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1 Introduction

Glechoma longituba, a perennial species in the Lamiaceae family widely distributed

across Eurasia, is commonly known as long-leaved ground ivy. It typically grows in moist,

fertile environments such as forest edges, stream banks, or valley grasslands (Zhou et al.,

2021). G. longituba, commonly known as Huoxuedan in China, is a traditional Chinese

medicinal herb and an edible wild plant in the mountainous regions of southern Shaanxi

Province. G. longituba contains a variety of pharmacologically active compounds, including

terpenoids, steroids, flavonoids, polyphenols, alkaloids, and fatty acids (Ouyang et al.,

2019a, 2019; ZhU, 2013; Zhu et al., 2013; Zhang et al., 2006; Zhi-bin et al., 2008). Extracts of

G. longituba have shown potential in preventing and treating kidney stones (Yang et al.,

2011; Luo et al., 2019), as well as possessing anti-inflammatory, analgesic (Luo et al., 2020;

Chou et al., 2019), antioxidant (Xian and Xie, 2014; Liu et al., 2016), anti-cancer, and

antiviral properties (Ouyang et al., 2019a, 2019), and in reducing blood sugar levels (Yang

et al., 2021).

Despite its pharmacological significance, G. longituba lacks comprehensive genomic

resources. The G. longituba genome assembly will establish its distinct advantages for

advancing research within the Lamiaceae family. Unlike the well-characterized genomes of

economically important relatives (e.g.Salvia), G. longituba possesses unique biological

features—specifically, its aggressive stoloniferous growth enabling rapid clonal colonization

and significant shade tolerance. We will exploit its high-quality, contiguous genome

assembly to identify the genetic determinants underlying these key adaptive traits, which

are largely unexplored in core Lamiaceae crops. Furthermore, G. longituba is a rich source

of bioactive terpenoids and flavonoids, some exhibiting unique profiles compared to close

relatives. To address this gap, we present the first chromosome-scale genome assembly

using an integrated approach combining Oxford Nanopore Technologies(ONT), Hi-C

chromatin conformation capture, and short-read polishing. This high-quality reference

genome enables systematic exploration of its metabolic biosynthesis, polyploidization

history, and evolutionary relationships within Lamiaceae.
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2 Materials and methods

2.1 Material collection and genomic DNA
sequencing

Plants used for genomic sequencing were cultivated under

laboratory conditions of 25°C, 3000 lx, and a 16-hour light: 8-

hour dark photoperiod. High Molecular Weight (HMW) DNA was

extracted for subsequent library construction using the Qiagen

MagAttract HMW DNA Mini Kit, following the manufacturer’s

protocol. Purified DNA was prepared using magnetic beads.

Sequencing adapters from the SQK-LSK109 kit were then ligated

to the purified product. The constructed DNA library was precisely

quantified using Qubit. Following library preparation, a defined

concentration and volume of the DNA library was loaded onto the

Flow Cell. The Flow Cell was subsequently transferred to the

Oxford Nanopore PromethION sequencer for real-time single-

molecule sequencing. Basecalling was performed using Dorado

v0.8.3 with the dna_r9.4.1_e8_hac@v3.3 model, followed by

correction of the sequencing data using Dorado.

Short-read sequencing was performed on the DNBSEQ-T7

platform. Short reads were utilized for genomic survey analysis,

including genome size estimation, heterozygosity, repeat content,

and for correcting long-read sequencing assemblies. Long reads

were used for contig-level genome assembly.
2.2 Hi-C library construction and
sequencing

To determine the order and orientation of contigs, chromosome

conformation of the genome was captured. Plant leaf samples were

ground and cross-linked with 2% formaldehyde solution in nuclear

separation buffer at room temperature for 10 minutes. Fixed cells

were digested with the MboI enzyme. Digestion was followed by cell

lysis, incubation, labeling DNA ends with biotin-14-dCTP, and

ligating blunt-ended cross-linked fragments. The Hi-C library

underwent 12–14 PCR cycles of amplification and was sequenced

on the DNBSEQ-T7 platform.
2.3 Genome survey

Genomic features were estimated based on short reads. The

original sequences were trimmed using the fastp software (Chen

et al., 2018) version 0.20.1 with default parameters. K-mer

distribution histograms were calculated with jellyfish (Marçais

and Kingsford, 2011) version 2.3.0, with parameters “-m 21 -s

50G -t 48”. Genome size, heterozygosity, and repeat content were

estimated using GenomeScope 2.0 (Ranallo-Benavidez et al., 2020),

with the parameters “-p 4 –kmer 21”.
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2.4 Genome assembly and annotation

