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Introduction: Image and near-infrared (NIR) spectroscopic data are widely used

for constructing analytical models in precision agriculture. While model

interpretation can provide valuable insights for quality control and

improvement, the inherent ambiguity of individual image pixels or spectral data

points often hinders practical interpretability when using raw data directly.

Furthermore, the presence of imbalanced datasets can lead to model

overfitting and consequently, poor robustness. Therefore, developing

alternative approaches for constructing interpretable and robust models using

these data types is crucial.

Methods: This study proposes using preprocessed data—specifically,

morphological features extracted from images and chemical component

concentrations predicted from NIR spectra—to build multiclass identification

models. Combined kernel SVM based models were proposed to identify the rice

variety and cultivation region of tobacco. The determination of kernel

parameters and percentage of different types of kernel functions were

accomplished by PSO, which make the approach self-adaptive. Feature

importance and contribution analyses were conducted using Shapley additive

explanations (SHAP).

Results: The resulting models demonstrated high robustness and accuracy,

achieving classification success rates of 97.9 and 97.4% via n-fold cross

validation on rice and tobacco datasets, respectively, and 97.7% on an

independent test set (tobacco dataset 2). This analysis identified key variables

and elucidated their specific contributions to the model predictions.

Discussion: This study expands the applicability of image and NIR spectroscopic

data, offering researchers an effective methodology for investigating factors

crucial to the quality control and improvement of agricultural products.
KEYWORDS

multiclass identification, preprocessed data, kernel support vector machine, model

interpretation, SHAP, image analysis, near-infrared spectroscopy
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1 Introduction

Objective data analysis and machine-learning techniques have

been widely employed to construct pattern recognition and

regression models in agriculture. Applications include yield

prediction (Fita et al., 2025), chemical composition analysis

(Rawal et al., 2024), disease and pest diagnosis (Joshi et al., 2024),

and soil and land management (Naeimi et al., 2024). Additionally,

various chemometric methods have been investigated and applied

to achieve high accuracy in agricultural analyses (Stefanov et al.,

2010; Jamwal et al., 2021; Xu et al., 2023). These research efforts

have significantly enhanced the accuracy and efficiency of relevant

tasks while reducing associated costs.

Among the various data-acquisition methods, image analysis

and near-infrared (NIR) spectroscopy are commonly used owing to

their non-destructive and efficient nature (Antolıńez Garcıá and

Cáceres Campana, 2023; Tian et al., 2023; Zhang et al., 2024).

However, most previous studies focusing on these data types have

not included model interpretation. A significant challenge is that

the direct meaning of individual image pixels, raw spectral data

points, or features derived from dimensionality reduction

techniques can be ambiguous, thereby hindering practical model

interpretation. For the data pre-treatment, instead of giving data

straightforward meaning, many research forced on the images

recombination and dimensionality reduction for the purpose of

increasing the accuracy and robustness of model. Previous studies

have demonstrated that morphological features extracted from

images can be used to establish identification models for various

subjects, including rice and dolphins (Cinar and Koklu, 2019; Sheng

et al., 2023). In the field of modeling for medical purpose, Chen

et al. (2025) proposed a feature reconstruction method to

reconstruct raw features from Conical Beam CT images to

eventually detect cleft lip and palate. Furthermore, NIR spectra

provide rich structural information of samples, resulting from

multiplicative and ensemble absorption of X-H vibrations within

hydrogen-containing functional groups (Xiao et al., 2023). Multiple

chemical components in crops or fruits can be quantitatively

predicted from NIR spectra (Zushi et al., 2025; Wang et al., 2023;

Rawal et al., 2024). The straightforward meaning was signed to the

data by feature extraction technique and chemical composition

prediction, which could provide fundamental of conducting model

interpretation method on those processed data.

Model interpretation provides valuable information crucial for

controlling or improving the quality of agricultural products. The

development of interpretable machine learning has led to the

emergence of several methods, including permutation feature

importance (Fisher et al., 2019), local interpretable model-

agnostic explanations (Ribeiro et al., 2016), and Shapley additive

explanations (SHAP) (Lundberg and Lee, 2017). Among these,

SHAP has a solid theoretical foundation based on cooperative

game theory, offering unique advantages such as fairness

guarantees and the ability to provide contrastive explanations

(Molnar, 2024). Consequently, it has garnered significant research

attention and has been applied in diverse fields, including revealing

causes of citrus fruit cracking (Abekasis et al., 2024), visually
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explaining liver microsomal stability models (Long et al., 2024),

and facilitating feature selection in rolling-bearing fault diagnosis

(Santos et al., 2024). It has also been used in feature selection in

modeling for diagnosis and clinical decisions (Kha et al., 2021).

