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Cellulases are a crucial class of enzymes involved in cellulose synthesis and

metabolism, significantly contributing to plant growth, development, and organ

abscission. The role of Glycosyl hydrolase family 9 (GH9), a major gene family

encoding cellulase, remains poorly elucidated in soybean. In this experiment, we

identified 43 non-redundant GmGH9 genes in soybean through systematic

genome-wide analysis. The physicochemical properties of GmGH9 proteins

exhibit variability. Phylogenetic investigations revealed that class B constitutes

the predominant evolutionary branch. The GmGH9B/C members display

complex splicing patterns. GmGH9As contain typical transmembrane structural

domains, while GmGH9Cs uniquely includes the carbohydrate-binding module

49 (CBM49) and signal peptide. Furthermore, we identified 13 distinct types of

functional motifs, with light-responsive elements being predominant. Expression

profiling of the GmGH9s in soybean revealed spatiotemporal and stress-

regulated dynamics across organs, ethylene treatments, and photoperiodic

conditions, especially for GmGH9A9 and GmGH9B19. Multi-species

collinearity analysis of GH9 genes suggested that GmGH9A2 and GmGH9C4

exhibited greater conservation in pea, tomato, and soybean, which are

distinguished by fruit abscission. Additional correlations between the

haplotypes of GmGH9A2 and GmGH9C4 and yield-related traits indicated that

soybean experienced selected pressure during domestication, resulting in a

reduction in their genetic diversity.
KEYWORDS
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1597668/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1597668/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1597668/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1597668&domain=pdf&date_stamp=2025-06-13
mailto:qindi@gzhu.edu.cn
mailto:lijiangres@163.com
https://doi.org/10.3389/fpls.2025.1597668
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1597668
https://www.frontiersin.org/journals/plant-science


Zhan et al. 10.3389/fpls.2025.1597668
1 Introduction

Plant organ abscission is a genetically organized process

mediated by the coordinated activity of hydrolytic enzymes and

phytohormones, which enable the specific destruction of cell wall

constituents at defined abscission zone (AZ). This intricate process

requires the concerted activity of various enzymes and signaling

molecules, including cellulases, hemicellulases, pectinases (both

polygalacturonases and pectinesterases), xylanases, expansins,

peroxidases, and lipoxygenases. Notably, cellulases, which

constitute one of the three biggest categories of industrial

enzymes—catalyze the hydrolysis of b−1,4‐glycosidic bonds in

cellulose, consequently compromising the mechanical integrity of

the separation layer (Tranbarger et al., 2017).

Cellulase family comprises multiple members that can be

categorized into three principal groups based on their mode of

action: endo−b−1,4−glucanases (EGases), exo−b−1,4−glucanases,
and b−glucosidases. The principal plant cellulases investigated to

date are conventional b−1,4−glucanases, which belong to the

glycosyl hydrolase family 9 (GH9). This multigene family is

further divided into three distinct structural subclasses: A, B, and

C. Subclass A encompasses membrane‐anchored isoforms (with or

without a cytosolic domain), subclass B comprises secreted isoforms

and subclass C includes secreted isoforms that contain a

carbohydrate−binding module (CBM) (Urbanowicz et al., 2007).

Sequence homology analyses have identified 25 GH9 gene family

members in rice (Oryza sativa), Arabidopsis, and Populus (Libertini

et al., 2004; Xie et al., 2013), and 24, 32, 42, and 74 GH9 genes in

tomato, citrus, tobacco, and wheat, respectively (Du et al., 2015; Luo

et al., 2022a; Deng et al., 2024).

The GH9 family is extensively documented for its essential

functions in various biological processes, including plant organ

abscission, fruit maturation, stress adaption, and developmental

regulation (Robert et al., 2005; Flors et al., 2007; Lin et al., 2023;

Meng et al., 2024). Members of this gene family generally display

tissue-specific expression patterns influenced by environmental

cues and hormone signaling. In tomato (Solanum lycopersicum),

six members (SlCel1-6) of the GH9 family have been characterized,

with SlCel5 exhibiting ethylene-responsive upregulation in AZ

while maintaining constant expression in stem tissues (del

Campillo and Bennett, 1996). Notably, the synergistic interaction

between expansin SlExp1 and endoglucanase SlCel2 mediates cell

wall disassembly during fruit softening (Su et al., 2024). Three

members of the GH9A subfamily have been parsed in

Spathiphyllum, SpGH9A1, SpGH9A2, and SpGH9A3, among

which the differential expression of the SpGH9A3 gene in the

leaves of Spathiphyllum may affect the cellulase activity, and

consequently, the cellulose content of the leaves at different stages

of expansion, which ultimately leads to the differences in leaf

morphology (Yang et al., 2024a).

GH9s, express in plant pedicels, fruit stalks, and petioles, are

regulated by a variety of hormones and light signals, and these

regulatory mechanisms are key components of GH9 genes involved

in plant organ abscission, as well as environmental adaptation. In

litchi (Litchi chinensis), the transcription factor LcHB2 directly
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activates GH9 paralogs LcCEL2 and LcCEL8 within the fruit AZ,

