thus reducing gene expression.
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cassette (ABC) transporters, particularly multidrug resistance-

associated proteins (MRPs), facilitate ATP-dependent vacuolar

sequestration of flavonoid glycosides including anthocyanins. (2)

Multidrug and toxic compound extrusion (MATE) transporters

employ proton gradients to mediate flavonoid translocation into

vacuoles or apoplastic spaces, exemplified by the Arabidopsis TT12

transporter functioning as a vacuolar flavonoid/H⁺ antiporter in seed

coat cells accumulating proanthocyanidins (Marinova et al., 2007). (3)

Glutathione S-transferase (GST)-dependent mechanisms, where

specific isoforms like TT19 act as molecular chaperones to facilitate

anthocyanin transport to the tonoplast through ligand binding (Sun

et al., 2012). And (4) Vesicle-mediated trafficking involving

endoplasmic reticulum-derived vesicles and Golgi apparatus, with

potential participation of anthocyanic vacuolar inclusions (AVIs) in

flavonoid deposition (Poustka et al., 2007). Emerging evidence

suggests coordinated regulation by soluble NSF attachment protein

receptor (SNARE) proteins and endomembrane trafficking systems,

revealing intricate interactions between membrane fusion machinery

and specialized metabolite storage processes (Hassani et al., 2023).

Flavonoids demonstrate systemic mobility across plant tissues

through coordinated vascular transport systems (Chen et al., 2023;

Dwivedi et al., 2017). These secondary metabolites are primarily

synthesized in source tissues, such as leaves, and subsequently travel

through the phloem to reach sink tissues, including roots, flowers, and

fruits. Within source tissues, flavonoid glycosides actively load into

phloem sieve tubes, a process that requires intricate coordination

between mesophyll cells and companion cells. Flavonoids traverse the

phloem, moving both upward (from leaves to other organs) and

downward (from leaves to roots) (Buer et al., 2007). Xylem-mediated

transport, conversely, occurs through passive apoplastic diffusion into

vascular conduits. Root systems utilize xylem-transported flavonoids

for developmental signaling and stress adaptation. Meanwhile foliar-

derived compounds descending through xylem networks modulate

root architecture and nutrient acquisition (Nicolas-Espinosa et al.,

2023). The vascular bundle organization permits flavonoid

redistribution through both symplastic (plasmodesmatal) and

apoplastic transport routes, with pathway selection influenced by

tissue-specific demands. Notably, root exudation of specific

flavonoid derivatives into the rhizosphere mediates plant-microbe

interactions and biogeochemical cycling (Hassan and Mathesius,

2012). Recent methodological advances in metabolomics have

revolutionized the study of flavonoid biosynthesis dynamics. While

conventional metabolomic approaches document bulk metabolite

fluctuations, they lack spatial resolution to map phytochemical

distributions at cellular or tissue levels. This limitation potentially

obscures critical metabolic events occurring in discrete anatomical

regions during developmental transitions or environmental

challenges. Emerging spatial metabolomics platforms, particularly

mass spectrometry imaging (MSI), enable precise visualization of

flavonoid localization patterns within plant microstructures (Chen

et al., 2024). This technique provides multidimensional data linking

metabolite distribution with cellular ultrastructure, offering
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unprecedented insights into compartment-specific metabolic

regulation and biochemical functionality.
4 Regulation of flavonoid synthesis at
the molecular level

4.1 The role of transcription factors in the
regulation of flavonoid biosynthesis

Transcription factors (TFs) are proteins that attach to specific

DNA sequences and play a key role in regulating the transfer of

genetic information from DNA to mRNA. Their role is particularly

significant in the regulation of flavonoid biosynthesis, and they can

stimulate or inhibit the expression of structural genes in

biosynthetic pathways (Figure 1B). Various transcription factor

families, including MYB, bHLH, and WD40, have been

recognized as central regulators of flavonoid biosynthesis. These

transcription factors form a complex, known as the MBW complex,

which is crucial for the activation of late biosynthetic genes (LBGs)

in the flavonoid pathway (Figure 1B) (Zhao et al., 2013).

MYB transcription factors are acknowledged as one of the most

extensive families in the plant kingdom. These TFs are characterized

by a highly conserved MYB domain located at their N-terminus.