In machine learning, deep learning approaches, particularly

convolutional neural networks (CNNs), have undergone rapid

development and achieved impressive performance on various

tasks (Luo et al., 2024). However, it is generally accepted that

effectively training CNNs requires a substantial amount of data (Xu

et al., 2019; Thanapol et al., 2020). However, in many practical

research scenarios, available datasets are limited in size and often

imbalanced. Compared with CNNs, support vector machines

(SVMs) offer distinct advantages in handling smaller datasets

(Han et al., 2021; Guan et al., 2021). SVM, originally proposed by

Vapnik (1995), is based on the principles of Vapnik–Chervonenkis

(VC) dimension theory and Structural Risk Minimization. It

achieves good generalizability by striking an optimal balance

between model complexity and learning capability, even with

limited samples (Li et al., 2024). SVM is also suitable for high-

dimensional feature space. Khanh Le et al. (2023) created a SVM

based pipeline, including c2 and recursive feature elimination as

feature selection method, LDA as dimensionality reduction method,

to predict protein crystallization propensity. Another key factor

contributing to the popularity of SVM is its ability to model

complex non-linear relationships through the use of appropriate

kernel functions (Zhang and Wang, 2011). Consequently, the

selection, construction, and optimization of suitable kernel

functions and associated strategies have become active research

areas (Song et al., 2008; Taqvi et al., 2022). Kernel functions can be

broadly categorized into global kernels, known for their strong

generalizability (e.g., linear (LKF), polynomial (PKF), and sigmoid

(SKF) kernels), and local kernels, recognized for strong learning

ability (e.g., radial basis function (RBF) kernel). Different kernel

functions possess unique characteristics suitable for different data

structures (Wang and Fang, 2019). However, because the

underlying features of a dataset are often unknown beforehand,

selecting the most suitable kernel function can be challenging. One

approach to constructing potentially superior kernel functions

involves using optimization algorithms to linearly combine

multiple kernel types. This strategy aims to leverage the respective

advantages of different kernels, potentially leading to enhanced

model performance. It has been successfully employed for

hyperspectral imagery classification (Lin & Yan, 2015), asset price

prediction (Zhu et al., 2022), face recognition (Hu et al., 2022), and

wind speed prediction (Tian, 2020).

This study aims to construct multiclass identification models

and provide practical model interpretation using preprocessed data

derived from commonly used agricultural sensing techniques. To

achieve this, a morphological feature dataset for rice, originally

extracted from images, was obtained from previous studies (Koklu

et al., 2021; Cinar and Koklu, 2022). Additionally, two imbalanced

tobacco datasets were collected, and their chemical compositions

were predicted from corresponding NIR spectra using previously

established chemometric models (Liang et al., 2022; Guo et al.,

2023). This study employs a combined kernel function in SVM
frontiersin.org
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incorporating both linear and non-linear, as well as global and

local kernels. Four kernel parameters and three contribution

percentages within the combined kernel were optimized via

particle swarm optimization (PSO) at the same time, which made

this approach a self-adaptive kernel method. The resulting

multiclass identification models demonstrated both strong

learning and generalization capabilities. Crucially, compared to

raw image or spectral data, these preprocessed features are

inherently more interpretable. We employed SHAP analysis,

summary and dependence plots to illustrate how different features

influence class identification.

Based on the rapidly developing of the feature extraction

technique and the NIR based researches of chemical composition

prediction, we posit that our study—utilizing interpretable,

preprocessed data derived from these techniques—is transferable

and extends the applicability of image analysis and NIR

spectroscopy. Moreover, models based on these interpretable

preprocessed data hold significant potential for identifying key

factors influencing the quality control and improvement of

agricultural products.
2 Materials and methods

A study workflow is illustrated in Figure 1. In summary,

attempts were made to combine images/NIR data, combined

kernel SVM, PSO and SHAP. Firstly, data with straight forward

meaning was extracted from original images/NIR data. Training set

and test set was randomly separated. Then the Cross Validation
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(CV) was conducted on training set to determine the parameters

and percentages of combined kernel. SVM model was trained with

the optimized kernel. Multicollinearity between variables was

checked before conducting SHAP. Group permutation was

applied in SHAP to give final model interpretation. The details of

each step are described in following sections.
2.1 Samples and data collection

The rice dataset employed in this study was obtained from previous

research (Koklu et al., 2021; Cinar and Koklu, 2022) and is publicly

available (https://www.muratkoklu.com/datasets/). It comprises 75,000

images of five distinct rice varieties (Arborio, Basmati, Ipsala,

Jasmine, and Karacadag), with 15,000 images acquired for each

variety. In this study, only the 12 morphological features, out of 106

features in original research, were used. Compared to the 90 color

features, the meaning of morphological features is straightforward.

The 4 shape features are a combination of certain features from the

12 morphological features.

Two distinct tobacco datasets were collected from two tobacco

companies without prior sample screening based on quality

attributes. In both datasets, comprising Chinese domestic tobacco

samples, the class labels corresponded to eight main cultivation

regions (Luo et al., 2019). Non-domestic samples were labeled

according to their country of origin. The number of classes

(regions or countries) exceeded ten in both datasets. Furthermore,

both exhibited significant class imbalance, with disparate numbers

of samples per class (details provided in Table 1).
FIGURE 1

Flowchart illustrating the overall research workflow.
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Tobacco samples were handled following the procedures

described previously (Liang et al., 2022; Guo et al., 2023). All

tobacco samples were dried in a drying room at 40°C for 1−3

days, ground to a certain granularity using a whirlwind grinding

mill, and sieved through a 60-mesh sieve. The moisture content of

the samples ranged between 6 and 8% and was analyzed by the

oven-drying method. NIR spectra were recorded for all tobacco

samples using an Antaris II NIR spectrophotometer (Thermo

Electron Co., USA). Measurements were performed in triplicate,

and each measurement comprised 64 co-added scans recorded at a

resolution of 8 cm−1 in the wavenumber range of 4000−10000 cm−1.