triggering sequential cellulase activation, cell wall degradation, and

ultimately the organ abscission process (Li et al., 2019). Arabidopsis

research reveals that AtCEL6 regulates silique dehiscence by

coordinating cell differentiation timing in the valve and

separation layer (He et al., 2018), while ATGH9A1/KORRIGAN1

participates in both cellulose biosynthesis and cellular elongation

processes (Lane et al., 2001). The VaGH9A1 and VaGH1B were

expressed in the AZ of blueberry fruit (Vaccinium ashei) and

decreased as the fruit matured, whereas the expression of

VaGH10B and VaGH10c continued to increase, which is thought

to be a sign that the former is involved in the pre-formation stage of

cell layer differentiation in the AZ and the latter is involved in the

segregation stage where cell wall breakdown is active (Wang et al.,

2023c). Additionally, phytohormonal regulation of cellulase activity

has been demonstrated in bean (Phaseolus vulgaris), where ethylene

and auxin signaling pathways converge to modulate BAC gene

expression (Tucker et al., 2002). Recent evidence suggests that in

tomato, SlIDL6 signaling may orchestrate pedicel abscission

through transcriptional activation of cell wall hydrolases

including TAPG1, TAPG4, and CEL2 (Li et al., 2021). SlGH9–15

has been identified as a key factor in the process of fruit cracking in

tomatoes, which has been demonstrated to be activated by various

hormones, such as ethylene and abscisic acid (ABA), as well as by

abiotic stresses (Lin et al., 2023). Wheat GH9 gene family, which are

rich in hormone-responsive and light-responsive elements, mediate

the interaction between the jasmonic acid and ABA pathways to

govern another development, with seven members identified as key

regulators of cellulose levels via light and phytohormones, crucial

for pollen fertility and anther dehiscence (Luo et al., 2022b).

Soybean (Glycine max) is an important source of vegetable fats

and proteins. However, the higher flower and pod abscission rates

limit soybean yields, and the process is strongly influenced by the

environment, including temperature, light intensity, disease, water

stress, and nutrient supply, among others (Estornell et al., 2013),

while the GH9 family members are involved in those processes.

Suppression of soybean GmCel7, a soybean homologue of

AtGH9B2, showed increased resistance to soybean cyst nematode

(Heterodera glycines) in soybean root (Woo et al., 2014). A hard-

seed allele qHS1 from Glycine soja (G. soja) was identified as

GmGH9B8 for increasing the amount of b-1,4-glucans in the

outer layer of palisade cells of the seed (Jang et al., 2015). Using

qHS1 loci for improvement of the modern cultivar “Tachinagaha”

making its seed coat less permeable and more resistant to cracking.

Similar to tomato, increased cellulase activity in the soybean AZ of

pedicels and petioles may suggest that the GH9s family is also

involved in the progress of organ abscission in soybean (Kemmerer

and Tucker, 1994; Tucker et al., 2007). However, there are few

reports about the roles of GH9s participating in the regulation of

organic development in soybeans.

With the construction of the soybean pan-genome, the

attainment of comprehensiveness, diversity, and in-depth

functional resolution for soybean gene research is achieved (Liu

et al., 2020). This study presents a comprehensive analysis of the

chromosomal localization, phylogenetic relationships, gene
frontiersin.org

https://doi.org/10.3389/fpls.2025.1597668
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhan et al. 10.3389/fpls.2025.1597668
structure, promoter regulatory motifs, and tissue expression profiles

of the soybean cellulase gene family, characterized by the GH9

structural domain, at the genome-wide scale. We predicted the

GmGH9s that are specifically expressed and responsive to ethylene

hormone signaling in the soybean AZ to further explore the

potential GH9 family members involved in soybean organ

abscission and ultimately constructed the haplotypes of

GmGH9A2 and GmGH9C4. Our study establishes a theoretical

foundation for further understanding comprehension of

GmGH9s’ function and offers a new perspective for investigating

the mechanism of soybean organ abscission.
2 Materials and methods

2.1 GmGH9s identification and
physicochemical properties analysis

Glycine max (Williams 82, Wm82) reference genome (Wm82

V6), along with its genomic sequences, protein annotations, and

structural features in GFF3 format, was retrieved from SoyBase

(Grant et al., 2010). Members of the GH9 family candidate were

identified through a dual screening strategy. Homology-based

screening: blastp alignments (E-value cutoff <1e-5) against

Arabidopsis GH9 family members. Domain validation: Hidden

Markov Model (HMM) profiling with the PF00759 seed

alignment (Pfam v35.0) (Mistry et al., 2021) via HOMER v5.1

(Eddy, 2011), followed by SMART (Letunic et al., 2021) and CDD

v3.21 (Wang et al., 2023b) database analyses to confirm GH9

specific catalytic domains (cd00254, glycosyl hydrolase family 9).

Biochemical characteristics of GmGH9 proteins, such as molecular

weight (MW), theoretical isoelectric point (pI), and grand average

of hydropathicity (GRAVY), were computed using ExPASy

ProtParam (Gasteiger et al., 2003) with default settings.
2.2 Chromosome localization and
collinearity analysis of GmGH9s

Genomic coordinates of validated GmGH9 genes were extracted

from the GFF3 file and visualized using TBtools-II v2.156 (Chen et al.,

2023) with the “Advanced Chromosome Map” module. Whole-

genome tandem duplication events were detected through MCScanX

v1.0.0 (Wang et al., 2024) with default parameters (blastp E-value <1e-

10, match score >50). Genomic and GFF3 files for pea, tomato,

Arabidopsis, and maize were downloaded from the Ensembl plant

database (release 60) (Bolser et al., 2016). Twelve soybean pangenomes

(SoyW02, SoyW03, SoyL02, SoyL03, SoyC02, SoyL05, ZH13, SoyC11,

SoyC12, SoyL09, and SoyC14) and their corresponding GFF3 files were

downloaded from the SoyMD database (Yang et al., 2024b). Segmental

duplication analysis through synteny blocks identified using JCVI

v1.5.1 utilities (Tang et al., 2024). Ka/Ks ratios were calculated via

KaKs_Calculator 3.0 (Zhang, 2022) to characterize evolutionary

selection pressure.
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2.3 Phylogenetic tree analysis