According to the number of MYB domain, MYB TFs can be divided

into 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB. A specific subgroup

within this family, referred to as the R2R3 MYB transcription factors,

is exclusive to plant species and play a vital role in controlling the

expression of structural genes. These specific genes are crucial for the

biosynthesis pathways of anthocyanins, flavonoids, and monolignols

(Zhao et al., 2013). In Arabidopsis, AtFLS1, which encods a flavonol

synthase that facilitates the conversion of dihydroflavonols into

flavonols, is regulated in a tissue-specific and developmentally

controlled manner by three R2R3-MYB proteins: MYB12, MYB11,

and MYB111 (Schilbert and Glover, 2022). Similarly, in grape, the

flavonoid pathway is regulated by at least four MYB TFs: VvMYB5a,

VvMYB5b, VvMYBPA1, and VvMYBPA2 (Liang et al., 2022). Recent

studies have shown that the transcription factor, VvMYB24, plays a

central role in controlling the metabolism of terpenes and flavonoids

(Nguyen, 2020). In Lycium ruthenicum, overexpressing LrMYB94 and

LrWRKY32 led to a significant increase in the levels of Kaempferol-3-

O-rutinoside (K3R) and rutin, thereby enhancing the plant’s

medicinal properties. In contrast, silencing these genes effectively

impeded the light-induced synthesis of K3R and rutin, resulting in a

decrease in the medicinal activity of black wolfberry (Du et al., 2024).

The bHLH (Basic helix-loop-helix) TFs also play a significant role

in the biosynthesis of flavonoids. The bHLH TFs are key in managing

various stages of the flavonoid pathway, including the production of

anthocyanins and proanthocyanidins (PAs), underscoring their

essential role in this process (Fresquet-Corrales et al., 2017). In

Arabidopsis, the bHLH transcription factor TT8 (Transparent Testa

8) works in conjunction with the MYB transcription factors PAP1
frontiersin.org
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(Production of Anthocyanin Pigment 1) and PAP2 to supervise the

biosynthesis of anthocyanins (Li et al., 2020). Similarly, in Vitis

vinifera, VvbHLH1 interacts with VvMYBPA1, playing a crucial

role in the regulation of proanthocyanidin biosynthesis (Koyama

et al., 2014).

WD40 proteins, distinguished by the presence ofWD40 repeats,

are instrumental in enabling protein-protein interactions. Within

the context of flavonoid biosynthesis, these proteins serve as a

scaffold for the formation of the MBW complex. For example, in

Camellia sinensis, CsWD40 plays a significant role in the joint

regulation of the flavonoid pathway (Liu et al., 2018).

Beyond the well-known MYB, MYC (also referred to as bHLH),

and WD40 proteins, there exist other transcription factors that

contribute to the regulation of flavonoid biosynthesis. For example,

AP2/ERF and WRKY directly influence the primary flavonol

synthase gene or other initial genes involved in the flavonoid

biosynthesis process (Cao et al., 2024). In the case of Artemisia

annua, the YABBY5 transcription factor is responsible for the

activation of several genes in the flavonoid pathway, such as

AaPAL, AaCHS, AaCHI, and AaUFGT. This activation promotes

a notable rise in the total accumulation of flavonoids and an

increase in anthocyanin production, which is evidenced by the

deep purple coloration of the stem (Kayani et al., 2021).

AbovementionedMBW complexmajorly depends on the binding

to specific DNA sequence and transcription activation activity of R2R3

MYB TF. However, different MYB transcription factors may play

opposite roles in flavonoid synthesis. Recent studies show that R3 and

R2R3-MYB TFs can inhibit the biosynthesis of flavonoids. For

example, more than 30 MYB TFs in over 15 species have been

reported to inhibit flavonoid biosynthesis (Chen et al., 2019).

According to the C-terminal structure of the repressive MYB TFs,

their inhibition offlavonoid synthesis can be achieved in the following

two modes: Some MYB transcriptional repressors do not have a

transcriptional activation domain, but they compete with MYB

transcriptional activators to bind to bHLH and WD40 proteins,

thereby repress the expression of target genes. Other MYB

transcriptional repressors contain a transcriptional repressor domain

at the C-terminus, which binds to the promoter region of the target

gene and directly represses its expression (Chen et al., 2019).