Chemical composition data for these samples were obtained using

pre-established chemometric models that predict compound

concentrations from NIR spectra (Liang et al., 2022; Guo et al.,

2023; Li et al., 2025). According to Liang’s report, the average R2 of

routine chemicals, polyphenolic compounds, organic acids, amino

acids, Amadori compounds, and other compounds for the EDM-

PLS models were 0.949, 0.88, 0.862, 0.867, 0.945, and 0.891,

respectively. The specific chemical compounds included in the

analysis are listed in Table 2.
2.2 Combined kernel and optimization

In the non-linearly separable data, SVM utilizes the kernel trick:

the input data are mapped into a higher-dimensional feature space

via a kernel function, where linear separation becomes feasible. The

one-vs-all (OVA) approach was adopted, where M individual

binary SVM classifiers are trained (M is the total number of

classes), each separating one class from all the others. This choice

was guided by reports suggesting potentially higher accuracy than

the OVO strategy in certain contexts (Taqvi et al., 2022). A key

aspect of this study is the use of a combined kernel function.
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Specifically, LKF, PKF, and RBF kernels (detailed in Table 3)—

encompassing linear/non-linear and global/local types—are linearly

combined as follows (Equation 1):

K(x1, x2) = p1*x
T
1 x2 + p2*(a · x

T
1 x2 + b)q

+ p3*exp(
−kjx1 − x2jk2

s2 ) (1)

The optimal kernel percentages (p1, p2, p3) and kernel-specific

parameters (a,  b,  q,  s 2) were determined via PSO. PSO is a swarm

intelligence algorithm developed by Eberhart and Kennedy (1995),
TABLE 1 Number of samples per cultivation region in the
tobacco datasets.

Zone Dataset 1 Dataset 2

Domestic Zone 1 363 175

Domestic Zone 2 74 40

Domestic Zone 3 8 25

Domestic Zone 4 56 164

Domestic Zone 5 139 17

Domestic Zone 6 65 31

Domestic Zone 7 7 —

Domestic Zone 8 7 22

Brazil 48 71

Zimbabwe 30 61

America — 20

Zambia — 12

Total 797 638
TABLE 2 Chemical components (n = 70) measured in the
tobacco datasets.

No. Type Compound name Amount

1
Routine
chemicals

Total sugar, Reducing sugar, Total
alkaloid,
Total N, Potassium ion(K), Chloridion
(Cl), Starch

7

2 Ion
Sulfate, Phosphate, Calcium(Ca),
Magnesium (Mg),

4

3
Polyphenolic
compounds

Neochlorogenic acid, Chlorogenic acid,
Cryptochlorogenic acid,
Scopoletin, Rutin,

5

4
Organic
acids

Oxalic acid, Propanedioic acid, Succinic
acid, Malic acid, Citric acid, Vanillic
acid, Myristic acid, Palmitic acid, Oleic
acid and Linolenic acid, Linoleic acid,
Stearic acid, arachidic acid

12

5 Amino acid

Aspartic acid, L-Threonine, Serine, L-
Asparagine, Glutamic acid, Glutamine,
Glycine, Alanine, Valine, Cystine,
Methionine, L-isoleucine, Leucine,
Tyrosine, Phenylalanine, g-aminobutyric
acid, Lysine, Histidine, Tryptophan,
Arginine, Proline

21

6
Amadori
compounds

N-(1-Deoxy-d-glucose-1-yl) Ammonia
(Glu-An), N-(1-deoxy-D-fructos-1-yl)
aminobutyric(Fru-Amb), N-(1-deoxy-D-
fructos-1-yl) Histidine(Fru-His), N-(1-
deoxy-D-fructos-1-yl) Proline(Fru-Pro),
N-(1-deoxy-D-fructos-1-yl) Valine(Fru-
Val), N-(1-deoxy-D-fructos-1-yl)
Threonine(Fru-Thr), N-(1-deoxy-D-
fructos-1-yl) Glycine(Fru-Gly), N-(1-
deoxy-D-fructos-1-yl) Alanine(Fru-Ala),
N-(1-deoxy-D-fructos-1-yl) Asparagine
(Fru-Asn), N-(1-deoxy-D-fructos-1-yl)
Asparticacid(Fru-Asp), N-(1-deoxy-D-
fructos-1-yl) Glutarnine(Fru-Gln), N-(1-
deoxy-D-fructos-1-yl) Glutamicacid
(Fru-Glu), N-(1-deoxy-D-fructos-1-yl)
Isoleucine(Fru-Ile), N-(1-deoxy-D-
fructos-1-yl) Leucine(Fru-Leu), N-(1-
deoxy-D-fructos-1-yl) Tyrosine(Fru-
Tyr), N-(1-deoxy-D-fructos-1-yl)
Phenylalanine(Fru-Phe), N-(1-deoxy-D-
fructos-1-yl) Tryptophan(Fru-Trp)

