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Nitric oxide (NO), a key signaling molecule in plants, induces various biological

and biochemical processes, including growth and development, adaptive

responses, and signaling pathways. The intricate nature of NO dynamics

requires vigorous statistical approaches to guarantee precise data

interpretation and significant biological conclusions. This review underscores

the importance of statistical methodologies in NO study, discussing experimental

design, data collection, and advanced analytical tools. In addition, vital statistical

challenges such as high variability in NO measurements, small sample sizes, and

complex interactions with other signaling molecules, are investigated along with

approaches to alleviate these limitations. New computational techniques,

including machine learning, integrative omics approaches, and network-based

systems biology, present commanding outlines for identifying NO-mediated

regulatory mechanisms. Furthermore, we underscore the necessity for

interdisciplinary collaboration, open science practices, and standardized

protocols to improve the reproducibility and dependability of NO research. By

combining robust statistical methods with advanced computational tools,

researchers can gain enhanced insights into NO biology and its effects on

plant adaptation and resilience.
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1 Introduction: context and significance of nitric
oxide in plant biology

1.1 Overview of nitric oxide in plant systems

Nitric oxide (NO) is a pivotal signaling molecule that plays diverse roles in plant

physiological and developmental processes, including seed germination, root development,

vascular patterning, and stomatal closure (Kumar and Ohri, 2023; Pande et al., 2021). It

modulates gene expression related to oxidative stress, hormone signaling, and immune
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responses. NO’s interaction with reactive oxygen species (ROS) and

phytohormones like auxin, ethylene, and abscisic acid contributes

to the fine-tuning of plant growth and stress responses (Khan

et al., 2023).

Recent advances in imaging technologies have further revealed

the complexity of NO signaling. A novel above ground whole-plant

live imaging method demonstrated the intricate spatial and

temporal relationship between NO and hydrogen peroxide,

providing real-time visualization of their dynamic cross-talk in

response to environmental cues (Mohanty et al., 2025).

NO also participates in cross-talk with other signaling

molecules, influencing plant responses to light, temperature, and

water availability. Its involvement in processes such as programmed

cell death (PCD), protein synthesis, and photosynthesis highlights

the need for integrated approaches—including genomics,

transcriptomics, and proteomics—to understand its complex

regulatory networks (Ombale et al., 2025).
1.2 Nitric oxide and its signaling pathways
in plants

NO regulates key physiological activities such as germination,

flowering, and senescence, and enhances tolerance to biotic and

abiotic stressors (Gupta et al., 2022; Nabi et al., 2021). It influences

stomatal activity, osmolyte accumulation, and stress-responsive

genes expression. During biotic stress, NO boosts antimicrobial

compound production and reinforces cell walls. It also promotes

cell division, elongation, and differentiation—such as through

lateral root formation with auxin signaling (Zhao et al., 2021).
1.3 Challenges in nitric oxide research

Despite its importance, NO research faces several challenges

due to its reactive and transient nature. NO readily reacts with ROS,

metals, and thiol groups to form RNS, such as peroxynitrite and S-

nitrosothiols, which are key signaling intermediates but complicate

detection and interpretation (Astier et al., 2018).

Moreover, NO is produced via both enzymatic (e.g., nitrate

reductase, nitric oxide synthase-like enzymes) and non-enzymatic

pathways, with production varying by developmental stage and

environment (Allagulova et al., 2023b). These factors result in

spatiotemporal fluctuations that limit measurements reproducibility.

Detection techniques—such as chemiluminescence and fluorescent

probes—often suffer from specificity issues or introduce artifacts,

reinforcing the need for well-designed experiments and robust

data interpretation.
1.4 Role of statistical approach in NO
research

Statistical tools are crucial for managing the variability and

complexity of NO-related data. Techniques for normalization, error
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quantification, and noise reduction enhance data reliability.

Multivariate methods such as principal component analysis

(PCA) and partial least squares regression (PLSR) help identify

meaningful patterns in complex datasets (Gholami et al., 2024).

Mixed-effects models accommodate both fixed and random

effects (e.g. genotypes, tissue type, or environment), improving

parameter precision (Tahjib-Ul-Arif et al., 2022). Meta-analysis

aggregate data across studies, yielding more robust conclusions

and mitigating study-specific biases (Liu et al., 2023).
1.5 Significance of integrating statistics in
NO research

This review highlights the value of integrating statistical

methods into NO research and provides guidance on their

application in plant biology. By leveraging tools such as

multivariate analysis, mixed-effects models, and meta-analysis,

researcher can improve measurement precision and reproducibility.

We begin with core statistical concepts—hypothesis testing,

normalization, and error analysis—and advance to time-series

analysis and cross-study synthesis. Emphasis is placed on open

source-platforms like R and Python for data analysis and

visualization. Best practices in data management and sharing are

also discussed to promote transparency. Ultimately, this review

aims to equip researchers with quantitative tools necessary to

address NO-related challenges and gain deeper insight into its

roles in plant development and stress adaptation.
2 Experimental design and data
collection in NO research

NO is a transient and reactive signaling molecule involved in

diverse physiological processes in both plants and photosynthetic

microorganisms such as microalgae. Owing to its low abundance,

short half-life, and high reactivity with cellular components, robust

experimental design and accurate data collection are essential for

detecting, quantifying, and interpreting NO dynamics. This section

outlines key considerations in sampling strategies, detection

techniques, and managing variability—each of which is critical for

generating reproducible, statistically sound, and biologically

meaningful NO measurements.
2.1 Sampling strategies for NO
measurement

Accurate sampling is foundational to NO quantification. In

controlled environments involving homogeneous populations—

such as genetically identical Arabidopsis thaliana—random

sampling ensures unbiased data representation (Lohr, 2021).

However, in studies incorporating heterogeneity in tissue types

(e.g., roots vs. leaves), developmental stages (e.g., seedling vs.

flowering), or environmental gradients (e.g., light exposures),
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stratified sampling provides superior accuracy. Stratification

involves dividing the population into relevant subgroups (strata),

and drawing random samples from each, thereby reducing

sampling error and enhancing biological relevance (Singh

et al., 1996).

A critical component of experimental design is determining the

appropriate sample size. Instead of using arbitrarily replicate

numbers, researchers should conduct a prior power analysis to

define the minimal number of biological replicates required to

detect a biologically significant effect size at specified significant

level (typically a = 0.05) and power (commonly 0.8). For example,

in an experiment comparing NO accumulation between wild-type

and nitrate reductase-deficient mutants under salt stress, power

analysis can determine whether three or more biological replicates

are sufficient to detect a 20% difference with acceptable confidence

(Ryan, 2013).
2.2 Detection methods and their statistical
implications

NO detection in plant systems necessitates methods that are both

sensitive and selective, given the molecule’s short-lived nature and

low concentrations. The detection techniques selected directly

influence both the accuracy and the interpretability of results under

physiological and stress conditions. Three principal platforms

dominate current NO research: chemiluminescence, fluorescence-

based probes, and electron paramagnetic resonance (EPR), each

bearing distinct advantages, limitations, and statistical requirements.

Chemiluminescence relies on the reaction between NO and

ozone to generate photon emission, allowing highly sensitive

quantification of gaseous NO. It is particularly suitable for

measuring NO emission from leaves or aqueous plant samples

under stress. However, its limitation lies in its lack of spatial

resolution and applicability to bulk measurements. To ensure

reproducibility, frequent calibration using standard NO donors

such as DEA-NONOate is necessary (Sparacino-Watkins and

Lancaster, 2021).

Fluorescence probes—including DAF-FM and DAR-4M—

enable real-time imaging of intracellular NO and offer both

spatial and temporal resolution. These cell-permeable dyes form

fluorescence adducts upon reacting with NO, facilitating in situ

quantification. However, probe performance can be influenced by

pH, temperature, and interactions with other ROS and RNS.