Furthermore, we systematically summarized both the transcription

factors mentioned in this study and those not previously discussed in a

tabular format (Table 1). Detailed descriptions of the specific flavonoid

metabolic networks regulated by these transcription factors were also

provided (An et al., 2019; Grunewald et al., 2012; Hou et al., 2024;

Wang et al., 2023). This comprehensive presentation aims to offer

readers a clearer understanding of the crucial regulatory roles that

transcription factors play in the biosynthesis and metabolic processes

of flavonoids in plants.
4.2 The role of epigenetics in plant
flavonoid biosynthesis

Epigenetics plays a significant role in regulating plant secondary

metabolism, particularly inmedicinal plants. Epigenetic modifications,

such as DNAmethylation and histonemodifications, are central to the
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regulation of gene expression. These changes significantly impact a

broad range of biological processes, including flavonoid metabolism.

DNA methylation, a well-studied epigenetic mechanism, can induce

heritable and phenotypic alterations in functional genes without

changing the DNA sequence itself. Alterations in DNA methylation

patterns can dictate various aspects of plant life, such as

morphogenesis, growth, development, and secondary metabolite

production (Kumar and Mohapatra, 2021; Liu et al., 2020). In

Arabidopsis thaliana, DNA methylation at the promoter region of

the FLS1 gene, which encodes flavonol synthase, leads to reduced

expression of this gene and consequently lower flavonol content (Zhao

et al., 2023). MYB182, a repressor of anthocyanin synthesis in poplar,

becomes hypomethylated under dark conditions, resulting in elevated

MYB182 expression (Figure 1C). Consequently, downstream genes

related to anthocyanin synthesis are inhibited, leading to reduced

anthocyanin content (Fan et al., 2018). Histone modifications,

including acetylation and methylation, also play essential roles in

gene expression regulation (Figure 1D). For example, acetylation at

histone H3K9 has been observed to modulate the gene expression of

key enzymes in the flavonoid and abscisic acid pathways, thereby

enhancing the drought resistance of sea buckthorn (Hippophae

rhamnoides) (Li et al., 2023). In Petunia hybrida, histone acetylation

at the promoter region of the CHS gene (encoding chalcone synthase)

enhances its expression, thereby increasing chalcone production (Liu

et al., 2021). Additionally, the histone variant H2A.Z has been

implicated in various plant physiological programs, including

flavonoid biosynthesis (Nguyen, 2020). In Matthiola incana, histone

methylation at the DFR gene, which encodes dihydroflavonol

reductase, results in higher expression levels and increased

anthocyanin accumulation (Winkel-Shirley, 2001). MicroRNAs

(miRNAs), which are negative regulators of gene expression, bind to

target gene sequences, reducing their expression (Figure 1E). In

Arabidopsis, miR163 regulates flavonoid synthesis by targeting the

PXMT1 gene (Fan et al., 2018). Collectively, these findings underscore

the intricate relationship between epigenetic modifications and plant

metabolism, emphasizing the need for further research in this

captivating field.
5 Strategies to improve flavonoid
contents in plants

5.1 Unleashing the power of genetic
engineering in flavonoid biosynthesis of
plant

Genetic engineering has ushered in a new era in plant research,

particularly in enhancing flavonoid production. This advancement is

primarily achieved through plant transgene and gene editing

techniques (Figure 1). However, the intricate and diverse metabolic

pathways involved in flavonoid biosynthesis pose a significant

challenge in obtaining high yields of specific flavonoids. Synthetic

biology approaches, such as the utilization of transcription factors and

enzyme diversity, have shown promise in enhancing flavonoid yields

and broadening their production spectrum. For instance, the
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overexpression of the PAP1 transcription factor in Arabidopsis leads

to alterations in the plant’s metabolic profile, including a surge in

flavonoid production (Fu et al., 2021; Mitsunami et al., 2014).

Moreover, a novel biotechnology for in-planta gene editing was

employed to promote flavonoid biosynthesis. Consequently, this

leads to an increased flavonoid content in bamboo leaves by

knocking out the Cinnamoyl-CoA Reductase (CCR) gene (Sun et al.,

2023). Zeng et al. (2021) used the CRISPR/Cas9 tool to successfully

engineer high-yield hyoscyamine production from Belladonna plants

for the first time. This achievement underscores the potential of

genetic engineering in enhancing flavonoid production (Figure 1B).