Amultiple sequence alignment of soybean and other model plants

(Arabidopsis [dicotyledonous] and maize [monocotyledonous]) was

performed using the Clustalw algorithm in MEGA X (Kumar et al.,

2018). The evolution analysis was performed using the maximum

likelihood with default parameters, and a bootstrap of 1000 was

applied. Finally, the evolutionary tree was visualized on the

Evolview3 (Subramanian et al., 2019) webserver, with GH9s

labeled accordingly.
2.4 Gene structure and conserved motif
analysis

Exon-intron structures of GmGH9 genes were extracted from

the GFF3 file, and gene structure schematics were visualized

using TBtools-II v2.156. Conserved protein motifs were

identified using the MEME Suite v5.5.2 (Bailey et al., 2006)

with parameters set to a maximum of 4 motifs, E-value<1e−5,

and motif widths ranging from 6 to 50 residues. The distribution

of conserved motifs was mapped onto the phylogenetic tree

using TBtools-II v2.156 to elucidate structural conservation

across the GmGH9 family.
2.5 Promoter and cis-regulatory element
analysis

Promoter sequences (2000 bp upstream of the transcription

start site) of GmGH9 genes were retrieved from the soybean

genome (Wm82.v6). Cis-regulatory elements were predicted

using PlantCARE v2023 (Lescot et al., 2002) and categorized

into functional groups (e.g., light-responsive, hormone-related,

and stress-inducible elements). The distribution of these

elements was visualized in R v4.3.1 using the ggplot2 package,

with color-coded annotations highlighting regulatory diversity

among subfamilies.
2.6 Haplotype analysis

SNP data of 4414 soybean accessions were obtained from the

SoyMD database (Yang et al., 2024b). Yield trait data were obtained

from the SoyOmics database (Liu et al., 2023). Haplotype blocks for

GmGH9 genes were analyzed using geneHapR (Zhang et al., 2023),

with haplotypes containing fewer than 10 individuals being

excluded from the analysis. With a 20 kb window and 2 kb step,

VCFtools v0.1.16 (Danecek et al., 2011) was used to calculate the

nucleotide diversity (p) and fixation index (Fst) values. The top 10%

of the p and Fst ratio (G. soja vs. landrace and landrace vs. cultivar)

for the corresponding chromosome was used as the selective

sweep threshold.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1597668
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhan et al. 10.3389/fpls.2025.1597668
2.7 Material planting

Soybean variety Wm82 was selected and cultivated in a

greenhouse. The growth conditions included a photoperiod of 16

hours (h) light/8 h dark, maintained at a temperature of 26°C.

Fifteen days after flowering, soybean plants received a treatment of

100 mg/L ethephon, with water treatment serving as control. After

24 h, tissue samples were designated as ethylene-treated stem (ESt),

ethylene-treated leaf (EL), ethylene-treated petiole (EYb), ethylene-

treated flower (EF), ethylene-treated flower AZ (EFaz), ethylene-

treated pod AZ (EPaz), ethylene-treated pod peel (EPp), ethylene-

treated seed coat (ESc), and ethylene-treated embryo (ESe). Parallel

samples were harvested from water-treated plants as control,

designated as stem (St), leaf (L), petiole (Yb), flower (F), flower

AZ (Faz), pod AZ (Paz), pod peel (Pp), seed coat (Sc), and embryo

(Se). All samples were frozen in liquid nitrogen and stored at -80°C.
2.8 Analysis of the expression profile and
RT-qPCR

Data on multi-organ expression (NCBI BioProject ID:

PRJNA442256), AZ and NAZ in situ expression following

ethylene treatment (Kim et al., 2016), and expression data from

photoperiod conversion [plants were grown in the greenhouse

under short-day (SD) (10 hours of light, 6:45–16:45) and long-

day (LD) (16 hours of light, 6:45–22:45) conditions at 25°C and

were sampled every four hours at six time points, T1-T6 (6:30,

10:30, 14:30, 18:30, 22:30 and 2:30). For a shift (Sh) experiment,

plants were first grown under LD for three weeks and then

transferred to SD for 5 days] (Wu et al., 2014) were downloaded

from the publicly accessible transcriptome dataset in the NCBI

database. Raw data was filtered using Trimmomatic software

(Bolger et al., 2014), followed by alignment of clean data to the

reference genome Wm82 v6 using STAR (Dobin et al., 2013). The

counts of all genes were ultimately converted to gene expression

values in transcripts per million (TPM).

RNA was isolated via the TRIzol method (Rio et al., 2010), and

the concentration and integrity were evaluated with a NanoDrop

spectrophotometer. RNA integrity was detected by 1.2% agarose gel

electrophoresis. cDNA was synthesized using HiScript III RT

SuperMix (Vazyme International LLC, Nanjing, China). Primers

for real-time fluorescence quantitative PCR (RT-qPCR) were

designed by Primer-BLAST online (Ye et al., 2012), and listed in

Supplementary Table S6. RT-qPCR was performed using SYBR

Green qPCR Mix (Thermo Fisher Scientific, Waltham, USA), with

40 cycles set. GmTublin was set as the internal reference gene, and

gene expression level was calculated using the 2^(-DDCt [cycle

threshold]) method (Livak and Schmittgen, 2001).
2.9 Subcellular localization

GmGH-GFP (green fluorescent protein) fused expression cassettes

were inserted into the pCAMBIA1302 vector with restriction sites
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(HindIII and KpnI), subsequently transformed into GV3101(pSoup-

P19) Agrobacterium strain, and used to infect tobacco (Nicotiana

benthamiana) leaves via injection. GFP fluorescence signals were

detected after 48 h using a confocal laser scanning microscope

(Zeiss LSM 880). AtPIP2A, connected to mCherry as a plasma

membrane localization control (Li et al., 2024). The primer

sequences used in this study are presented in Supplementary Table S6.
2.10 Data analysis

Heatmaps of expression data were generated in R v4.3.1 using

the pheatmap package, with Z-score normalization. Statistical

significance (p<0.05) was assessed via Student’s t-test to compare

expression differences across tissues or treatments.
3 Results

3.1 Identification analysis of GmGH9s in
Glycine max

Through systematic genome-wide analysis using HMMER3.0,

we identified 43 non-redundant GmGH9 genes in soybeans, with

strict elimination of redundant isoforms. Bioinformatic analysis

revealed substantial variation in the physicochemical properties of

encoded GH9 proteins. The polypeptides ranged from 126 amino

acids (aa) (GmGH9B14) to 639 aa (GmGH9C4), corresponding to

molecular weights between 14.62 kDa (GmGH9B14) and 70.76 kDa

(GmGH9A16) (Supplementary Table S1). Theoretical isoelectric

points (pI) exhibited broad diversity from 4.46 (GmGH9A6) to 9.52

(GmGH9B1), while the grand average of hydropathy (GRAVY)

values spanned from -0.432 (GmGH9A16) to 0.291 (GmGH9A4).