Adequate controls—such as pH-stable analogs and NO-deficient

mutants—are essential. Calibration with NO donors can assist in

quantification, but potential non-specificity must be accounted for

(Gupta et al., 2020).

EPR provides a highly specific detection of NO trapping it with

paramagnetic agents (e.g., Fe2+- diethyldithiocarbamate). It enables

differentiation of NO from other radicals and quantification in vivo.

While highly accurate, EPR is limited by its need for specialized

instrumentation. Statistical reproducibility is enhanced through the

use of internal standards and repeated independent replicates

(Calvo-Begueria et al., 2018).
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For all detection methods, statistical calibration is essential.

Calibration curves using NO donors establish the linear relationship

between signal output and NO concentration, with regression

analysis providing coefficient of determination (R²) to assess the

goodness-of-fit (Mohamed et al., 2022). In addition, defining the

method’s limit of detection (LOD) and limit of quantification

(LOQ) ensures data are interpreted within the valid operational

range—especially critical when measuring physiological NO

concentrations in the nanomolar range (Wood, 2015).
2.3 Managing variability and noise in NO
data

NO data are frequently affected by variability from both

biological and technical sources (Archer, 1993). Biological

variation may arise from genotype, tissue type, developmental

stage, or environmental conditions (e.g., light, nutrients), while

technical variability often stems from sample handling, probe

stability, or detector sensitivity. Mitigating this variability is vital

for data reliability and biological interpretation.

Robust experimental controls play a central role in reducing

confounding factors. Positive controls, such as NO donors (e.g.,

SNP), confirm detection capability; scavengers (e.g., CPTIO)

validate signal specificity; and enzymatic inhibitors (e.g., tungstate

for nitrate reductase) help dissect NO biosynthesis pathways

(Pirooz et al., 2021; Song et al., 2025). Genetic tools, such as nia1/

nia2 in A. thaliana, serve as NO-dependent controls for validating

physiological responses including root growth or stomatal

conductance (Hao et al., 2010).

Replication is also critical. While a minimum of three biological

replicates is often cited, optimal replication should be guided by

power analysis tailored to the expected effect size and experimental

noise (Gaskin and Happell, 2014). Technical replicates help assess

the precession of measurement tools and identify variability arising

from instrument drift or procedural inconsistencies.

Quantitative metrics further support the evaluation of data

quality. The coefficient of variation (CV)—defined as the ratio of

the standard deviation (SD) to the mean—is widely used to assess

consistency across technical replicates. A CV below 10% generally

indicates stable measurements, while values above 20% may signal

the need for protocol refinement (Moczko et al., 2016). The

interclass correlation coefficient is also valuable when comparing

measurements across methods or runs; an ICC > 0.75 denotes good

reliability, while ICC < 0.75 suggests poor reproducibility (Krishnan

et al., 2015).

Collectively, these practices—statistical controls, genetically

informed tools, rigorous replication, and variability metrics—form

the basis for high-quality NO research. They allow researchers to

distinguish true biological variation from experimental noise,

thereby strengthening the validity and reproducibility of

conclusions regarding NO function in plant biology.

Table 1 summarizes the key statistical and methodological

considerations across sampling, detection, and data management

for NO research in plants. Each entry includes a description,
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example, and reference to aid in experimental planning and

data interpretation.
3 Statistical tools for analyzing NO
data

NO acts as a multifunctional signaling molecule in plant

biology, influencing a broad range of physiological and stress-

related processes—from drought and salinity tolerance to

immune responses and development (Khan et al., 2021, 2019).

However, its reactive, transient nature, and its involvement in

complex biosynthetic and scavenging pathways complicate data

interpretation. Robust statistical approaches are thus essential for

analyzing NO-related datasets in a biologically meaningful and

reproducible manner. This section outlines key statistical tools used

in NO research, from basic descriptive measures to advanced

modeling multivariate and time-series analysis, offering a

framework to support reliable data interpretation.
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3.1 Descriptive statistics for summarizing
NO levels

Descriptive statistics are foundational for summarizing and

exploring NO measurements. While the mean is commonly used

to report average NO levels across replicates, the median often

provides a more robust estimate of central tendency in skewed

datasets—frequently encountered under stress treatments (Huang

and Li, 2014; Zeiger et al., 2011). Measures of variability such as SD

and CV helps assess the dispersion and reproducibility of NO levels

within and between the experimental groups (Karvonen and

Lehtimäki, 2020; Rizwan et al., 2018).

Visualization tools enhance interpretability. Box plots are

particularly informative for comparing NO distributions across

treatments, interquartile ranges, and outliers (León et al., 2016;

Tang et al., 2019). For instance, León et al. (2016) used box plots to

depict transient shifts in lipid metabolism and chlorophyll

degradation in A. thaliana following NO treatment. Bar graphs,

typically displaying group means and associated error bars (SD or
TABLE 1 Statistical considerations in experimental design data collection for NO research in plants.

Section Key considerations Details/examples References

2.1 Sampling stress for
NO measurement

Random sampling Ensures equal chance for each individual in the population to
be selected

(Lohr, 2021)

Stratified sampling Divides population into subgroups based on characteristics (e.g., tissue
type, developmental stage) for more accurate representation of NO data

(Singh and
Chaudhary, 1981)

Sample size determination Power analysis to calculate minimum sample size required to detect
significant effects with desired confidence

(Ryan, 2013)

2.2 Detection methods and their
statistical implications

Chemiluminescence Measures light emitted during the reaction of NO with ozone. Highly
sensitive and specific for NO quantification

(Sparacino-Watkins and
Lancaster, 2021)

Fluorescence probes Probes like DAF-FM and DAR-4M allow real-time NO measurements
in living tissues, though can be influenced by environmental factors
(e.g., pH, temperature)

(Goshi et al., 2019)

Electron
paramagnetic resonance

Used for direct measurement of NO and other free radicals, providing
high sensitivity

(Calvo-Begueria
et al., 2018)

Calibration curves Used to relate the measured signal (e.g., fluorescence intensity) to
NO concentration

(Hetrick and
Schoenfisch, 2009)

Linear regression and R2 Linear regression analysis to generate calibration curves and assess the
goodness of fit (R2 value) for accurate measurements

(Ebrahimzadeh
et al., 2010)

Limit of detection and limit
of quantification

Establishes sensitivity and reliability of detection methods (Hetrick and
Schoenfisch, 2009)

2.3 Handling variability and noise
in NO data

Control experiments Use of NO scavengers or inhibitors to ensure specificity of
NO measurements

(Astier et al., 2018)

Replicates Incorporating multiple measurements of the same condition to assess
the consistency and reliability of data

(Arasimowicz-Jelonek
et al., 2009)

Coefficient of variance Measures relative variability; low CV indicates high precession, while
high CV suggests more variability that may need further investigation

(Canchola et al., 2017)

Intraclass correlation Evaluates reliability of repeated measurements or agreement between
detection methods; higher ICC values indicate greater consistency
and reliability

(Paciência et al., 2021)
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SE), facilitate quick comparisons of NO levels across genotypes or

treatments (Kaya et al., 2020).
3.2 Inferential statistics for hypothesis
testing

Inferential statistics are central to determining whether

observed differences in NO levels are statistically significant. t-test

are widely employed to compare NO concentrations between two

groups—e.g., wild-type vs. mutant plants under salinity stress (Hao

et al., 2010; Shu et al., 2025). Independent t-tests apply to unpaired

data (distinct individuals), while paired t-tests are appropriate for

repeated measurements on the same sample.

For comparisons involving more than two conditions, one-way

Analysis of Variance (ANOVA) assess whether NO levels differ

significantly among groups (e.g., varying SNP concentrations).