Collectively, these studies underscore the transformative potential of

genetic engineering in advancing flavonoid biosynthesis pathways

within plant systems.
5.2 Plant cell factories: a sustainable
approach to flavonoid production with the
industrialization of plant cell cultures

Traditional flavonoid production methods, including chemical

synthesis and biological extraction, are limited by low yields,

environmental variability, and high costs (Chaves et al., 2020; Sheng

et al., 2020). Plant cell culture technologies have emerged as viable

alternatives for the production of bioactive compounds, and offer the

added benefit of preserving local ecosystems. These technologies

enable the cultivation of plant cell suspensions, which allows for the

production of valuable molecules independent of environmental,
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geographical, and seasonal constraints. Additionally, this method

reduces production costs, improves product safety, and enables

scalable manufacturing (Verpoorte et al., 2000). The in vitro

cultivation of plant cell cultures is frequently complicated by

multiple technical challenges throughout the experimental workflow.

Principal limitations include slow growth rates, metabolic constraints,

microbial contamination, cost of infrastructure, and genetic

instability (Table 2).

A notable example is Hypericum perforatum (St. John’s Wort), a

medicinal plant renowned for its antidepressant properties and high

flavonoid content. Researchers have successfully established cell

suspension cultures from stem-derived calli of H. perforatum to

enhance flavonoid production. By optimizing culture conditions and

employing methyl jasmonate elicitation, the flavonoid content in these

cultures reached up to 16 mg/g dry weight within a 20- to 25-day

cultivation period (Wang et al., 2015). Furthermore, Echinacea

angustifolia, a North American native species containing valuable

bioactive compounds including quercetin derivatives and rutin

glycosides, has emerged as another successful candidate for

commercial-scale phytochemical production through advanced cell

culture techniques (Gubser et al., 2021). These breakthroughs not only

pave the way for a steady, high-quality supply of these bioactive

compounds but also reduce the ecological impact associated with

harvesting wild populations. An overview of the plant cell factory

workflow is illustrated in Figure 2.

In summary, plant cell factories offer a scalable and environmentally

friendly alternative to traditional methods, providing consistent

flavonoid production for applications in pharmaceuticals,
TABLE 1 Transcription factors (TFs) that involved in Flavonoid biosynthesis.

TF
family

Example TF(s) Role/function in flavonoid biosynthesis

R2R3-
MYB

AtMYB11, AtMYB12, AtMYB111 (flavonol‐specific
activators); AtMYB75 (PAP1), AtMYB90, AtMYB113/
114 (activators of anthocyanin/
proanthocyanidin genes)

Bind directly to promoters of biosynthetic genes. Generally, “MYB-B” group members (e.g., MYB11/
12/111) activate early genes (such as CHS, CHI, F3H, and FLS) while “MYB-C” group TFs (e.g.,
MYB75/PAP1) form a complex with bHLH and WD40 to regulate later steps (DFR, LDOX, UFGT)

bHLH TT8, GL3, EGL3 (Arabidopsis regulators)
Interact with R2R3‐MYBs to form the MBW complex needed for robust activation of LBGs (e.g., in
anthocyanin biosynthesis

bZIP VqbZIPC22 (from grapevine)
Regulates key downstream genes such as CHI and FLS, thereby affecting flavonol levels (e.g.,
kaempferol and quercetin accumulation)

YABBY AaYABBY5 (from Artemisia annua)
Directly activates promoters of early (PAL, CHS, CHI) and late (UFGT) biosynthetic genes to boost
total flavonoid—and in particular anthocyanin—levels

NF-Y
NF-Y subunits (e.g., NF-YA, NF-YB, NF-YC as
a complex)

Regulate flavonoid biosynthesis by binding to CCAAT motifs in promoters (e.g., of CHS1) and
modulating chromatin structure for transcriptional activation

AP2/
ERF

CitERF32, CitERF33, CitRAV1 (from citrus)
Activate flavonoid pathway genes (for instance, CitCHIL1) thereby increasing overall flavonoid
content; these factors integrate developmental and environmental signals

WRKY AtWRKY23, AtWRKY75 (in Arabidopsis)
Implicated in modulating flavonol biosynthesis (and possibly other branches) as well as linking
stress/defense signals with secondary metabolism

NAC MdNAC52 (apple), SlNAC1 (tomato)
Enhance anthocyanin levels by modulating expression of key MYB regulators or directly influencing
structural genes; integrate stress and hormonal signals

BBX
(B-box)