Notably, only two proteins (GmGH9A4 and GmGH9B18)

displayed positive GRAVY scores, indicating that 95.3% of

GmGH9 proteins are hydrophilic. These distinct physicochemical

characteristics suggest functional diversification of GmGH9

proteins across cellular environments.
3.2 Phylogenetic analysis and classification
of GmGH9s

To elucidate the evolutionary phylogenomics of GH9s glycosyl

hydrolases, we performed maximum-likelihood phylogenetic

reconstruction using MEGA X with 1000 bootstrap (BS) replicates,

stratifying nodal support into three confidence tiers: low (BS ≤ 0.4),

moderate (0.41<BS ≤ 0.8), and high (BS>0.8), with topological

robustness quantified in strongly supported nodes (BS≥0.81)

(Figure 1; Supplementary Table S1). The phylogram incorporated

cross-kingdom homologs from Arabidopsis (Arabidopsis thaliana)

and maize (Zea mays), revealing deep phylogenetic conservation of

cellulose-metabolizing GH9 enzymes across embryophytes. According

to the classification standards for ArabidopsisGH9s (Urbanowicz et al.,

2007), the 43 GmGH9 predicted proteins segregated into three
frontiersin.org

https://doi.org/10.3389/fpls.2025.1597668
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhan et al. 10.3389/fpls.2025.1597668
evolutionarily distinct classes: Class A (n=16, 37.21%), Class B (n=23,

53.49%), and Class C (n=4, 9.30%), demonstrating phyletic divergence

consistent with subfunctionalization patterns. Class B emerged as the

predominant clade, exhibiting functional diversification with varying

nodal support (e.g., GmGH9B16/B7/B8) in contrast to an

evolutionarily constrained cluster (e.g., GmGH9B11-B4/AT1G71380/

AT1G22880/Zm00001eb423080). Intriguingly, phylogenetically

cohesive subgroups of tandemly duplicated soybean paralogs (e.g.,

GmGH9A12/A2/A11/A3) formed species-specific expansions,

potentially reflecting neofunctionalization events following whole-

genome duplication.
3.3 Chromosomal location and collinearity
analysis of GmGH9s

The 43 GmGH9s exhibited a non-random chromosomal

distribution across 18 of the 20 soybean pseudomolecules,
Frontiers in Plant Science 05
no t ab ly ab sen t f r om Gm01 and Gm13 (F i gu r e 2 ) .

Chromosomal allocation analysis revealed Gm06 as a genomic

hotspot, harboring 23.3% (8/43) of GmGH9 members, followed

by Gm02, Gm04, and Gm11, each with 4 genes, representing

9.3% per chromosome. Eight Class B members (GmGH9B7/B8,

B9/B10, B13/B14, B19/B20) particularly formed tandem arrays

wi thin 200 kb interva ls , predominant ly loca l ized in

pericentromeric regions—a genomic architecture suggestive of

non-reciprocal transpositions or unequal crossing-over events.

A comparative analysis identified 28 segmental duplication pairs

(Supplementary Figure S1), predominantly associated with

ancient whole-genome duplicat ion (WGD) events , as

evidenced by synonymous substitution rates (Ks=0.09–2.61)

and s t r ong pu r i f y i ng s e l e c t i on (Ka /Ks=0 . 03–0 . 66 ;

Supplementary Table S2). These evolutionary trajectories likely

fine-tuned the spatiotemporal regulat ion of cel l wal l

polysaccharide remodeling, facilitating adaptive responses to

mechanical stress and pathogen threats in soybean ecotypes.
FIGURE 1

Phylogenetic tree of multi-species GH9s. Green, pink, and blue represent Class A, Class B, and Class C subgroups, respectively. Different leaf
decorations represent different species. The color of the circle on the branch represents different bootstrap values.
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3.4 Conserved motifs, conserved domains,
and gene structures of the GH9 family in
soybean

Comprehensive phylogeny-structural analysis of the soybean

GmGH9 family unveiled conserved evolutionary modules and

subfamily-specific innovations across GmGH9A/B/C clades.

Exon-intron architectural complexity diverged significantly

(Figure 3A), with GmGH9B/C members displaying elaborate

splicing patterns (e.g., the 3’UTRs [three prime untranslated

regions] of GmGH9B12 and GmGH9A13 contain introns) in

contrast to the streamlined GmGH9A genes. These subfamily-

differentiated UTR configurations, particularly intron-containing

3’UTRs, suggest cis-regulatory diversity via post-transcriptional

regulation mediated by alternative splicing.