Two-way ANOVA, is especially valuable when testing interaction

effects, such as genotype × treatment combinations influencing NO

synthesis (Paul et al., 2023; Shu et al., 2025). Following ANOVA,

post-hoc tests like Tukey’s Honestly Significant Difference (HSD) or

Bonferroni correction are used to identify specific pairwise

differences while minimizing Type I error risk (Agbangba et al.,

2024; Ozdemir et al., 2024).

Regression analysis is commonly applied to explore associations

between NO levels and predictor variables, such as light intensity or

physiological responses (e.g., stomatal closure). Linear regression

suits simple trends, whereas nonlinear models may better represent

feedback-regulated or dose-response relationships in NO

biosynthesis (Olin et al., 2004; Tahjib-Ul-Arif et al., 2022).
3.3 Multivariate analysis for complex data
sets

Given NO’s integration into multi-layered plant signaling

networks, multivariate techniques are indispensable for

interpreting complex, high-dimensional datasets. PCA is widely

used in NO-related metabolomic or transcriptomic studies to

reduce dimensionality and highlight dominant trends. Nabati

et al. (2024), for example, employed PCA to dissect stress

responses in cold-exposed potato seedlings, identifying strong

correlation between NO-related variables and treatments regimes.

Cluster analysis, including k-means clustering, enables

classification of experimental samples based on NO accumulation

and related phenotypes. Lv et al. (2022) grouped wheat genotypes

by NO profiles and drought tolerance, revealing functionally

distinct stress-resilient clusters.

Structural Equation Modeling (SEM) provides a powerful

approach for inferring causal relationships among interconnected

variables—e.g., NO levels, ROS production, and enzymatic

responses (Han et al., 2021; Yu et al., 2021). Yu et al. (2021)

applied SEM to examine nitrogen acquisition in Mikania

micrantha, revealing that NO-mediated microbial interactions

enhanced rhizospheric nitrogen cycling.
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3.4 Time-series analysis for dynamic NO
studies

NO production is inherently dynamic, especially in response to

biotic or abiotic triggers (Khan et al., 2023). Time-series analysis

allows researchers to model these fluctuations and detect patterns

over time. Basic trend analysis can identify directional changes in

NO levels following treatments (e.g., flg22-induced defense

response). More advanced methods like Autoregressive Integrated

Moving Average (ARIMA) are used to model temporal

dependencies and predict future NO levels values, such as those

associated with circadian rhythms or developmental transitions (Al

Yammahi and Aung, 2023).

Wavelet analysis has emerged as a valuable tool for detecting

transient or oscillatory NO signals—especially in spatial resolved

contexts like root tips or stomata. For instance, Wang et al. (2024)

applied continuous wavelet analysis (CWA) to canopy reflectance

data in maize, identifying specific spectral features that accurately

predicted nitrogen indices. These approaches hold promise for

quantifying real-time, environmentally responsive signals.
3.5 Dealing with confounding factors in
complex NO pathways

NO biosynthesis and function are intricately connected to other

signaling pathways, involving ROS, hormones, and environmental

cues (León and Costa-Broseta, 2020). Therefore, careful statistical

control for confounding variables is critical. Regression models

should incorporate covariates (e.g., light intensity, temperature)

known to influence both NO and the outcomes of interest.

Similarly, factorial designs and two-way ANOVA can help

disentangle the individual and interactive effects of multiple

factors, such as genotype and treatment.

Table 2 summarizes the key statistical techniques discussed in this

section, offering guidance for their application in NO-focused research.

This structured approach empowers researchers to select context-

appropriate analysis, ensuring scientifically sound and reproducible

conclusions in the rapidly advancing field of plant NO biology.
4 Applications of statistical methods in
NO research

NO plays a multifaceted role in plant biology, acting as a

signaling molecule in processes ranging from stress responses to

development. Statistical methodologies have significantly advanced

our understanding of NO’s roles by enabling rigorous data analysis,

pattern recognition, and hypothesis testing. This section presents

representative examples of how statistical tools are applied in NO

research across different physiological contexts, including abiotic

stress tolerance, plant-pathogen interactions, and growth and

development. A summary of statistical techniques, NO detection

methods, and their respective advantages, limitations, and software

tools is provided in Table 3.
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4.1 NO in abiotic stress tolerance

NO plays a pivotal role in enhancing plant resilience against

abiotic stresses such as drought, salinity, and heavy metal toxicity.

Researchers frequently apply statistical methods such as ANOVA,

correlation, and regression to quantify NO responses under stress

and to elucidate its interactions with physiological parameters. In

drought stress studies, significant increases in NO accumulation

have been observed in stressed plants compared to well-watered

controls. For instance, ANOVA revealed elevated NO levels in

wheat and rice under drought, while linear regression models

showed a strong positive correlation between NO content and

relative water content (RWC), with one wheat study reporting a

correlation coefficient of r = 0.85 (Allagulova et al., 2023a). This
Frontiers in Plant Science 06
indicate that NO contributes to drought resilience by helping

maintaining cellular hydration.

Under salinity stress, correlation analysis has revealed

associations between NO levels and antioxidant enzyme activities

such as superoxide dismutase (SOD), catalase (CAT), and ascorbate

peroxidase (APX), indicating that NO supports cellular defense by

mitigating oxidative damage (Khan et al., 2020). Similarly, in heavy

metal stress conditions, regression models have linked increased

NO levels with reduced cadmium accumulation and enhanced

expression of stress-responsive genes, highlighting NO’s role in

metal detoxification and defense (Liu et al., 2023).

To perform such analysis, researchers commonly utilize

software platforms such as R and IBM SPSS statistics. R is a free,

open-source environment supporting a wide array of statistical
TABLE 2 Statistical methods for analyzing NO data in plants.

Section Statistical method Key considerations References

3.1 Descriptive statistics
for summarizing NO levels

Mean Represents the average NO level in a dataset.
Sensitive to extreme values

(Liu et al., 2016)

Median Middle value in an order dataset. Useful for
skewed distributions.

(Huang and Li, 2014)

Standard deviation Measures variability of NO levels around the
mean. Higher SD indicates greater spread.

(Karvonen and Lehtimäki,
2020; Rizwan et al., 2018)

Bar graphs Used for comparing mean NO levels across
different groups

(Kaya et al., 2020)

Box plots Visualize distribution, median, quartiles, and
outliers in NO data

(León et al., 2016; Tang
et al., 2019)

3.2 Inferential statistics for
hypothesis testing

t-test (Independent/paired) Compare NO levels between two groups;
independent for unpaired data, paired for
repeated data

(Hao et al., 2010; Shu
et al., 2025)

Analysis of variance One-way ANOVA for single-factor comparisons;
two-way ANOVA for interaction effects

(Paul et al., 2023; Shu
et al., 2025)

Regression analysis Examines relationships between NO levels and
predictor variables; linear and non-linear models

(Tahjib-Ul-Arif et al., 2022)

Post-hoc test (Turkey’s HSD,
Bonferroni correction)

Identifies specific group differences while
controlling for Type I errors

(Agbangba et al., 2024;
Ozdemir et al., 2024)

3.3 Multivariate analysis
for complex data sets

Principal component analysis Reduces dimensionality of NO datasets, identifies
dominant patterns

(Nabati et al., 2024)

Cluster analysis (k-means clustering) Groups similar NO data points based on
predefined criteria. Useful for
phenotypic classification

(Lv et al., 2022)

Structural equation modeling Models causal relationships among NO levels,
environmental factors, and biological responses

(Han et al., 2021; Yu
et al., 2021)

3.4 Time-series analysis for
dynamic NO studies

Trend analysis Identifies long-term patterns and fluctuations in
NO levels

(Al Yammahi and Aung, 2023)

Autoregressive integrated moving average Captures temporal dependencies; predicts future
NO levels

(Al Yammahi and Aung, 2023)

Wavelet analysis Detects transient changes and periodicities in
NO fluctuations

(Wang et al., 2024)

3.5 Dealing with
confounding factors

Covariate inclusion in regression Controls for external variables (e.g., light,
temperature) influencing NO and outcomes

(León and Costa-Broseta, 2020)

Factorial design/Two-way ANOVA Disentangles interaction effects (e.g., genotype
× treatment)

(Paul et al., 2023)
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techniques and customizable data visualizations. It is particularly

suited for complex modeling and reproducible workflows. Key R

packages used in NO research include, ggplot2 (https://

ggplot2.tidyverse.org) (for high-quality plots), lme4 (https://

cran.r-project.org/web/packages/lme4/index.html) (for linear and

mixed-effects models), and Hmisc (https://cran.r-project.org/web/

packages/Hmisc/index.html) and corrplot (https://cran.r-

project.org/web/packages/corrplot/index.html) (for descriptive

statistics and correlation matrices).