17

7 Others
Dichloromethane extraction, pH value,
Solanesol, Neophytadiene

4

Total 70
fr
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inspired by the social foraging behavior of bird flocks. Owing to

its simplicity, robustness, and efficiency, PSO has undergone

considerable development and found widespread application

(Zhang and Teng , 2009) . In PSO, a popu la t ion of

particles (representing potential solutions) is initialized randomly

within the search space, and each is evaluated by the fitness

function at its current location. During each iteration, each

particle adjusts its position based on its current velocity (inertia),

its own best-known positions, and the best-known position found

by the entire swarm, with some random perturbations as follow

(Equations 2 and 3):

vk+1i = w*v
k
i + c1*r1*(pbest

k
i − xki ) + c2*r2*(gbest

k
i − xki ) (2)

xk+1i = xki + vk+1i (3)

where vki and xki represent the velocity and position of the i-th

particle at iteration k. The parameters c1 and c2 are acceleration

factors, both set to 0.8 in this study. Additionally, r1 and r2 are

random numbers uniformly distributed in the range [0, 1]. A time-

decreasing inertia weight (w) strategy was employed to balance

global and local search capabilities during optimization. CV is a

standard technique used to assess the generalizability of

classification models (Ong et al., 2005; Koklu et al., 2021). In this

study, the average classification accuracy obtained from k-fold CV

(with k typically set to 5 or 10) was used as the fitness function for

the PSO algorithm. This directs the optimization process towards

finding kernel parameters and weightings that yield models with

strong generalizability. The kernel parameters and their percentages

were optimized via PSO at the same time, which made this

approach a self-adaptive kernel method.
2.3 Model evaluation

In this study, the model evaluation approach varied across

different datasets. For the rice dataset, ten-fold CV was applied to

ensure that the results were comparable with previous research

findings. For Tobacco Dataset 1, a five-fold CV was used to evaluate

the models as the sample sizes for a few cultivation regions were

smaller than ten. For Tobacco Dataset 2, evaluation involved

randomly selecting approximately 20% of the samples as a test

set, with the remaining samples constituting the training set. A five-

fold CV was conducted on this training set to determine the optimal

kernel parameters. Subsequently, the model was trained using the

determined parameters, and the predictive accuracy on the test set

was used to evaluate its performance.
Frontiers in Plant Science 05
2.4 Shapley value and SHAP

The Shapley value, coined by Shapley (1997), assigns payouts to

features depending on their contribution to the model’s prediction

(total payout). It represents the average marginal contribution of a

feature’s value across all possible feature combinations. The Shapley

value was estimated using the approximation method detailed in

Algorithm 1, employing Monte-Carlo sampling as proposed by

Štrumbelj and Kononenko (2014). SHAP (Lundberg and Lee, 2017),

by using Shapley values, provides global interpretation methods

derived from aggregations of these individual Shapley values.
For m = 1,…, M:

• Randomly select an instance z from the data matrix X

• Generate a random permutation o of the feature indices

• Order instance x :  x0 = (x(1),…,x(j) ,…,x(p)).

• Order instance z :  z0 = (z(1),…,z(j),…,z(p)).

• Construct two new instances.

• With  j :  x+j = (x(1),…,x(j−1),x(j) ,z(j+1),…,z(p)).

• Without j :  x−j = (x(1),…,x(j−1),z(j),z(j+1),…,z(p)).

• Compute marginal contribution: fm
j = f̂ (x+j) − f̂ (x−j)

End for

• Compute the average Shapley value: fj(x) = 1
MoM

m=1f
m
j ​
Algorithm 1. Approximating the contribution of the j-th feature for
model f.

Here, x is the selected instance being explained, j is the index of

the feature whose contribution is being estimated, and M is the

number of iterations, which was set to 300 in this study. Meanwhile,

group permutation was conducted for the variables if they were

highly correlated (|R|>0.8) with j.
3 Results and discussion

3.1 Rice variety identification: model
construction and evaluation

Rice is one of the most widely produced and consumed cereal

crops globally. The quality attributes of rice, such as cooking

properties, aroma, and taste, are closely related to its variety.
TABLE 3 Kernel functions used for SVM modeling in this study.

Kernel Formula

LKF K(x1, x2) = xT1 x2

PKF K(x1, x2) = (a · xT1 x2 + b)q

RBF K(x1, x2) = exp(
−kjx1 − x2jk2

s2 )
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TABLE 4 Classification accuracy results (%) of ten-fold CV on the rice dataset.

Variety Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average

Basmati 97.1 97.4 96.9 98.2 97.8 98.1 97.5 97.8 97.2 97.6 97.5

Arborio 97.1 96.9 96.9 96.5 96.0 96.8 96.9 97.2 96.5 96.6 96.7

Jasmine 98.0 98.3 98.6 98.3 97.7 98.0 98.4 97.9 98.1 98.5 98.2

Ipsala 99.4 99.6 99.2 99.7 99.3 99.4 99.5 99.7 99.3 99.6 99.5

Karacadag 98.4 97.4 97.4 96.7 98.5 98.1 97.4 98.1 97.7 97.8 97.8

Total 98.0 97.9 97.8 97.9 97.9 98.1 97.9 98.1 97.8 98.0 97.9
F
rontiers in Pla
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FIGURE 2

SHAP dependence plots, no corrective measures are implemented for multicollinearity: (A) EQDIASQ; (B) AREA.
TABLE 5 Mean values of morphological variables for the five rice varieties.