Domain architecture (Figure 3B) highlighted the canonical

GH9s catalytic domain, combined with distinctive characteristics

peculiar to each subfamily: transmembrane (TM) domains were

prominent in GmGH9As (except GmGH9A6/A12/A14), suggesting

roles in membrane anchoring. GmGH9Cs uniquely harbored

carbohydrate-binding module 49 (CBM49) and signal peptides

(SP), implicating involvement in cellulose recognition and

secretion mechanisms. These structural patterns align with

phylogenetic divergence, indicating that the complexity and

extension of the GmGH9Bs domain signify neofunctionalization

in cellulose metabolism, whereas the streamlined architectures of

GmGH9Cs imply conserved catalytic functions. Surprisingly,

GmGH9A6 does not have a TM domain, and there is only a GH9

domain in the pan-gene (Supplementary Table S3). Phylogenetic

and domain architecture may exhibit incongruence, potentially
Frontiers in Plant Science 06
reflecting functional divergence through domain loss during

lineage-specific evolution.

Motif decomposition revealed evolutionarily constrained

modularity (Figure 3C; Supplementary Figure S2): four core

motifs (1-4; 34–41 aa) showed positional conservation in 86.05%

(n=37) of the members. Whereas features with functional loss, such

as GmGH9B14/B9/B18, contain only two of the four motifs;

GmGH9A4/A14 contains only one of the four motifs. GmGH9A6

inadvertently exhibited an absent pattern. The observed divergence

among subfamilies may result from the tetraploidization and

subsequent diploidization processes in soybean evolution, while

lineage-specific adaptations may potentially underlie the cell wall

remodeling strategies and ecological resilience mechanisms that

govern soybean’s environmental responsiveness.
3.5 Analysis of cis-elements in the
promoters and functional annotation of
GmGH9s

Analysis of the promoters of the soybean GmGH9 gene family

revealed a diverse array of cis-regulatory elements associated with

biological processes and stress responses. A total of 13 types of

functional motifs were identified (Figure 4), with all gene promoters

containing light-responsive motifs, consistent with the diurnal

regulation of cellulose metabolism (Wang et al., 2023a).

Moreover, the distribution of light-responsive motifs is relatively

dense, with GmGH9B5, GmGH9B21, and GmGH9B23 containing

27, 23, and 23 light signal motifs, respectively. Hormone-responsive

elements are notably predominant, including ABA (39/43),
FIGURE 2

Chromosome distribution of GmGH9s. Green, pink, and blue represent Class A, Class B, and Class C subgroups, respectively.
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gibberellin (GA, 24/43), methyl jasmonate (MeJA, 24/43), auxin

(13/43), and salicylic acid (SA, 11/43) signaling pathways,

suggesting tight hormonal regulation of GmGH9s expression.

Stress-related motifs were highly enriched, particularly those

linked to anaerobic conditions (37/43), drought (18/43), and

temperature fluctuations (15/43), underscoring the family’s

potential role in abiotic stress adaptation. Seed development-

related motifs were also abundant, highlighting the family’s

involvement in growth processes. GmGH9B5 exhibited a higher

motif density for light and ABA metabolic regulation, whereas

GmGH9B9 contained only 13 motifs. We performed GO

(Supplementary Table S4) and KEGG (Supplementary Table S5)

enrichment analysis to examine the function of GmGH9s. It was

found that they were mainly engaged in the biological process of

“cell wall modification”, subsequently followed by “response to

cyclopentenone” and “b-glucan metabolic process” (related to

cytokinin) (Supplementary Figure S3). Pathway enrichment

analysis identified starch and sucrose metabolism as the most

significantly enriched KEGG pathway. These findings collectively

suggest that GmGH9 genes are regulated by a complex interplay of
Frontiers in Plant Science 07
developmental, hormonal, and environmental cues, likely fine-

tuning their roles in cell wall remodeling and stress resilience

in soybeans.
3.6 GmGH9s expression profiles under
different conditions

The expression profiling of the GmGH9s family in soybean

revealed spatiotemporal and stress-responsive regulatory dynamics

across organs, ethylene treatment, and photoperiod conditions

(Figures 5A–C). Organ-specific expression highlighted functional

diversification (Figure 5A). GmGH9C4 was highly expressed in

lateral roots, while GmGH9C1 and GmGH9C2 were specifically

expressed at the apical regions (root and shoot). Seed-specific

expression peaks of GmGH9A2 correlated with seed maturation.

In addition, GmGH9A10/15/13/9 showed constitutive expression.

Ethylene-responsive regulation (Figure 5B) revealed distinct

expression patterns in leaf AZ (Laz) compared to non-AZ (Naz).

GmGH9B15 was highly expressed in Laz-specific at 0 h after
FIGURE 3

Molecular characteristics of GmGH9s. (A) GmGH9 structures; grey lines represent introns. (B) GmGH9 proteins conserved domain; the gray area is
disordered region. (C) GmGH9 conserved motif; gray line is relatively disordered sequence.
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ethylene induction (AEI). GmGH9B19 was significantly induced by

ethylene in Laz compared to Naz at 12 h AEI. Key genes

(GmGH9B21/B11/A11/A3/B4/B16/B5) exhibited significant

induction in Laz at 24–48 h AEI, consistent with ethylene’s role

in cell wall loosening during abscission. In contrast, GmGH9A4 was

downregulated in Laz but upregulated in Naz at 72 h AEI,

indicating compartmentalized regulatory roles. Photoperiod-

dependent expression (Figure 5C) demonstrated that LD

conditions enhanced the expression of GmGH9B2/B22/A3/B1/

B15/B5/A12/A2/C1/C2, while SD conditions suppressed it. SD

significantly inhibited gene expression, except GmGH9A16 and

GmGH9A8. Strikingly, GmGH9B12, GmGH9B11, and GmGH9B4

displayed rhythmic oscillations under LD, with peaks occurring at

dawn (T5), and demonstrated elevated expression levels at T5 in Sh.

Surprisingly, most genes showed a similar expression pattern in

Clark and Wm82.