For those performing a graphical interface, SPSS offers intuitive

tools for ANOVA, correlation, and regression without coding,

making it especially useful for researchers unfamiliar

with programming.

By leveraging these tools, plant scientists can uncover insights

into how NO functions under abiotic stress. Quantitative methods

strengthen conclusions and enable predictive models for stress

tolerance, ultimately supporting crop improvement programs.
4.2 NO in plant-pathogen interactions

NO is central in plant defense, particularly against microbial

pathogens. It acts alongside ROS and defense-related

phytohormones such as salicylic acid (SA) to mediate local and

systemic resistance. Quantifying and modeling NO’s role in

immunity requires statistical tools ranging from comparative tests

to multivariate and causal analyses.

Methods like t-tests and ANOVA evaluate NO level differences

between infected and control plants. For example, Clarke et al.

(2000) reported significantly increased NO in A. thaliana leaves

upon Pseudomonas syringae infection. When multiple treatments or

time points are involved, post-hoc tests such as HSD identify specific

differences. These can be efficiently conducted using JASP (https://

jasp-stats.org/), an open-source platform offering interactive

visualizations and a drag-and-drop interface.

In complex experiments, multivariate approaches like PCA and

cluster analysis identify patterns across variables or genotypes. Tian

et al. (2020) used PCA and weighted gene co-expression network

analysis (WGCNA) to distinguish resistant and susceptible rice

cultivars during rice blast infection, identifying gene modules linked

to differential responses. The FactoMineR (https://cran.r-
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project.org/web/packages/FactoMineR/index.html) package in R,

along with factoextra (https://cran.r-project.org/web/packages/

factoextra/index.html), supports such analyses and enhance

visual output.

To examine directional and causal relationships among NO,

ROS, and gene expression, SEM is effective. SEM has been used to

model interactions involving NO production, oxidative bursts, and

defense gene activation (Yoshioka et al., 2009). R’s lavaan package

(https://lavaan.ugent.be/) provides intuitive syntax and diagnostics,

while semplot aids visualization. GUI-based tools like AMOS

(https://www.ibm.com/products/structural-equation-modeling-

sem) and JASP (https://jasp-stats.org/) also support SEM for users

performing visual workflows.

These statistical strategies support a mechanistic understanding

of NO in pathogen defense, enabling researchers to progress from

descriptive to predictive and causal insights using accessible,

interdisciplinary tools.
4.3 NO in plant growth and development

NO regulates processes such as seed germination, root

architecture formation, and flowering transitions. In the context

of seed germination, logistic regression models have been widely

used to analyze the probability of seed germination across different

NO concentration gradients. Recent reviews, such as Zhang et al.

(2023), have highlighted that germination rates often exhibit a

nonlinear response to NO, with optimal concentrations markedly

enhancing germination success compared to both lower and higher

levels, suggesting a tightly regulated dose-dependent effect.

Similarly, NO’s influence on root development has been

quantitatively assessed using regression analyses and ANOVA.

Research by Zhao et al. (2021), revealed that NO application has

a statistically significant, dose-dependent effect on lateral root

formation. Lower concentrations typically promote lateral root

emergence, whereas excessive NO can inhibit root elongation,

illustrating the need for finely balanced NO signaling during root

system architecture development.

In addition to early developmental stages, NO has been

implicated in the regulation of flowering. Time-series and wavelet

analysis have uncovered periodic fluctuations in NO levels that
TABLE 3 Overview of NO detection methods, statistical tools, and applications.

NO detection
method

Type Strength Limitations Common statistical
tools

Software tools

DAF-FM DA fluorescence Semi-quantitative High-sensitivity, cell-level
resolution

Snapshot
data, photobleaching

ANOVA, t-tests, correlation ImageJ, R, SPSS

Griess assay Quantitative Simple, cheap Measures NO2- not
NO directly

Linear regression, PCA Excel, R

Electrochemical probes Real-time Dynamic
monitoring possible

Expensive, low
spatial resolution

Time-series, wavelet, SEM MATLAB, Python, R

Imaging (confocal) Visual Spatial dynamics Semi-quantitative PCA, cluster analysis Fiji, Python (OpenCV)

Omics integration (e.g.,
RNA-seq)

Multidimensional Systems-level insights Complex modeling required ML, regression, clustering TensorFlow, Scikit-
learn, R
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coincide with floral transition stages. For example, Zhang et al.

(2019) demonstrated that NO and nitrogen metabolites regulate

flowering in A. thaliana through distinct pathways, with NO acting

to delay floral transition via modulation of FLOWERING LOCUS T

(FT) expression—highlighting its function as a temporal regulator

in flowering control.

To analyze such dynamic developmental data, time-series

approaches have become increasingly valuable. Software tools such

as MATLAB (https://www.mathworks.com/products/matlab.html),

R packages like forecast (https://cran.r-project.org/web/packages/

forecast/index.html) and TSA (Time Series Analysis; https://cran.r-

project.org/web/packages/TSA/index.html), and Python libraries

such as statsmodels (https://www.statsmodels.org/stable/

index.html) and PyWavelets (https://pywavelets.readthedocs.io/

en/latest/) offer robust frameworks for modeling time-dependent

biological phenomena. These tools allow researchers to detect

underlying trends, periodicities, and complex temporal

interactions, providing deeper insight into the dynamic regulatory

roles of NO throughout plant development.
4.4 Challenges and emerging approaches

Despite considerable advances, NO research in plant biology

continues to face significant methodological challenges. A primary

issue concerns the quantification of NO levels within biological

tissues. Currently, most experimental studies rely on fluorescent

probes such as DAF-FM DA, which, although widely used, provide

only semi-quantitative and point-in-time measurements. These

methods offer limited temporal resolution and are prone to

artifacts, making it difficult to accurately capture the transient and

dynamic nature of NO signaling (Gross and Durner, 2016). Given

NO’s rapid turnover and reactive behavior, real-time, in vivo

monitoring remains a major technical hurdle in the field.

These quantification limitations have important statistical

implications. Many datasets generated from NO experiments

represent static, single-time-point snapshots rather than

continuous or longitudinal data. This restricts the ability to model

temporal dynamics of NO, such as peak-through fluctuations

similar to those observed in ROS signaling. Without accounting

for time-dependent changes, important aspects of NO’s regulatory

roles may be overlooked or misrepresented, leading to

oversimplified interpretations.

To address these challenges, emerging experimental approaches

are being recommended. Where feasible, experimental design

should incorporate repeated measurements over time to better

capture the dynamic profile of NO signaling. This would allow

researchers to treat time as an explicit factor in their analysis.

Statistical models such as mixed-effects models, nonlinear

regression, or generalized additive models are particularly suited

for handling complex, time-series data with repeated measures.