MdBBX20, MdBBX22, AtBBX21/24
Influence anthocyanin accumulation in response to light conditions by interacting with HY5
and MYBs
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nutraceuticals, and other industries. Continued research into optimizing

these cultures will be key to realizing their industrial potential.
5.3 Optimization of growth conditions and
elicitors for enhanced flavonoid
biosynthesis

Optimizing growth conditions can effectively enhance flavonoid

production. Several factors, including light, temperature, and
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nutrient availability, significantly affect flavonoid biosynthesis. For

instance, UV-B radiation affects the accumulation of secondary

metabolites in plants. Interestingly, UV-B radiation rapidly triggers

flavonoid biosynthesis, with adaptive responses occurring within

minutes to hours (Shi and Liu, 2021). Temperature modulates

enzymatic activity in secondary metabolite pathways, directly

influencing flavonoid biosynthesis and accumulation. Both

elevated and reduced temperatures impart substantial effects, with

the latter being especially favorable for the production offlavonoids.

In tea plants, where the dominant secondary metabolic pathway is
FIGURE 2

Production of flavonoids using a plant cell factory. ① Seedling growth: Sterile seeds are planted in a culture medium to grow and obtain sterile
seedlings. ② Tissue selection: Suitable tissues are selected from the sterile seedlings to serve as explants. ③ Callus induction: The explants are
induced appropriately to form callus tissue. ④ Cell line selection: From a large amount of callus tissue, cell lines that can produce the target
compound in large quantities are selected. ⑤ Suspension culture: The selected cell line is cultured in suspension to determine the optimal growth
conditions for the cell line. ⑥ Scale-up validation: Pilot-scale bioreactor runs (10 L) confirm stable flavonoid productivity. ⑦ Large-Scale production:
The target cell line is produced in large quantities using a fermenter to obtain a large amount of the target compound. ⑧ Separation and purification:
The products of the cells after fermentation are separated and purified. ⑨ Commercialization: The obtained target product can finally be applied in
medicine, food, and cosmetics.
TABLE 2 The advantages and challenges of plant cell factories.

Advantages of the approach

Environmental
Independence

Production is decoupled from external factors like climate or soil quality, enabling year-round operation

Sustainability
By minimizing the need for extensive agricultural land and reducing pressure on wild plant populations, this method aligns with
conservation goals

Scalability Bioreactor-based systems can be scaled from laboratory to industrial levels, accommodating market demand with relative ease

Product Consistency Cultured cells synthesize flavonoids with biochemical profiles identical to those of intact plants, preserving their therapeutic efficacy

Challenges in implementation

Slow Growth Rates Plant cells proliferate more slowly than microbial systems, extending production timelines and increasing operational costs

Metabolic Constraints Flavonoid biosynthesis is tightly regulated, often resulting in suboptimal yields without genetic or environmental intervention

Microbial contamination bacterial, fungal, or endogenous pathogens contamination

Cost of Infrastructure Bioreactors, specialized media, and downstream processing equipment require significant investment

Genetic Stability Prolonged subculturing can lead to somaclonal variation, potentially reducing metabolite consistency
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flavonoid biosynthesis, an increase in temperature and light

intensity boosts flavonoid production (Zhang et al., 2017).

Anthocyanins, a significant class of flavonoids, are also induced

by low temperatures. On the other hand, exposure to low

temperatures leads to increased flavonoid accumulation in

Arabidopsis thaliana (Bhatia et al., 2018). In maize (Zea mays L.),

lowering the temperature from 23°C to 18°C increased leaf

anthocyanin content by 35-fold (Pietrini and Massacci, 1998).