RT-qPCR was employed for examining the changes in gene

expression of GmGH9 genes, which show different patterns (either

tissue-specific high expression profiles across soybean organs, or

induced or suppressed by ethylene) (Figure 5B). Stem, leaf, petiole,

flower, Faz, Paz, pod peel, seed coat, and embryo were detected

before and after ethylene treatment. As shown in Figures 6A, B,

ethylene significantly enhanced the expression of GmGH9A9 and

GmGH9B19 in leaves, whereas concurrently repressing their

expression in flowers and the seed coat. GmGH9B12, GmGH9C1,

and GmGH9B19 were found to be specifically highly expressed in

the Paz. However, following ethylene treatment, their expression

was dramatically decreased, showing a 15 to 35 fold reduction. In

the Faz, both GmGH9B16 and GmGH9B21 exhibited increased

expression levels in response to ethylene. Furthermore, GmGH9B16
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was notable for its up-regulation in flower, whereas GmGH9B21

showed a significant rise in expression in the Paz, achieving a three-

fold increase relative to control levels. The results indicate that

GmGH9s may have multiple roles in abscission.
3.7 Multi-species colinearity analysis of
GH9s

The comparative synteny analysis of the GmGH9s family

among soybean, pea (Pisum sativum), tomato (Solanum

lycopersicum), Arabidopsis, and maize revealed both conserved

and divergent evolutionary patterns. Colinearity analysis for the

GH9s gene family revealed that pea, tomato, Arabidopsis, and maize

exhibit 30, 25, 23, and 15 collinear events with soybean, respectively.

The syntenic region shared among all species includes GmGHB3/

B5/B13/B14/B17/B18. Moreover, seven GH9 syntenic regions—

specifically GmGH9B1/A2/A4/A8/C2/C4/A15—are conserved in

pea, tomato, and soybean, while they are absent in Arabidopsis

and maize. These genes exhibit a high level of conservation

throughout the soybean pan-genome (Figures 7B, C;

Supplementary Figures S4–S8). Notably, GmGH9B1/A4/C2/A15

displayed differential expression in leaves between Laz and Naz

after ethylene treatment (Figure 5B). GmGH9B1 exhibited specific

expression in flowers following ethylene induction, with negligible

levels detected in other organs (Figure 8A). GmGH9A2 showed a

significant reduction in the AZ of flowers and pods after ethylene

treatment (Figure 8B). Conversely, GmGH9A8 and GmGH9C4

exhibited significantly increased expression in the AZ of flowers

and pods following ethylene treatment, suggesting their potential
FIGURE 4

GmGH9s promoter motif distribution. (A) The distribution of different motifs in the promoter position. (B) The heatmap of motifs function
classification statistics.
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involvement in the regulation of flower and pod abscission

(Figures 8C, F). In contrast, GmGH9C2 showed opposite ethylene

responses in the AZ of flowers and pods, implying functional

diversity (Figure 8E). Additionally, GmGH9A15 displayed

differential expression in the Paz, whereas no such expression was
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observed in the Faz (Figure 8D). Fruit or pod abscission occurs

during the growth of pea, tomato, and soybean. It is hypothesized

that GmGH9A2/A8/A15/C2/C4 are linked to flower pod abscission,

with GmGH9A8/C4 facilitating this process and GmGH9A2 serving

as an inhibitor.
FIGURE 5

Spatio-temporal expression of GmGH9s. (A) The expression of GmGH9s in different organs and periods. (B) The expression of GmGH9s in leaf
abscission zones (Laz) and non-leaf abscission zones (Naz) at 0 hour (h), 12 h, 24 h, 48 h and 72 h after ethylene induction. (C), GmGH9s in soybean
varieties Clark and Williams 82 (Wm82) long-day (LD, 16 h of light, 6:45-22:45) and short-day (SD, 10 h of light, 6:45-16:45) period three weeks after
germination. Expression patterns at T1 (6:30), T3 (14:30), and T5 (22:30) under LD, SD, and light conversion (Sh, first grown under LD for three weeks
and then transferred to SD for 5 days) conditions.
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3.8 Haplotype variations of GmGH9A2 and
GmGH9C4

To clarify the effects of GmGH9s on soybean morphology, we

examined the association between the haplotypes of GmGH9A2 and
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GmGH9C4 with yield-related traits, including 100‐seed weight

(HSW), seed weight per plant (SWP), and total seed number per

plant (TSN). GmGH9A2 and GmGH9C4 had twelve and five

haplotypes, respectively (Figure 9A; Supplementary Figure S9A).

Despite the absence of differences in TSN among the haplotypes of
FIGURE 6

RT-qPCR analysis of the response of GmGH9s to ethylene in different tissues. (A–H) The relative expression levels of GmGH9A9, GmGH9B19,
GmGH9B12, GmGH9C1, GmGH9B5, GmGH9B16, GmGH9A11, and GmGH9B21 respectively. ESt, EL, EYb, EF, EFaz, EPaz, EPp, ESc, and ESe denote
ethylene-treated stem, leaf, petiole, flower, flower AZ, pod AZ, pod peel, seed coat, and embryo, respectively. Data are presented as means ± SEM. *,
**, and *** indicate significant differences at p<0.05, p<0.01, and p<0.001, respectively.
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GmGH9A2, H001 exhibited a significantly higher HSW compared

to others, resulting in a notable improvement in SWP for H001

(Figures 9B–D). An analysis of p and Fst in the 400 kb upstream and

downstream regions of GmGH9A2 among G. soja, landrace, and

cultivated soybeans revealed that the p ratio and Fst value for G.

soja/landrace comparisons reached the top 10% threshold, while the

Fst between landraces and cultivars was significantly lower than that

observed between G. soja and landraces. The p ratio of landrace/

cultivar, though not exceeding the threshold, was greater than 1.

This suggests that H001 was selected for enhanced yield traits in
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soybean cultivation and indicates that intensive breeding practices

have further eroded genetic variation in cultivated lines (Figure 9).

In the case of GmGH9C4, although a slight decrease in the TSN of

H003, the HSW was higher than that of H001 and H002, leading to

a significant improvement in SWP (Supplementary Figures S9B–D).