These approaches can account for both fixed effects (e.g., treatment

conditions) and random effects (e.g., variation between biological

replicates) while modeling nonlinear, dynamic trends. In parallel,

advancements in imaging technologies and biosensors may
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eventually allow more accurate real-time tracking of NO in living

tissues, opening new possibilities for dynamic statistical modeling

(Saini et al., 2023). Integrating these methodological improvements

will enhance the biological interpretation of NO data and

strengthen the statistical rigor of future studies.
4.5 The role of artificial intelligence and
interdisciplinary collaboration

AI technologies, particularly machine learning (ML) and deep

learning (DL) approaches, are increasingly recognized as

transformative tools in NO research. ML algorithms such as

random forests, support vector machines (SVMs), and artificial

neural networks have been successfully applied to predict plant

stress outcomes or classify physiological responses based on NO

profiles and related biochemical markers. For example, an ML

model trained on integrated multi-omics data—including NO

levels , transcriptomic profi les , and ROS signals—has

demonstrated high accuracy in classifying plant stress status,

enabling earlier and more precise detection of stress responses

(Hesami et al., 2022). Accessible platforms such as Scikit-learn

(https ://scikit- learn.org/stable/) , TensorFlow (https ://

www.tensorflow.org/), and WEKA (https://www.cs.waikato.ac.nz/

ml/weka/) provide researchers with user-friendly environments to

build, train, and validate these predictive models, even with

complex and high-dimensional datasets (Mirani et al., 2021).

The successful implementation of AI in NO research

increasingly depends on effective interdisciplinary collaboration.

Biologists contribute essential expertise in experimental design,

physiological interpretation, and domain-specific knowledge,

ensuring that datasets are biologically meaningful and that

hypotheses are grounded in mechanistic understanding.

Statisticians play a critical role in developing rigorous analytical

frameworks, validating models, and ensuring appropriate

hypothesis testing, thus minimizing biases and overfitting risks.

Meanwhile, data scientists bring specialized skills to construct

robust, scalable data pipelines and optimize ML models for high-

dimensional, heterogeneous biological datasets (John, 2024). Such

integrated, cross-disciplinary efforts are not only enhancing the

accuracy and interpretability of AI-driven NO research but also

accelerating discoveries in plant biology under complex

environmental conditions. For further detail, please see Table 3.
5 Challenges and limitations in
statistical analysis of NO data

While statistical tools are indispensable for analyzing NO data,

researchers often encounter challenges that can compromise the

accuracy and reliability of their findings. These challenges include

high variability in NO measurements, small sample sizes, and

complex interactions among biological variables. Addressing these

issues through careful experimental design and appropriate statistical

strategies is essential for robust and meaningful NO research.
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5.1 High variability and noise in NO
measurements

Quantifying NO in plants remains challenging due to high

biological variability and technical noise introduced by

experimental conditions, detection methods, and biological

heterogeneity. Environmental factors such as temperature,

humidity, and light intensity can significantly influence

endogenous NO production, while technical differences between

detection methods— including fluorescence probes and

chemiluminescence assays—often yield inconsistent results.

Biological variability across tissues, developmental stages, and

genotypes further compounds the challenges.

To enhance reproducibility, researchers should adopt

standardized protocols for NO measurement. Resources such as

the open-access Guidelines for the Measurement of NO in

Biological Samples (Wink et al., 2011) provide detailed

recommendations on probe calibration, autofluorescence controls,

and validation steps. Strategies such as using NO scavengers (e.g.,

cPTIO) to confirm probe specificity, combining complementary

methods (fluorescence and chemiluminescence), and strictly

regulating growth conditions (temperature, humidity, light) are

highly recommended.

Increasing biological replicates, carefully planning sampling

times, and applying data-smoothing techniques such as moving

averages or LOESS smoothing can further reduce experimental

noise. For instance (Jacobson et al., 2018), demonstrated that using

DAF-FM DA under rigorously controlled conditions minimized

variability and enabled reliable detection of NO dynamics during

drought stress responses. Standardization and methodological rigor

are thus critical for extracting meaningful biological insights from

NO data.
5.2 Small sample sizes and their impact on
statistical power

Studies on NO function, particularly in context such as seed

germination and early development, often face limitations due to

small sample sizes. Insufficient sample sizes severely compromise

statistical power, increasing the likelihood of Type II errors (failing

to detect true biological effects). Moreover, small datasets are

particularly sensitive to outliers and random variability, which

can mislead interpretations.

A strong example comes from Liu et al. (2019), where

researchers examined exogenous NO effects on seed germination

using three biological replicates of 100 seeds per treatment group—

totaling 8,400 seeds across all treatments. This substantial sample

size allowed for robust statistical analyses, clearly revealing dose-

dependent effects of NO.

To avoid pitfalls associated with small sample sizes, researchers

should conduct power analyses before experimentation. Free tools

such as G*Power Faul et al. (2007) can help estimate the minimum
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number of replicates needed to detect biologically meaningful

differences with a desired confidence level. When increasing

sample size is impractical, meta-analyses pooling data from

independent studies can strengthen statistical power and improve

generalizability. Prioritizing sample size and statistical rigor is vital

for producing reliable, reproducible conclusions in NO research.
5.3 Complex interactions and confounding
factors

NO functions within a complex signaling network involving

ROS, reduced glutathione (GSH), hydrogen sulfide (H2S),

phytohormones, and post-translational modifications such as S-

nitrosylation and tyrosine nitration. Environmental variables (e.g.,

microbial activity, soil composition) and genetic factors further

modulate these interactions, making it difficult to isolate NO-

specific effects.

A major analytical concern in such systems is multicollinearity,

where strong correlations among predictor variables (e.g., NO and

ROS levels) inflate variance and obscure true biological

relationships. To address these complexities, researchers should

employ multivariate statistical techniques. PCA and SEM are

particularly effective for disentangling independent variables and

identifying causal relationships. Open-source tools like FactoMineR

(Lê et al., 2008) and lavaan in R (Rosseel, 2012) provide accessible

frameworks for these analyses.

Careful experimental design can also minimize confounding

effects. Key strategies include randomization, blocking by growth

stage or genotype, and factorial designs to assess interactive effects

between NO and other factors. Additionally, sensitivity analyses,

where models are tested under varying assumptions, can help

validate the robustness of statistical conclusions.

Concrete examples illustrate the importance of these

approaches. In a meta-analysis, Tahjib-Ul-Arif et al. (2022)

systematically examined the role of exogenous NO in salinity

stress tolerance, carefully separating NO-specific effects from

those mediated by interacting antioxidants like GSH and

hormonal pathways. Their work highlights the need for robust

mult ivariate statist ical frameworks to parse complex

signaling networks.

Recognizing the dynamic and interconnected nature of NO

signaling—and employing rigorous experimental and analytical

approaches—is essential for accurately uncovering NO’s diverse

roles in plant biology.
6 Emerging statistical techniques in
NO research

NO plays a pivotal role in plant biology, acting as a signaling

molecule in diverse physiological processes including growth,

development, immunity, and stress responses. However, its
frontiersin.org

https://doi.org/10.3389/fpls.2025.1597030
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


AL-Hakeem and Khan 10.3389/fpls.2025.1597030
reactive nature low concentrations, and spatiotemporal variability

pose substantial challenges for accurate detection and mechanistic

interpretation. Advances in statistical methodologies and

computational biology now offer powerful tools to address these

complexities, enabling more robust modeling, integration, and

interpretation of NO-mediated processes. This section critically

examines emerging approaches, focusing on ML, integrative

omics, and systems biology frameworks, while underscoring the

need for methodological rigor and standardized protocols.
6.1 Machine learning and predictive
modeling

ML approaches are increasingly utilized in plant NO research

due to their capacity to analyze high-dimensional, non-linear

datasets. Supervised learning algorithms such as SVMs, random

forests (RFs), and artificial neural networks (ANNs) have been

applied to predict physiological outcomes based on NO levels,

integrating data from transcriptomic, environmental, and

metabolic variables (Islam et al., 2024). These methods are

particularly suited for classification tasks, such as distinguishing

stress-resistant from susceptible phenotypes in crops exposed to

NO donors or environmental stressors.