The promoter of the R2R3 MYB transcription factor Ruby1 in

blood orange (Citrus sinensis) contains a reverse transcriptional

transposon that regulates low-temperature-induced anthocyanin

accumulation. CsERF054 and CsERF061 bind to the DRE/CRT

cis-element within this transposon, activating CsRuby1

transcription and anthocyanin synthesis. Furthermore, CsERF061

interacts with CsRuby1, forming a protein complex that

synergistically activates anthocyanin synthesis genes (Wang et al.,

2024). Nutrient availability significantly influences flavonoid

biosynthesis. During the early growth stages, the synthesis and

secretion of key substances in the flavonoid metabolic pathway vary

with different nitrogen sources. Notably, nitrogen deficiency

conditions lead to increased flavonoid synthesis and secretion (Li

et al., 2024). Recent research on Arabidopsis has revealed that the

brassinosteroid (BR)-responsive transcription factor BZR1 plays a

critical role in enhancing anthocyanin biosynthesis under low

nitrogen conditions. BZR1 directly binds to the promoter regions

of PAP1/2, leading to increased transcriptional activity. Additionally,

the physical interaction between BZR1 and PAP1/2 further amplifies

this effect, thereby promoting anthocyanin biosynthesis. This dual

mechanism underscores the importance of BZR1 in regulating

anthocyanin production, which is crucial for plant stress responses

and pigmentation (Lee et al., 2024).

Biotic elicitors, derived from organisms such as bacteria, fungi,

algae, and polysaccharides, significantly influence flavonoid

production (Bhaskar et al., 2022). For instance, bacterial elicitors

like Rhizobium rhizogenes and Escherichia coli have been shown to

increase genistein production by 94% and diosgenin by 9.1-fold,

respectively. Recent research has focused on hormone-regulated

flavonoid metabolic pathways. Salicylic acid (SA) alters the gene

expression of key enzymes in secondary plant metabolism, boosting

the production of bioactive compounds, including essential oils,

phenolic acids, flavonoids, tannins, and alkaloids (Pacheco and

Gorni, 2021). In Dendrobium officinale, methyl jasmonate (MeJA)

upregulates MYC transcription factors—key regulators of flavonoid

and jasmonate biosynthesis—resulting in enhanced accumulation

of anthocyanins, rutin, hypericin, and isoquercitrin (Jia et al., 2024).
5.4 Application of artificial intelligence in
metabolic engineering of plant cells

AI can play a crucial role in unraveling the intricate metabolic

pathways within plant cells (Sears et al., 2024; Zampieri et al., 2019).

These pathways govern the synthesis of vital compounds, including

secondary metabolites (e.g., flavonoids), phytohormones, and

bioactive molecules. AI algorithms enable the analysis of extensive
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datasets, prediction of enzyme functions, and identification of

potential bottlenecks within these pathways (Shah et al., 2021).

For instance, AI and machine learning (ML) techniques have been

developed to predict enzyme functions and metabolic pathway

memberships in Arabidopsis thaliana , enhancing our

understanding of plant metabolism (Bai et al., 2024). Another

case study is the ARCTICA framework, which integrates machine

learning with metabolic modeling to simulate and control metabolic

fluxes in cyanobacteria, providing a blueprint for similar

applications in plant systems (Kugler and Stensjö, 2024). Gene-

editing technologies, including CRISPR-Cas9, benefit from AI-

driven target prediction, which pinpoints candidate genes

involved in specific pathways. This precision allows for targeted

genetic modifications, such as gene knockouts or overexpression, to

fine-tune metabolic fluxes (Lin and Wong, 2018; Wada et al., 2020).

In this review, we systematically evaluate the transformative

potential of artificial intelligence (AI) in deciphering and

engineering plant flavonoid metabolism (Figure 3). Modern AI

frameworks, such as hybrid deep learning architectures and

generative adversarial networks (GANs) enable in silico simulation

of gene expression dynamics and their cascading effects on metabolic

fluxes (Cheng et al., 2023). For instance, AI models trained on multi-

omics datasets can predict how perturbations in transcriptional

regulators (e.g., MYB, WRKY, or bZIP transcription factors) alter

flavonoid biosynthetic pathways, thereby replacing conventional

trial-and-error approaches with precision-guided experimental

designs. Optimizing growth conditions, nutrient availability, and

light exposure can further maximize flavonoid yields. AI’s

integration into plant biology research extends beyond data

analysis and prediction. AI facilitates the discovery of novel

metabolic pathways and regulatory networks, offering insights into

previously unexplored areas of plant metabolism. Advanced machine

learning techniques, such as deep learning and neural networks, can

identify patterns and correlations within complex biological data,

leading to the identification of new targets for genetic manipulation.