Variable Arborio Basmati Ipsala Jasmine Karacadag

AREA 7531.717 7563.938 14048.645 6267.308 6484.379

PERIMETER 339.852 426.906 476.498 347.781 299.810

MAJOR AXIS 137.585 202.336 197.071 157.076 114.959

MINOR AXIS 70.459 48.494 91.817 50.951 72.426

ECCENTRICITY 0.857 0.970 0.884 0.945 0.774

EQDIASQ 97.790 97.975 133.549 88.545 90.797

SOLIDITY 0.977 0.970 0.977 0.972 0.983

CONVEX AREA 7712.890 7797.524 14373.349 6442.758 6597.790

EXTENT 0.683 0.504 0.663 0.590 0.726

ASPECT RATIO 1.958 4.194 2.153 3.089 1.591

ROUNDNESS 0.818 0.522 0.776 0.642 0.906

COMPACTNESS 0.711 0.485 0.678 0.565 0.791
No units were provided in the original data extracted from images.
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First, a linear SVM was used to construct an identification

model, achieving an average total accuracy of 97.3% in ten-fold CV

(Supporting Information Table S1). Subsequently, the PKF was

evaluated, with the “PolynomialOrder” parameter set to 2 within
Frontiers in Plant Science 07
the “fitcsvm” function. This approach yielded an improved

average total accuracy of 97.9% (Table 4), and the accuracy for

each variety also improved. Considering that only 12 morphological

features were used in this study, as opposed to the 106 features
FIGURE 3

Heatmap of correlation with correlation coefficient between variables.
FIGURE 4

Model interpretation plots for the rice dataset: (A) Feature importance ranking based on mean absolute SHAP values; (B) SHAP summary plot
illustrating feature impacts, where red and blue points correspond to high and low feature values, respectively.
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employed in the original research, this performance level is

considered acceptable.
3.2 Rice variety identification: model
interpretation

Cinar and Koklu (2021) previously conducted variable analysis

on this dataset using analysis of variance, chi-squared test, and gain

ratio, providing an importance order for effective features. Although

such statistical information is valuable, it does not directly interpret

the classification model itself. This study applied the SHAP
Frontiers in Plant Science 08
approach, using one OVA model (Basmati vs. others) as an

illustrative example.

In the first trial, no corrective measures are implemented in

SHAP to deal with multicollinearity issue and obvious conflict was

observed in interpretation. For instance, EQDIASQ exhibited a

quadratic relationship between the variable value and the

corresponding Shapley value (Figure 2A). The mean EQDIASQ

values of Ipsala, Jasmine, and Karacadag were either higher or lower

than those of Basmati and Arborio (Table 5). It is easy to accept the

interpretation that the model would tent to output lower Shapley

values (indicating less support for Basmati) if the EQDIASQ value is

excessively high or low relative to the typical Basmati range.
FIGURE 5

SHAP dependence plots for selected features from the rice dataset model: (A) MINOR AXIS; (B) ROUNDNESS; (C) ASPECT RATIO; (D) MAJOR AXIS.
Green points represent samples of the target class; black points represent samples from other classes.
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However, Area, which is highly correlated to EQDIASQ (Figure 3,

heatmap of correlation with correlation coefficient between

variables), showed an opposite quadratic relationship (Figure 2B).

A similar pattern was observed in the dependence plot for

CONVEX AREA. This counterintuitive interpretation could be

caused by high correlations between those variables.

Potential solutions to address interpretation issues arising from

multicollinearity include permuting correlated features together to

obtain a mutual Shapley value or employing conditional sampling

(Molnar, 2024). Therefore, group permutation was implemented in

this study, which means that the highly correlated variables will be

permuted together. SHAP uses mean absolute Shapley values to

evaluate variable importance (Figure 4A). For each variables, its

absolute Shepley value from all the samples will averaged to give the

length of bar in figure. The SHAP summary plot gives global view of

contributions of the variables (Figure 4B). In the summary plot,

each variable is represented by a dotted line along the horizontal

axis. Red dots indicate high values of the variable in a given sample,

whereas blue dots represent low values. A higher Shapley value

signifies that the variable makes a positive contribution toward

classifying the sample into the target class (Basmati in this

example), whereas a lower value indicates a contribution towards

classifying it as one of the other varieties. From the perspective of

the constructed model, MINOR AXIS was identified as the most

important variables for identifying Basmati rice, and it showed a

negative contribution towards the Basmati classification. The
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basically same importance and contribution were signed to the

corre lated variables . ROUNDNESS, COMPACTNESS,

ECCENTRICITY and ASPECT RATIO were signed as the second

important variables as a group.

SHAP dependence plots were used to further investigate how

individual variables affect the identification outcome. For instance,

MINOR AXIS consistently made a negative contribution in the

model (Figure 5A), which aligns with the observation that the mean

value of MINOR AXIS for Basmati is the lowest among all rice

varieties considered (Table 5, mean value of each variables of each

class). COMPACTNESS and ASPECT RATIO showed negative and

positive contribution (Figures 5B, C), respectively, which also aligns

with their mean value. Some variables, like MAJOR AXIS showed

very limited contribution (Figure 5D).
3.3 Cultivation region identification: model
construction and evaluation

The quality of many agricultural products, including fruits,

mushrooms, tobacco, and traditional Chinese medicines, is

significantly affected by their cultivation regions (Li et al., 2018;

Wei et al., 2018; Kim et al., 2020; Jiang et al., 2020; Li et al., 2022).

Given that the tobacco datasets were limited in size, imbalanced,

and included multiple region classes, linear methods were evaluated

first. Stepwise Fisher linear discriminant analysis (LDA) resulted in

serious overfitting for Domestic Zones 3, 7, and 8. By contrast,

linear SVM showed higher or similar CV accuracy, implying better

generalizability in this context (Supporting Information Table S2,

complete CVs in Supplementary Tables S3, S4). LDA relies heavily

on variance and scatter matrices (Ghojogh et al., 2022), and small

sample sizes may not provide stable est imations for

these parameters.