Understanding methods like PCA, k-means clustering, and

hierarchical clustering are employed to detect hidden patterns

and co-regulated gene/metabolite clusters in response to NO

signaling (Pires et al., 2008). Moreover, recently DL architectures

—especially convolutional neural networks (CNNs) and recurrent

neural networks (RNNs)—have demonstrated potential in

modeling dynamic responses to NO fluctuations over time (Gao

et al., 2020), although their application remains limited due to data

scarcity and lack of model interpretability.

Despite their promise, ML models require careful feature

selection, model validation, and transparency. Few studies in NO

biology have benchmarked ML algorithms against conventional

statistical techniques or performed external validation on

independent datasets. Moreover, standardization in data

preprocessing and metadata documentation is essential for

reproducibility and cross-study comparisons.
6.2 Integration of omics data

NO research increasingly leverages high-throughput omics

platforms—transcriptomics, proteomics, metabolomics, and

epigenomics—to elucidate molecular mechanisms of NO

signaling. Integrative statistical frameworks allow researchers to

unify these datasets, revealing cross-layer regulatory relationships.

Weighted gene co-expression network analysis (WGCNA), partial

least squares regression (PLSR), Bayesian networks, and canonical

correlation analysis (CCA) have proven effective in identifying NO-
Frontiers in Plant Science 10
responsive modules and candidate biomarkers (Jiang et al., 2023;

Singh et al., 2022).

For example, transcriptomic analyses have identified NO-

induced genes involved in redox regulation and hormone signaling

(Hussain et al., 2016), while proteomics has uncovered NO-

dependent post-translational modifications such as S-nitrosylation

and tyrosine nitration (Jindal and Seth, 2023). Metabolomic profiling

further links NO to alterations in primary and secondary metabolism

under abiotic stress (Zhou et al., 2021). Integrative tools such as

mixOmics, DIABLO, and iOmicsPASS streamline the fusion of these

datasets, though biological interpretation remains limited by

incomplete annotation of NO targets and contextual variability

across species and stress conditions.

Emerging methods like multi-omics factor analysis and

regularized generalized CCA offer improved dimensionality

reduction and latent variable discovery, especially for studies

constrained by small sample sizes (Jiang et al., 2023). However,

challenges persist in data harmonization, batch effect correction,

and the need for curated NO-specific databases.
6.3 Network analysis and systems biology
approaches

To model the complexity of the NO signaling networks, systems

biology approaches—particularly network-based analysis—have

emerged traction. Gene regulatory networks (GRNs), protein-

protein interaction (PPI) networks, and metabolic networks

collectively offer insights into NO-mediated cross-talk with other

signaling molecules such as ROS, phytohormones (e.g., ABA, SA,

ethylene), and calcium ions (Pavlopoulos et al., 2011;

Vazquez, 2011).

Computational platforms like Cytoscape and STRING facilitate

the construction and visualization of interaction networks, aiding in

the identification of hub genes, network motifs, and critical nodes

within NO-associated pathways. These analyses have been

instrumental in delineating NO’s role in PCD, systemic acquired

resistance, and stress memory (Do Amaral et al., 2020; Luo et al.,

2025; Wang et al., 2023). Boolean modeling and ordinary

differential equation (ODE)-based simulations provide dynamic

insights into NO kinetics, its dose-dependent effects on

downstream pathways, and cross-talk with other signaling

molecules—offering a systems—level perspective on NO-mediated

regulation (Karanam and Rappel, 2022). Recent efforts have also

begun to incorporate spatial modeling approaches to better capture

NO diffusion and compartmentalization within plant tissues,

though these remain underexplored (Airaki et al., 2015).

While network analysis offers powerful visualization and

hypothesis generation tools, most networks are inferred from

static data and lack temporal resolution. Moreover, functional

validation of inferred nodes and edges is often lacking,

underscoring the need for experimental integration.
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6.4 Need for experimental standardization
and interdisciplinary integration

Despite advancing in statistical modeling, the accuracy of NO

studies remains heavily dependent on experimental design. NO

detection techniques—including electrochemical sensors,

fluorescent dyes (e.g., DAF-FM DA), and chemiluminescence—

vary in sensitivity, specificity, and spatiotemporal resolution. The

lack of standard protocols for sample handling, NO quantification,

and metadata reporting hampers data comparability and integrative

analysis (Bryan and Grisham, 2007). A critical need exists for

benchmarking studies comparing NO detection methods under

controlled conditions.

Furthermore, interdisciplinary collaboration between plant

biologists, statisticians, chemists, and data scientists is essential

for advancing this field. Integrating expertise from these domains

can refine experimental protocols, improve model interpretability,

and ensure biologically meaningful insights from complex data.

Figure 1 provides a schematic representation of the emerging

statistical techniques in NO research, illustrating the interplay

between ML models, integrative omics analysis, and network-

based systems biology approaches. The diagram showcase how

supervised learning models (SVM, RF, and ANN) and DL

techniques (CNN, RNN) leverage large datasets to predict plant

responses to NO levels. Additionally, it highlights the integration of

multi-omics datasets using statistical tools such as WGCNA,

Bayesian networks, and MOFA, which enable the identification of

NO-regulated pathways. The network analysis section of the figure

demonstrates how GRNs, PPI, and metabolic pathways contribute

to understanding NO-mediated signaling and cross-talk with other

molecules like ROS and phytohormones. Computational tools such

as Cytoscape and STRING are depicted as essential for visualizing

these interactions, ultimately providing deeper insights into NO-

regulated biological processes.

Overall, the integration of advanced statistical techniques, ML

models, and systems biology approaches is transforming NO

research, enabling more accurate predictions and mechanistic

insights into NO-mediated biological processes. Future

advancements in computational biology are expected to further

refine our ability to model NO dynamics, ultimately contributing to

improved plant resilience and agricultural productivity.
7 Future directions and
recommendations

The field of NO research has made significant strides in

understanding its multifaceted roles in biological systems, ranging

from cellular signaling to physiological regulation. However, several

challenges remain, including the complexity of NO signaling networks,

the variability in experimental methodologies, and the need for robust
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statistical frameworks to interpret data. To address these challenges and

advance the field, future efforts should focus on interdisciplinary

collaboration, open science practices, and the development of

standardized protocols. Below, we outline these future directions and

provide recommendations for their implementation.
7.1 Interdisciplinary collaboration between
biologists and statisticians

The complexity of NO signaling pathways and their interactions

with other molecular networks necessitates a collaborative approach

that bridges biology and statistics. Biologists often generate large

datasets from experiments, but the interpretation of these datasets

requires advanced statistical tools to account for variability, noise,

and confounding factors. Conversely, statisticians may lack the

biological context needed to design appropriate models for NO

research. Therefore, cross-disciplinary training and collaboration

are essential to harness the full potential of NO research.

Interdisciplinary collaboration can lead to the development of

novel analytical tools tailored to the unique challenges of NO

research. For instance, ML algorithms and network analysis

techniques can be employed to map NO signaling pathways and

predict their interactions with other molecules (Guo et al., 2023).

Training programs that integrate biological and statistical expertise will

empower researchers to design more robust experiments and interpret

data with greater accuracy. Such initiatives have already shown promise

in related fields, such as genomics and systems biology (Pinu et al.,

2019). By fostering collaboration, the NO research community can

accelerate discoveries and improve the reproducibility of findings.
7.2 Open science and data sharing

The reproducibility crisis in science has underscored the need

for transparency and open access to data and methodologies. In NO

research, variability in experimental conditions and data analysis

techniques can lead to inconsistent results. Open science practices,

including the sharing of raw data, code, and protocols, can mitigate

these issues and promote reproducibility.