Furthermore, AI-driven approaches can predict the effects of

environmental changes on plant metabolism, enabling researchers

to develop strategies for improving crop resilience and productivity

under varying conditions.
6 Conclusion

Compared with the primary metabolites, the amounts of

secondary metabolites in plant cells are very low. However,

flavonoid metabolites are the most abundant secondary metabolites

in plant cells. Flavonoids have important physiological functions in

plants. Since flavonoids themselves have antioxidant functions, they

can regulate the signal pathway of plant reactive oxygen species and

inhibit the production of excessive reactive oxygen species in plants,

thereby relieving the damage of excessive reactive oxygen species to

plants. In addition, flavonoids are involved in a variety of plant life

activities, such as auxin transport, root and stem development, and

regulation of plant response to external stress. Flavonoids have

important roles not only in plants, but also in the treatment of
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diseases, such as cancer, Alzheimer’s disease, and atherosclerosis.

Their strong antioxidant activity and free radical scavenging ability

demonstrate therapeutic potential in preventing coronary heart

disease, protecting liver function, reducing inflammation, and

suppressing cancer progression. In addition, flavonoids are also

widely used in several industries such as food, pharmaceutical and

nutrition sectors, such as preservatives, pigments, antioxidants, etc.

However, due to the inherently low biosynthesis of flavonoids in plant

cells, industrial production currently relies on labor-intensive

extraction from vast quantities of plant biomass, significantly

hindering their widespread application in pharmaceuticals

and nutraceuticals.

The biosynthesis of flavonoids has been the focus of research on

plant secondary metabolism in recent decades. At the molecular level,

the MYB transcription factor, bHLH transcription factor and WD40

protein form aMBW complex, which is the core regulatory element to

regulate the expression of downstream flavonoid synthesis genes. The

biosynthesis of downstream flavonoids can be precisely controlled by

modulating the expression or composition of the MBW

transcriptional complex. Furthermore, epigenetic mechanisms—

including DNA methylation, histone acetylation, histone protein

variants, and siRNA—exert dual regulatory effects: (1) indirectly

influencing flavonoid synthesis by altering the expression of

pathway-related genes through the MBW complex, and (2) directly
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regulating structural genes (e.g., CHS, FLS) that encode rate-limiting

enzymes in the flavonoid biosynthetic pathway. This hierarchical

regulatory network enables dynamic control of flavonoid

production. In addition, the synthesis of flavonoids is strictly

regulated by the external environment. External environmental

factors such as light, temperature, CO2 content and moisture

content also regulate the regulation of flavonoids at any time.

Recent advancements in genetic engineering techniques,

particularly transgenic modification and precision genome editing,

have revolutionized flavonoid biosynthesis in biological systems. These

technologies enable both the introduction of heterologous biosynthetic

pathways and fine-tuning of endogenous gene expression, resulting in

substantial yield improvements of these valuable secondary

metabolites. To address tissue-specific limitations in flavonoid

accumulation, industrial applications increasingly employ optimized

cell line selection strategies. This methodological shift not only

enhances production stability but also facilitates more sustainable

extraction processes through improved biomass utilization. The

integration of artificial intelligence in metabolic engineering further

expands the potential biosources for flavonoid production. Machine

learning algorithms are accelerating the identification of non-

traditional cellular platforms, moving beyond conventional plant-

based systems. This technological convergence empowers

researchers to tailor flavonoid biosynthesis according to therapeutic
FIGURE 3

The potential role of artificial intelligence (AI) in promoting the biogenesis of flavonoids (A) AI enhances flavonoid production by modifying key
elements of flavonoid biosynthesis. By altering the expression of genes related to flavonoid metabolism through AI design, adjusting the growth
environment of plants or cells, redirecting plant metabolic flow, and editing target genes using CRISPR technology, the physiological state of plants
can be optimized to produce target flavonoid metabolites under ideal conditions. (B) Briefly explain how artificial intelligence can promote flavonoid
biosynthesis in three elements. (1) Expression of Core Genes: AI can modulate the expression of structural genes and regulatory factors involved in
flavonoid synthesis, such as the PAL gene and various transcription factors (TFs). (2) Growth Conditions: AI can optimize growth conditions, including
light intensity, temperature, and other environmental factors, to enhance flavonoid production. (3) Metabolic Flow Direction: AI can influence the
direction of metabolic flow by increasing the rate of primary metabolite conversion to target flavonoids and reducing the production of other
secondary metabolites.
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requirements while simultaneously enabling coproduction of related

pharmacologically active compounds. Such developments suggest a

paradigm shift in natural product manufacturing, where bioengineered

systems may surpass traditional botanical sources in both efficiency and

chemical diversity.
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