Because potential non-linear relationships between the chemical

variables and region classes might exist, kernel SVM models were
TABLE 6 Average classification accuracies (%) of five-fold CV on tobacco dataset 1.

Zone label LKF PKF RBF SKF Combined kernel SVM

Domestic Zone 1 98.1 99.2 99.5 99.2 99.7

Domestic Zone 2 84.0 86.7 73.1 25.8 88.0

Domestic Zone 3 40.0 80.0 50.0 0.0 80.0

Domestic Zone 4 94.8 98.3 96.7 96.5 98.3

Domestic Zone 5 98.6 98.6 97.9 95.0 98.6

Domestic Zone 6 95.4 93.8 93.8 90.8 95.4

Domestic Zone 7 100.0 100.0 100.0 80.0 100.0

Domestic Zone 8 90.0 90.0 70.0 70.0 90.0

Brazil 94.0 96.0 92.0 96.0 96.0

Zimbabwe 96.7 100.0 100.0 100.0 100.0

Total Accuracy 95.4 96.9 94.9 89.2 97.4

Note: Kernel parameter — a = 1/65, b = 1.5, q = 3 s2 = 32 a = 1/65, b = -1.2 In Table 7
TABLE 7 Optimized parameters for the combined kernel function
obtained via PSO.

Kernel percentage (%)
Kernel parameters

PKF RBF

LKF PKF RBF a b q s2

0.0 44.5 55.5 65 1.5 3 32
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TABLE 8 Standard deviation and confidence intervals of recall and total accuracy.

eat 6 Repeat 7 Repeat 8 Repeat 9 Repeat 10 Average
Standard
deviation

Confidence
intervals
(95%)

.9% 94.6% 100.0% 100.0% 97.6% 98.5% 2.2% 98.5% ± 1.4%

.3% 100.0% 66.7% 60.0% 100.0% 81.8% 18.9% 91.8% ± 11.7%

0.0% 100.0% 80.0% 100.0% 75.0% 90.2% 13.2% 90.2% ± 8.2%

0.0% 94.9% 100.0% 97.1% 100.0% 98.0% 1.9% 98.0% ± 1.2%

.4% 100.0% 100.0% 50.0% 100.0% 90.1% 17.5% 90.1% ± 10.8%

0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 100.0% ± 0%

.7% 100.0% 100.0% 100.0% 83.3% 93.0% 12.0% 93.0% ± 7.4%

0.0% 100.0% 100.0% 100.0% 100.0% 99.4% 1.9% 99.4% ± 1.2%

.0% 92.9% 100.0% 100.0% 100.0% 98.3% 3.7% 98.3% ± 2.3%

0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 100.0% ± 0%

.7% 50.0% 100.0% 100.0% 100.0% 78.7% 21.7% 78.7% ± 14.2%

.7% 95.4% 96.3% 96.6% 97.8% 96.3% 1.6% 96.3% ± 1.0%
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Cultivation
region

Repeat 1 Repeat 2 Repeat 3 Repeat 4 Repeat 5 Rep

Domestic
Zone 1

100.0% 100.0% 97.4% 100.0% 100.0% 94

Domestic
Zone 2

87.5% 85.7% 100.0% 90.0% 44.4% 83

Domestic
Zone 3

80.0% 100.0% 100.0% 100.0% 66.7% 10

Domestic
Zone 4

97.0% 100.0% 97.1% 96.4% 97.1% 10

Domestic
Zone 5

100.0% 100.0% 100.0% 80.0% 100.0% 71

Domestic
Zone 6

100.0% 100.0% 100.0% 100.0% 100.0% 10

Domestic
Zone 8

100.0% 80.0% 100.0% 100.0% 100.0% 66

Brazil 100.0% 94.1% 100.0% 100.0% 100.0% 10

Zimbabwe 100.0% 100.0% 100.0% 100.0% 100.0% 90

America 100.0% 100.0% 100.0% 100.0% 100.0% 10

Zambia 100.0% 66.7% NaN 50.0% 75.0% 66

Total Accuracy 97.7% 96.9% 98.4% 96.3% 93.7% 93

NaN means no sample was selected as test set of this zone due to the random sampling.
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FIGURE 6

SHAP summary plot for all 70 compounds, Red and blue points correspond to high and low chemical levels, respectively.: (A) part1; (B) part2; (C) part3;
(D) part4; (E) part5; (F) part6; (G) part7.
Frontiers in Plant Science frontiersin.org11

https://doi.org/10.3389/fpls.2025.1597673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1597673
subsequently established. The kernel function parameters for each

kernel type were set manually through multiple trials, and the best

results are listed in Supplementary Tables S5–S7. The PKF generally

demonstrated better generalizability than the other kernel functions

tested. Notably, satisfactory average accuracies were achieved even for

groups with small sample sizes. Following these initial explorations,

the combined kernel approach was implemented. A performance

comparison of combined kernel SVM against models using single,

manually tuned kernel functions is presented in Table 6. The kernel

parameters optimized by PSO are listed in Table 7. Combined kernel

SVM achieved the highest, or equally highest, average CV accuracies

for all individual regions and the highest overall accuracy. The

confusion matrix, including F1-score, precision, recall, and five-fold

CV results for combined kernel SVM are provided in Supporting

Information (Supplementary Tables S8, S9). The over-sampling was

also conducted to fix the imbalance issue. However, limited

improvement was achieved in LDA and even lower accuracy was

achieved in SVM (details and results in Supporting Information,

Table S11). The paired samples t-test of different methods can be

found in Supporting Information (Supplementary Table S12).When

comparing with other methods, the combined kernel SVM without

over-sampling showed significant difference in most case.