Open data sharing allows researchers to validate findings,

conduct meta-analyses, and build upon existing work. For

example, publicly available datasets on NO-mediated signaling in

cardiovascular systems have enabled researchers to identify novel

therapeutic targets (He et al., 2022). Similarly, sharing analytical

code ensures that statistical methods are transparent and

reproducible. Platforms such as GitHub (https://github.com) and

Zenodo (https://zenodo.org) provide accessible repositories for

sharing code and data, fostering a culture of openness in the

scientific community. Journals and funding agencies should

incentivize open science practices by mandating data and code

availability as a condition for publication and grant awards.
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7.3 Development of standardized protocols
for NO research

The lack of standardized protocols in NO research has led to

inconsistencies in experimental design, data collection, and analysis.

Establishing guidelines for these aspects is critical to ensure the

reliability and comparability of results across studies.
7.4 Establishing guidelines for experimental
design, data collection, and statistical
analysis

Standardized protocols should address key aspects of NO

research, including the quantification of NO levels, the use of

appropriate controls, and the selection of statistical methods. For

instance, the use of fluorescent probes for NO detection should be

accompanied by calibration standards to ensure accuracy (Zhang

et al., 2014). Additionally, guidelines for statistical analysis should

emphasize the importance of controlling for multiple comparisons

and reporting effect sizes to avoid misleading conclusions (Goshi

et al., 2019; Parisi et al., 2024).
7.5 Mapping NO signaling networks and
their interactions with other molecules

A comprehensive understanding of NO signaling requires the

integration of data from diverse experimental approaches, such as
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proteomics, metabolomics, and transcriptomics. Standardized

protocols will facilitate the integration of these datasets, enabling

the construction of detailed NO signaling networks. For example,

recent advances in network modeling have revealed the interplay

between NO and ROS in cellular stress responses (Molassiotis and

Fotopoulos, 2011). By adopting standardized protocols, researchers

can systematically map these interactions and identify key regulatory

nodes involved in plant development and stress responses.
8 Conclusions

The integration of robust statistical methods is essential for

advancing our understanding of NO signaling and its multifaceted

roles in plant biology. The challenges associated with NO research,

including measurement variability, small sample sizes, and complex

biological interactions, necessitate the use of standardized experimental

protocols and advanced statistical tools. Emerging approaches such as

ML, multi-omics integration, and systems biology offer promising

avenues for unraveling NO-mediated regulatory networks. However,

the field must also prioritize interdisciplinary collaboration between

biologists and statisticians to develop tailored analytical frameworks

that address the specific challenges of NO research. Additionally,

fostering open science practices, including data and code sharing,

will enhance reproducibility and facilitate meta-analyses across

studies. As computational techniques continue to evolve, the

application of innovative statistical strategies will drive new

discoveries in NO biology, ultimately contributing to improved plant
FIGURE 1

Overview of emerging statistical techniques in NO research. The figure illustrates the integration of machine learning models, multi-omics data
analysis, and network analysis and systems biology approaches to uncover NO-mediated regulatory mechanisms in plants. (1) Machine learning
techniques, including supervised learning (SVM, RF, ANN) and deep learning (CNN, RNN), predict plant responses to varying NO levels based on gene
expression, environmental factors, and metabolic markers. (2) Integrative omics frameworks combine transcriptomics, proteomics, and
metabolomics using statistical models such as WGCNA, Bayesian networks, and MOFA to identify key NO-regulated pathways. (3) Network-based
systems biology approaches, including gene regulatory networks, protein-protein interaction networks, and metabolic pathway analysis, elucidate
cross-talk between NO and other signaling molecules like ROS and phytohormones. Computational tools such as Cytoscape and STRING aid in
network construction and visualization. These advanced methodologies enhance our understanding of NO signaling, enabling precise modeling of
plant adaptation and stress responses.
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resilience and agricultural productivity. Future research should focus

on refining predictive models, integrating diverse datasets, and

developing standardized guidelines to ensure consistency and

comparability in NO-related studies.
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Bedmar, E. J., et al. (2018). Redefining nitric oxide production in legume nodules
through complementary insights from electron paramagnetic resonance spectroscopy
and specific fluorescent probes. J. Exp. Bot. 69, 3703–3714. doi: 10.1093/jxb/ery159

Canchola, J., Tang, S., Hemyari, P., Paxinos, E., and Marins, E. (2017). Correct use of
percent coefficient of variation (% CV) formula for log-transformed data. MOJ
Proteom. Bioinform. 6. doi: 10.15406/mojpb.2017.06.00200

Clarke, A., Desikan, R., Hurst, R. D., Hancock, J. T., and Neill, S. J. (2000). NO way
back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension
cultures. Plant J. 24, 667–677. doi: 10.1046/j.1365-313x.2000.00911.x

Do Amaral, M. N., Arge, L. W. P., Auler, P. A., Rossatto, T., Milech, C., Magalhães, A.
M., et al. (2020). Long-term transcriptional memory in rice plants submitted to salt
shock. Planta 251, 1–16. doi: 10.1007/s00425-020-03397-z
Ebrahimzadeh, M., Nabavi, S., Nabavi, S., and Pourmorad, F. (2010). Nitric oxide
radical scavenging potential of some Elburz medicinal plants. Afr. J. Biotechnol. 9,
5212–5217.

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G* Power 3: A flexible
statistical power analysis program for the social, behavioral, and biomedical sciences.
Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146

Gao, Z., Luo, Z., Zhang,W., Lv, Z., and Xu, Y. (2020). Deep learning application in plant
stress imaging: a review. AgriEngineering 2, 29. doi: 10.3390/agriengineering2030029

Gaskin, C. J., and Happell, B. (2014). Power, effects, confidence, and significance: An
investigation of statistical practices in nursing research. Int. J. Nurs. Stud. 51, 795–806.
doi: 10.1016/j.ijnurstu.2013.09.014

Gholami, F., Hajiheidari, A., Barkhidarian, B., Soveid, N., Yekaninejad, M. S., Karimi,
Z., et al. (2024). A comparison of principal component analysis, reduced-rank
regression, and partial least–squares in the identification of dietary patterns
associated with cardiometabolic risk factors in Iranian overweight and obese women.
BMC Med. Res. Method. 24, 215. doi: 10.1186/s12874-024-02298-z

Goshi, E., Zhou, G., and He, Q. (2019). Nitric oxide detection methods in vitro and in
vivo. Med. gas Res. 9, 192–207. doi: 10.4103/2045-9912.273957

Gross, I., and Durner, J. (2016). In search of enzymes with a role in 3′, 5′-cyclic
guanosine monophosphate metabolism in plants. Front. Plant Sci. 7, 576. doi: 10.3389/
fpls.2016.00576

Guo, F., Yang, X., Hu, C., Li, W., and Han, W. (2023). Network pharmacology
combined with machine learning to reveal the action mechanism of licochalcone
intervention in liver cancer. Int. J. Mol. Sci. 24, 15935. doi: 10.3390/ijms242115935

Gupta, K. J., Hancock, J. T., Petrivalsky, M., Kolbert, Z., Lindermayr, C., Durner, J., et al.
(2020). Recommendations on terminology and experimental best practice associated with
plant nitric oxide research. New Phytol. 225, 1828–1834. doi: 10.1111/nph.16157

Gupta, K. J., Kaladhar, V. C., Fitzpatrick, T. B., Fernie, A. R., Møller, I. M., and Loake,
G. J. (2022). Nitric oxide regulation of plant metabolism. Mol. Plant 15, 228–242.
doi: 10.1016/j.molp.2021.12.012