In contrast to GmGH9A2, the p ratio of landrace/cultivar

approached 1, whereas the p ratio of G. soja/landrace exceeded

that of landrace/cultivar. This suggests that selection pressure was

exerted on G. soja during domestication, with only modest selection

changes occurring during subsequent breeding improvement
FIGURE 7

Co-linearity analysis of GH9s. (A) Multi-species genome-wide collinearity analysis. (B) Microsynteny analysis of the GmGH9A2 within soybean
species. (C) Microsynteny analysis of the GmGH9C4 within soybean species. Green and blue represent genes on the negative and positive strands of
chromosomes, respectively.
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(Supplementary Figure S9E). These findings highlight the impact of

domestication and breeding on the narrowing genetic diversity at

functionally critical GmGH9A2 and GmGH9C4, potentially limiting

adaptive potential in modern cultivars.
3.9 Subcellular localization of GmGH9s
protein

To analyze the subcellular localization of GmGH9s, we generated

recombinant constructs encoding 35S::GmGH9A2-GFP, 35S::

GmGH9A8-GFP, and 35S::GmGH9C2-GFP. These were co-

bombarded with the plasma membrane marker 35S::AtPIP2A-

mCherry into Nicotiana benthamiana epidermal cells via transient

expression. Confocal laser scanning microscopy revealed distinct

localization patterns: while the 35S::GFP control exhibited diffuse
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cytoplasmic localization, all three GmGH9 fusion proteins showed

pronounced extracellular compartmentalization (Figure 10). This

extracellular localization profile aligns with their predicted roles in

apoplastic processes involving cell wall remodeling.
4 Discussion

Previous studies have documented the role of GH9s in the

reassembly and degradation of the soybean cell wall (Nawaz et al.,

2017). However, a comprehensive analysis of the expansion of the

GH9 gene family and the subsequent functional differentiation

within this family has not been conducted to date. This study

performed a genome-wide identification and characterization of

cellulase genes, facilitating the understanding of the genetic

mechanisms underlying soybean organ abscission.
FIGURE 8

RT-qPCR analysis of the response of GmGH9s to ethylene in distinct floral and pod zones. (A–F) The relative expression levels of GmGH9B1,
GmGH9A2, GmGH9A8, GmGH9A15, GmGH9C2, and GmGH9C4, respectively. Data are presented as means ± SEM. *, **, and *** indicate significant
differences at p<0.05, p<0.01, and p<0.001, respectively.
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4.1 Gene family expansion and functional
differentiation

GmGH9 family shows considerable expansion within the

soybean genome, an ancient tetraploid specie, with a notable

prevalence in the GmGH9B subfamily, comprising 23 out of 43

members, paralleling observations in other species (Luo et al.,

2022b; Wang et al., 2023c). This expansion is likely related to the

functional diversification of cellulose metabolism. The Class C

family is quite conserved, particularly in the unique CBM49

structural domain (Figure 3B) and the transmembrane domains
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of GmGH9C. This suggests a distinct role in substrate recognition

and membrane localization. All members present in the

multispecies covariance belong to the Class C family (Figure 1).

The GmGH9A subfamilies are more streamlined in structure and

may retain conserved catalytic functions (Figures 3A, B).

Intriguingly, while GmGH9A3/A11/A2/A12/B23 phylogenetically

clusters near class C members, it notably lacks the characteristic

CBM49 domain observed in this group. This structural divergence

suggests a complex evolutionary relationship between subgroup A

and B with C, though their precise phylogenetic origins require

further molecular evidence to resolve.
FIGURE 9

Analysis of genetic characteristics of GmGH9A2. (A) Haplotype of GmGH9A2. The wide and narrow gray boxes represent the exon and UTR regions,
respectively. The gray line represents the intron. (B–D) The relationship between haplotypes with 100-seed weight (HSW), seed weight per plant
(SWP), and total seed number (TSN). (E) The p ratio and Fst values of the flanking region at GmGH9A2 in (G) soja, landraces, and cultivars soybeans.
The horizontal dashed lines indicate the genome-wide thresholds of (G) soja vs. landraces, and landraces vs. cultivars (top 10%). The middle position
of GmGH9A2 is labeled by brown dot (Gm02: 45370242). *, **, and *** indicate significant differences at p<0.05, p<0.01, and p<0.001, respectively.
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Importantly, subfunctionalization or neofunctionalization after

gene duplication can occur via structural domain reorganization,

such as variations in motif arrangement (Sandve et al., 2018),

thereby facilitating adaptation to the dynamic remodeling of the

soybean cell wall, including pectin degradation and responses to

environmental stressors. Tandem repeats and segmental repeat

events on chromosomes may primarily driving this expansion, with

a large number of tandem repeats in the soybean genome (Zhang et al.,
Frontiers in Plant Science 14
2024). We identified 8 tandem repeats and 28 fragment repeats

(Figure 2; Supplementary Figure S1). The structural hallmarks—

tandem clusters in recombinationally active zones and retained

paleoduplicates—imply compartmentalized functional diversification.

This may occur through subfunctionalization that preserving ancestral

cellulose synthase enhancement activity or neofunctionalization that

introduces novel b-1,4-glucanase specificities, potentially driven by

subgenome dominance during post-polyploid diploidization.
FIGURE 10

Subcellular localization of GmGH9s. GmGH9A2-GFP, GmGH9A8-GFP, and GmGH9C2-GFP fusion proteins, as well as GFP alone, were transiently
expressed in Nicotiana benthamiana leave cells. An mCherry-based AtPIP2A labeling plasma membrane. Representative photos of the protein
localization analysis conducted 48 h after infiltration are displayed. Individual images of GFP, mCherry, or bright field autofluorescence are shown.
GFP merged with mCherry as well as bright field (Merge) images are also displayed. Scale bars=50 mm.
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4.2 Adaptive significance of cis-regulatory
elements

Homeostasis regulation is closely related to gene expression,

with alteration in cis-regulatory sequences contributing to the

diversification of gene functions in soybeans (Fang et al., 2023).