To further evaluate the combined kernel SVM method, an

independent test set was randomly selected from Tobacco Dataset

2. The combined kernel SVM approach, including parameter

optimization via CV on the training set, was applied to the

training set. The resulting model was then used to predict the

classes of the test set samples. The results are presented in

Supporting Information (Supplementary Tables S13–S15). The

model demonstrated a high accuracy of 97.7% on the

independent test set and F1-score range for each class is from

0.923 to 1. To further evaluate the robustness of model, 10 times

repeating experiments was conducted to give Standard Deviation
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(SD) and Confidence Intervals (CI). For each trial, training set and

independent test set was randomly separated. The approach

mentioned above was re-conducted. The SD and CI of recall and

total accuracy were listed in the Table 8. Generally, the model

showed good accuracy and rubustness. 5 zones showed standard

deviations more the 10%. 3 zones showed confidence intervals more

than ±10%. The possible reason is the limited amount of samples.

Therefore, it is necessary to keep collecting samples in future work.

An extra dataset was collected as external test data. The Total

accuracy is 95.2% and the confusion matrix, including F1-score,

precision, recall, was presented in Supporting Information

(Supplementary Table S16).
3.4 Cultivation region identification: model
interpretation

One OVAmodel (Domestic Zone 1 vs. others), constructed using

Tobacco Dataset 1, was analyzed using the SHAP approach. Group

permutation was also applied in this case (Full Heatmap of 70

compounds in Supporting Information, Supplementary Figure S1).

Figures 6A–G presents the global SHAP analysis for selected

compounds relevant to identifying samples from Domestic Zone 1

versus other regions. As depicted in Figure 6, certain compounds

exhibit a positive contribution towards identifying Domestic Zone 1

samples, such as magnesium (Mg) and Oxalic acid. Conversely, some

compounds show a negative contribution, such as starch and vanillic

acid. The overlap of red and blue dots for some variables, such as

succinic acid and stearic acid (Figure 6C), indicates that these features

did not consistently contribute either positively or negatively to the

model’s output across all samples.

To further interpret the model, SHAP dependence plots were

generated to illustrate the influence of chemical levels on the
FIGURE 7

SHAP dependence plots for selected chemical components from the tobacco dataset model: (A) rutin; (B) vanillic acid. Green points represent
samples from the target class; black points represent samples from other classes.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1597673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1597673
TABLE 9 Chemical components identified as most important for distinguishing domestic zone 1 samples based on SHAP analysis.

No. Compound Slope R2 Absolute
slope value

Positive (+) or negative
(-) contribution

1 Proline 2.452 0.885 2.452 +

2 g-aminobutyric acid -1.939 0.825 1.939 –

3 Mg 1.779 0.980 1.779 +

4 Fru-Trp 1.765 0.861 1.765 +

5 Glycine -1.633 0.828 1.633 –

6 Fru-His 1.572 0.826 1.572 +

7 Total alkaloid -1.566 0.911 1.566 –

8 Rutin 1.529 0.992 1.529 +

9 Vanillic acid -1.529 0.864 1.529 –

10 Starch -1.396 0.963 1.396 –

11 Fru-Gly 1.364 0.973 1.364 +

12 Neochlorogenic acid 1.343 0.933 1.343 +

13 Propanedioic acid -1.277 0.898 1.277 –

14 Cryptochlorogenic acid 1.108 0.891 1.108 +

15 Total sugar 0.939 0.965 0.939 +

16 Reducing sugar 0.928 0.978 0.928 +

17 Fru-Amb 0.911 0.973 0.911 +

18 Fru-Ala 0.897 0.881 0.897 +

19 Oxalic acid 0.824 0.936 0.824 +

20 Phosphate -0.808 0.978 0.808 –

21 pH -0.739 0.968 0.739 –

22 L-isoleucine -0.736 0.896 0.736 –

23 Fru-Pro 0.706 0.958 0.706 +

24 K -0.694 0.912 0.694 –

25 Scopoletin 0.640 0.942 0.640 +

26 Chlorogenic acid -0.595 0.934 0.595 –

27 Cl -0.563 0.905 0.563 –

28 Total N 0.562 0.885 0.562 +

29 Palmitic acid -0.547 0.878 0.547 –

30 Ca -1.076 0.791 1.076 N/A

31 Neophytadiene -0.566 0.771 0.566 N/A

32 arachidic acid 0.451 0.753 0.451 N/A

33 Linoleic acid -0.828 0.748 0.828 N/A

34 Myristic acid -1.655 0.736 1.655 N/A

35 L-Asparagine -1.526 0.724 1.526 N/A

36 Cystine 0.194 0.723 0.194 N/A

37 Fru-Gln 1.595 0.722 1.595 N/A

38 Sulfate 0.282 0.706 0.282 N/A

(Continued)
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identification. Figures 7A, B show the SHAP dependence plots for