Han, Z., Wang, J., Xu, P., Sun, Z., Ji, C., Li, S., et al. (2021). Greater nitrous and nitric
oxide emissions from the soil between rows than under the canopy in subtropical tea
plantations. Geoderma 398, 115105. doi: 10.1016/j.geoderma.2021.115105

Hao, F., Zhao, S., Dong, H., Zhang, H., Sun, L., and Miao, C. (2010). Nia1 and Nia2
are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal
closure in Arabidopsis. J. Integr. Plant Biol. 52, 298–307. doi: 10.1111/j.1744-
7909.2010.00920.x

He, M., Wang, D., Xu, Y., Jiang, F., Zheng, J., Feng, Y., et al. (2022). Nitric oxide-
releasing platforms for treating cardiovascular disease. Pharmaceutics 14, 1345.
doi: 10.3390/pharmaceutics14071345
frontiersin.org

https://doi.org/10.1016/j.heliyon.2024.e25131
https://doi.org/10.1093/aob/mcv023
https://doi.org/10.3390/plants12234051
https://doi.org/10.3390/ijms241411637
https://doi.org/10.1016/j.heliyon.2022.e12584
https://doi.org/10.1016/j.plantsci.2009.09.007
https://doi.org/10.1096/fasebj.7.2.8440411
https://doi.org/10.1093/jxb/erx420
https://doi.org/10.1016/j.freeradbiomed.2007.04.026
https://doi.org/10.1016/j.freeradbiomed.2007.04.026
https://doi.org/10.1093/jxb/ery159
https://doi.org/10.15406/mojpb.2017.06.00200
https://doi.org/10.1046/j.1365-313x.2000.00911.x
https://doi.org/10.1007/s00425-020-03397-z
https://doi.org/10.3758/BF03193146
https://doi.org/10.3390/agriengineering2030029
https://doi.org/10.1016/j.ijnurstu.2013.09.014
https://doi.org/10.1186/s12874-024-02298-z
https://doi.org/10.4103/2045-9912.273957
https://doi.org/10.3389/fpls.2016.00576
https://doi.org/10.3389/fpls.2016.00576
https://doi.org/10.3390/ijms242115935
https://doi.org/10.1111/nph.16157
https://doi.org/10.1016/j.molp.2021.12.012
https://doi.org/10.1016/j.geoderma.2021.115105
https://doi.org/10.1111/j.1744-7909.2010.00920.x
https://doi.org/10.1111/j.1744-7909.2010.00920.x
https://doi.org/10.3390/pharmaceutics14071345
https://doi.org/10.3389/fpls.2025.1597030
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


AL-Hakeem and Khan 10.3389/fpls.2025.1597030
Hesami, M., Alizadeh, M., Jones, A. M. P., and Torkamaneh, D. (2022). Machine
learning: its challenges and opportunities in plant system biology. Appl. Microbiol.
Biotechnol. 106, 3507–3530. doi: 10.1007/s00253-022-11963-6

Hetrick, E. M., and Schoenfisch, M. H. (2009). Analytical chemistry of nitric oxide.
Annu. Rev. analytical Chem. 2, 409–433. doi: 10.1146/annurev-anchem-060908-155146

Huang, Y., and Li, D. (2014). Soil nitric oxide emissions from terrestrial ecosystems
in China: a synthesis of modeling and measurements. Sci. Rep. 4, 7406. doi: 10.1038/
srep07406

Hussain, A., Mun, B.-G., Imran, Q. M., Lee, S.-U., Adamu, T. A., Shahid, M., et al.
(2016). Nitric oxide mediated transcriptome profiling reveals activation of multiple
regulatory pathways in Arabidopsis thaliana. Front. Plant Sci. 7, 975. doi: 10.3389/
fpls.2016.00975

Islam, S., Reza, M. N., Samsuzzaman, S. A., Cho, Y. J., Noh, D. H., Chung, S.-O., et al.
(2024). Machine vision and artificial intelligence for plant growth stress detection and
monitoring: A review. Precis. Agric. 6, 34. doi: 10.12972/pastj.20240003

Jacobson, A., Doxey, S., Potter, M., Adams, J., Britt, D., McManus, P., et al. (2018).
Interactions between a plant probiotic and nanoparticles on plant responses related to
drought tolerance. Ind. Biotechnol. 14, 148–156. doi: 10.1089/ind.2017.0033

Jiang, M.-Z., Aguet, F., Ardlie, K., Chen, J., Cornell, E., Cruz, D., et al. (2023).
Canonical correlation analysis for multi-omics: Application to cross-cohort analysis.
PloS Genet. 19, e1010517. doi: 10.1371/journal.pgen.1010517

Jindal, A., and Seth, C. S. (2023). “Nitric oxide mediated post-translational
modifications and its significance in plants under abiotic stress,” in Nitric oxide in
developing plant stress resilience (San Diego, CA, USA: Elsevier Science & Technology),
233–250.

John, A. (2024). The crucial role of interdisciplinary collaboration between data
scientists and biologists in developing effective predictive models (Rochester, NY, USA:
SSRN).

Karanam, A., and Rappel, W.-J. (2022). Boolean modelling in plant biology.
Quantitative Plant Biol. 3, e29. doi: 10.1017/qpb.2022.26

Karvonen, T., and Lehtimäki, L. (2020). Repeatability and variation of the flow independent
nitric oxide parameters. J. Breath Res. 14, 026002. doi: 10.1088/1752-7163/ab4784

Kaya, C., Ashraf, M., AlYemeni, M. N., Corpas, F. J., and Ahmad, P. (2020). Salicylic
acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by
upregulating the ascorbate-glutathione cycle and glyoxalase system. J. hazardous
materials 399, 123020. doi: 10.1016/j.jhazmat.2020.123020

Khan, M., Al Azawi, T. N. I., Pande, A., Mun, B.-G., Lee, D.-S., Hussain, A., et al.
(2021). The role of nitric oxide-induced ATILL6 in growth and disease resistance in
Arabidopsis thaliana. Front. Plant Sci. 12, 685156. doi: 10.3389/fpls.2021.685156

Khan, M., Ali, S., Al Azzawi, T. N. I., and Yun, B.-W. (2023). Nitric oxide acts as a key
signaling molecule in plant development under stressful conditions. Int. J. Mol. Sci. 24,
4782. doi: 10.3390/ijms24054782

Khan, M. N., AlSolami, M. A., Basahi, R. A., Siddiqui, M. H., Al-Huqail, A. A., Abbas,
Z. K., et al. (2020). Nitric oxide is involved in nano-titanium dioxide-induced activation
of antioxidant defense system and accumulation of osmolytes under water-deficit stress
in Vicia faba L. Ecotoxicology Environ. Saf. 190, 110152. doi: 10.1016/
j.ecoenv.2019.110152

Khan, M., Imran, Q. M., Shahid, M., Mun, B.-G., Lee, S.-U., Khan, M. A., et al.
(2019). Nitric oxide-induced AtAO3 differentially regulates plant defense and drought
tolerance in Arabidopsis thaliana. BMC Plant Biol. 19, 1–19. doi: 10.1186/s12870-019-
2210-3

Krishnan, K., Mukhtar, S. F., Lingard, J., Houlton, A., Walker, E., Jones, T., et al.
(2015). Performance characteristics of methods for quantifying spontaneous
intracerebral haemorrhage: data from the Efficacy of Nitric Oxide in Stroke (ENOS)
trial. J. Neurology Neurosurg. Psychiatry 86, 1258–1266. doi: 10.1136/jnnp-2014-309845

Kumar, D., and Ohri, P. (2023). Say “NO” to plant stresses: Unravelling the role of
nitric oxide under abiotic and biotic stress. Nitric. Oxide 130, 36–57. doi: 10.1016/
j.niox.2022.11.004
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