Promoter analysis revealed a wide range of hormone- and

adversity-responsive elements (e.g., ABA, MeJA, drought, and

light-responsive elements) within the GmGH9s gene family,

suggesting that its expression is regulated by complex

environmental and developmental signals. The late-stage

softening and ripening of fruit are closely related to light (Li et al.,

2021; Lin et al., 2023; Wei et al., 2023; Su et al., 2024). The

enrichment of light signals in the GmGH9s promoter suggests an

important role for these genes in the late stage of soybean pod

development (Figure 4). Enrichment of elements related to

photoperiod and biological clock, such as GmGH9B5 ,

GmGH9B21, and GmGH9B23, further supports a role for this

family in circadian-regulated cellulose metabolism. Photoperiod-

dependent circadian oscillations, such as the rhythmic expression of

GmGH9A2 and GmGH9A12 under long day light (Figure 5B), may

be associated with carbon allocation strategies. These observed

patterns are highly compatible with cis-elements in promoters,

indicating a synergistic optimization of regulatory and functional

modules during evolution.
4.3 Spatio-temporal specificity of
expression patterns

Expression profiling revealed that GmGH9 genes were highly

specific in organ development, including root, flower, stem, and seed

development, as well as in stress response such as ethylene-induced

AZ formation. The high expression of GmGH9C1 in root tips may

correlate with its involvement in root cell wall expansion, whereas the

up-regulation of GmGH9A2 in late seed development (Figure 5A).

Simultaneously, GmGH9A2 was also rapidly expressed in Laz and

Naz after ethylene treatment; conversely, its expression was

suppressed in the AZ of flowers and pods (Figures 5B, 8B). It

reflects the functional diversity of GmGH9A2 in the petiole, flower

and pod AZ. Low expression levels of certain genes were detected in

different organs; however, these genes may have outstanding

contributions at different times. Different organs of GmGH9A9 and

GmGH9B19 have different sensitive responses to ethylene

(Figures 6A, B), indicating that they have diverse functions. Despite

GmGH9B4 displaying low expression levels in various organs, the

expression of Laz was significantly higher than that of Naz following

24 h of ethylene treatment (Figure 5B). At the same time, GmGH9B4

also showed periodic expression, with high levels observed during the

T5 stage of LD (Figure 5C). The up-regulation ofGH9B3 (GmGH9B4
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in this study) gene expression during homograft adhesion was

consistently observed in soybeans, while it was not evident in

interfamily grafts (Notaguchi et al., 2020). This space-time specific

expression could enhance the practicality of soybeans.
4.4 Implications of covariance and
evolutionary history

Syntenic blocks were identified between soybean chromosomes

and homologous regions in other species, highlighting ancestral

genomic conservation. Collinearity analyses showed that some

members of the GmGH9 family, such as the GmGH9B subfamily,

share conserved syntenic blocks (Figure 7A), which supports their

derivation from a common ancestral core gene. This “conserved

core-dynamic fringe” evolutionary model may have balanced

functional stability with adaptive innovation. However, the

absence of synteny in monocotyledons, such as Arabidopsis and

maize, reflects lineage-specific adaptation. Abscission of pea,

tomato and soybean fruits/pods occurs during the ripening stage

(Ayeh et al., 2009; Kim et al., 2016; Lin et al., 2023). The presence of

GmGH9B1/A2/A4/A8/C2/C4/A15 in pea, tomato and soybean

suggests a potential relationship between these genes and fruit

abscission. Overall, the synteny network underscores the dual

evolutionary trajectory of the GmGH9 family: core functions are

conserved through syntenic orthologs, while species-specific

innovations driven by genomic plasticity.
4.5 Decay of genetic diversity and breeding
challenges

The hydrolysis of plant cell walls leads to a series of reactions,

such as HSW, a loss-of-function mutant allele of a glycosyl hydrolase

gene, utilized to regulate seed weight during soybean domestication

(Wei et al., 2023). qHS1, an endo-1,4-b-glucanase gene, harbors a

SNPmutant that changes the permeability of soybean seed coat (Jang

et al., 2015). Organ abscission can severely affect yield, with

haplotypes of GmGH9A2 and GmGH9C4 showing a correlation to

yield (Figure 8C; Supplementary Figure S9C). Genetic diversity

analyses of GmGH9A2 revealed a significantly high p ratio and Fst

between G. soja and landrace (Figure 9E), suggesting that artificial

selection has led to a genetic bottleneck at this locus. This

phenomenon may arise from directional selection for specific

agronomic traits in breeding, such as cell wall strength or resistance

to downy mildew. The attenuation of genetic diversity from G. soja

soybean to cultivars serves as a caution that over-reliance on a limited

genetic base may weaken the capacity of future varieties to adapt

climate change (Tian et al., 2025). Therefore, the use of local

germplasm or the restoration of key allelic variants through gene
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editing may provide new strategies to optimize GmGH9s function

while balancing high yield and stress tolerance. Although GmGH9s

are correlated with yield, further experimental evidence is required to

determine whether abscission is the causative factor.
5 Conclusions

In this study, 43GH9 genes were identified in soybean. These genes

were classified into three groups. Notably, several genes exhibited

significant responses to ethylene treatment and circadian variations,

especially GmGH9A9 and GmGH9B19. Furthermore, multi-species

synteny analysis indicated that GmGH9A2 and GmGH9C4 may be

involved in organ abscission and significantly affect soybean yield,

providing valuable insights for future soybean molecular breeding. Its

evolutionary history and changes in genetic diversity offer important

insights for crop improvement.
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