rutin and vanillic acid, respectively, overlaid with sample

classification information. Green dots represent samples from

Domestic Zone 1, whereas black dots represent those from other

regions. For a single variable, overlap between samples from
Frontiers in Plant Science 14
different classes can often be observed in the middle range of

chemical values, regardless of whether the overall contribution is

positive or negative. However, clear trends can be observed. With

increasing levels of rutin or decreasing levels of vanillic acid, a

greater proportion of samples were identified as belonging to
TABLE 9 Continued

No. Compound Slope R2 Absolute
slope value

Positive (+) or negative
(-) contribution

39 Alanine -1.215 0.682 1.215 N/A

40 Aspartic acid -1.397 0.673 1.397 N/A

41 Glutamic acid -1.680 0.671 1.680 N/A

42 Methionine -0.748 0.669 0.748 N/A

43 Glu-An -1.312 0.666 1.312 N/A

44 Fru-Glu 1.388 0.659 1.388 N/A

45 Fru-Asn 1.116 0.653 1.116 N/A

46 Lysine -1.812 0.652 1.812 N/A

47 Phenylalanine -1.424 0.644 1.424 N/A

48 Fru-Phe -0.216 0.619 0.216 N/A

49 Arginine -1.362 0.599 1.362 N/A

50
Dichloromethane

extraction
-1.017 0.590 1.017 N/A

51 Malic acid -0.682 0.576 0.682 N/A

52 Solanesol -0.366 0.562 0.366 N/A

53 Valine -0.350 0.539 0.350 N/A

54 Serine 0.870 0.530 0.870 N/A

55 Succinic acid -0.106 0.443 0.106 N/A

56 Leucine -1.051 0.440 1.051 N/A

57 L-Threonine -0.787 0.427 0.787 N/A

58 Histidine -0.806 0.423 0.806 N/A

59 Tyrosine -0.666 0.351 0.666 N/A

60 Fru-Tyr 0.397 0.339 0.397 N/A

61
Oleic acid and
Linolenic acid

-0.127 0.237 0.127 N/A

62 Tryptophan -0.324 0.180 0.324 N/A

63 Glutamine -0.258 0.137 0.258 N/A

64 Citric acid -0.184 0.104 0.184 N/A

65 Fru-Asp 0.049 0.065 0.049 N/A

66 Fru-Val 0.175 0.042 0.175 N/A

67 Fru-Thr 0.074 0.022 0.074 N/A

68 Stearic acid -0.008 0.001 0.008 N/A

69 Fru-Leu 0.012 0.000 0.012 N/A

70 Fru-Ile -0.003 0.000 0.003 N/A
frontiersin.org

https://doi.org/10.3389/fpls.2025.1597673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1597673
Domestic Zone 1 rather than other regions. Some previous reports

provide corroborating evidence from a different perspective. The

content levels of rutin, total sugar, and total N are fairly high, while

the K levels are relatively low, in samples from Domestic Zone 1

(Luo et al., 2019). These chemical components showed

correspondingly positive (rutin, total sugar, total N) or negative

(K) contributions in our SHAP analysis (Figures 6A, B). Similarly,

Wang et al. (2022) found that the chemical components Fru-Pro,

Fru-Gln, and Fru-His are typically high in samples from Domestic

Zone 1, and these components also showed clear positive

contributions in our analysis (Figures 6F, G). Compared to

traditional methods of analyzing variable differences between

groups, this model interpretation approach is arguably more

efficient, yielding detailed and straightforward insights into

feature contributions.

Remarkably, many variables displayed a strong linear

relationship between their value and their corresponding Shapley

value (contribution). The dependence plots of variables exhibiting a

coefficient of determination (R2) lower than 0.8 between the

variable and Shapley values were manually verified. None of these

showed clear relationship of other kind such as quadratic

relationship. This observation suggests that the absolute value of

the slope formed by the points in a SHAP dependence plot could

serve as an alternative measure of variable importance, particularly

when a clear linear trend exists. Based on this assumption, we

identified the important compounds for distinguishing between

samples from Domestic Zone 1 and other samples using this slope-

based metric (Table 9). The compounds with R2 higher than 0.8 was

listed in row 1 to 29, ordered by absolute slope value from high to

low. The compounds with R2 lower than 0.8 was listed in row 30 to

70 and their positive/negative contribution was labeled as N/A.

Considering the potentially imbalanced distribution of Shapley

values across a variable’s range, this slope-based method might

offer a fairer assessment of importance than the mean absolute

Shapley value for certain cases.
4 Conclusions

This study employed preprocessed data—specifically,

morphological features extracted from images and chemical

component data predicted from NIR spectra—as inputs to

construct multiclass identification models. The proposed

combined kernel SVM model demonstrated high accuracy and

robustness. In contrast to some previous studies, practical model

interpretation was achieved by applying SHAP to the models

constructed with these preprocessed data types. The detailed

contributions of individual variables were clarified using SHAP

summary and dependence plots. Furthermore, the analysis

suggested that the absolute value of the slope observed in SHAP

dependence plots shows potential as an alternative metric for

evaluating variable importance. These results indicate that
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accurate and robust models can be constructed from imbalanced,

preprocessed data using the PSO optimized combined kernel SVM,

while simultaneously allowing for practical model interpretation to

provide detailed variable analysis. This approach broadens the

application scope of image and NIR spectrum data. Looking

forward, this methodology is considered transferable and

applicable for exploring key variables related to the quality and

characteristics of various agricultural products.
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