Long reads from ONT sequence were quality controlled and

assembled into contigs using the “correct then assemble” strategy in

nextDenovo (Hu et al., 2023) version 2.5.2, with parameters

“read_cutoff = 1k, genome_size = 400m, pa_Correction = 4,

sort_options = -m 20g -t 10, minimap2_options_raw = -t 10,

Correction_options = -p 10, minimap2_options_cns = -t 10,

nextgraph_options = -a 1”.Redundancies in the genome were

removed using purge_haplotigs version 1.1.3 (Roach et al., 2018)

with the parameter ‘-a 65’. Subsequently, the contigs were polished

four rounds using Nextpolish version 1.4.1 (Hu et al., 2020) with

default parameters guided by short-read data. The polished contigs

were assembled into a chromosomal-level genome using Hi-C

sequencing data. Low-quality reads and adapters from the Hi-C

library were filtered using Trimmomatic (Bolger et al., 2014) version

0.39 with default parameters, followed by mapping to the assembled

contigs using Juicer (Durand et al., 2016) version 1.5. Reads were

grouped into chromosomes using 3D-DNA (Dudchenko et al.,

2017) version 180922 with parameters ‘–editor_repeat_coverage =

40, -r 0’. Errors were manually adjusted in Juicebox version 2.16.00

(https://github.com/aidenlab/Juicebox). The original chromosomes

were updated using the “run-asm-pipeline-post-review.sh” script

from 3D-DNA. The CRAQ algorithm (Li et al., 2023) (version

1.0.9) was employed to calculate the Alignment Quality Index. This

metric quantifies anomalies in clipped alignment segments, serving

as an indicator of potential misjoins in genome assemblies. Genome

assembly quality was assessed using BUSCO (Manni et al., 2021)

v5.5.0. Finally, repetitive sequences were annotated using EDTA

(Ou et al., 2019) version 2.0.1 with default parameters. Gene

prediction was performed using BRAKER3 (Gabriel et al., 2023)

version 3.0.8. Functional annotation was executed by blasting

proteins against the SwissProt/NR/TAIR databases using diamond

(Buchfink et al., 2015) version 2.0.14.152 with parameters: ‘–strand

plus -k 1 –evalue 1e-5’.
2.5 Phylogenetic analysis

For phylogenomic reconstruction, protein sequences of 10

representative species were retrieved from public repositories:

Amborella trichopoda (basal angiosperm), Oryza sativa (Poaceae),

Vitis vinifera (Vitaceae), Theobroma cacao (Malvaceae),

Arabidopsis thaliana (Brassicaceae), Solanum lycopersicum

(Solanaceae), Coffea canephora (Rubiaceae), Tectona grandis

(Lamiaceae), Leonurus japonicus (Lamiaceae), and Salvia

miltiorrhiza (Lamiaceae). Orthologous gene clusters were

identified using OrthoMCL with inflation parameter 1.5 and E-

value cutoff 1e-5. A maximum-likelihood phylogeny was inferred

from concatenated single-copy orthologs using FastTree2 under the

JTT+CAT substitution model, with branch support evaluated by
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1,000 Shimodaira-Hasegawa (SH) approximate likelihood ratio

tests (a=0.05). Divergence time estimation was performed in r8s

using penalized likelihood with three fossil calibrations: A. thaliana-

T. cacao, V. vinifera-A. trichopoda, and L. japonicus-T. grandis.

Gene family dynamics were analyzed through CAFE using a global

birth-death rate (l=0.002) and significance thresholds adjusted by

the Benjamini-Hochberg false discovery rate (FDR <0.01).
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3 Data

3.1 Genome assembly

The sequencing process yielded 49.40 Gb of clean short-read

data and 50.26 Gb of long-read data (Supplementary Table S1). A

total of 180 GB of clean data was generated, representing a 370.4-
FIGURE 1

Chromosome-scale assembly of the G. longituba genome. (A) Contact map of G. longituba genome. (B). Circos plot displaying the 12 chromosomes
in the G. longituba genome. a. Length of each pseudochromosome (Mb). b. Distribution of repetitive sequences. c. Distribution of gene density. d.
Distribution of the GC content. The center is the phenotype of G. longituba (The flower pot size was 15 cm).
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fold genome coverage (Supplementary Table S1). The estimated

genome size is 396 MB. Previous studies have shown that G.

longituba is tetraploid (Jang et al., 2016), with results indicating

aabb (3.81%) >aaab (0.001%), suggesting an allopolyploid

genome (Supplementary Figure S1). A total of 208 contigs were

assembled into 9 chromosomes (Figure 1A). The largest

chromosome measures 54.2 Mb, and the smallest is 31.7 Mb.

Chromosomes were numbered in descending order of size. The

anchored genome spans a total length of 390 Mb with an N50 of

37.8 Mb. The high-quality genome assembly of G. longituba was

further validated by its LTR Assembly Index (LAI) of 13.13,

surpassing the threshold for reference-grade genomes (LAI >10).

The final assembly achieved 94% BUSCO completeness

(embryophyta_odb10, Supplementary Table S2), with CRAQ

quality score of 97.92 and contiguity metrics (N50 = 37.8 Mb,

L50 = 5, N90 = 31.7 Mb, L50 = 9). Polyploid genome assembly can

be conceptualized as the summation of multiple haplotype
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reconstruction problems, with computational complexity

increasing significantly with higher ploidy levels. As an assembly

study of an allotetraploid genome, this project successfully

generated a collapsed genome assembly. This initial assembly can

serve as a foundation for reconstructing complete subgenomes in

future research. This robust assembly provides a reliable foundation

for downstream evolutionary and functional analyses.
3.2 Gene prediction and gene annotation

The final genome assembly has a GC content of 35.84%. The

genome comprises 52.13% repetitive sequences, with Type I

Transposable Elements (TEs) constituting 26.41% and Type II TEs

constituting 25.72%. A total of 28,437 protein-coding genes were

identified, of which 26,508 have functional annotations (Figure 1B,

Supplementary Table S3). A total of 1,060 non-coding RNAs
FIGURE 2

Evolutionary analysis of the (G) longituba genome. (A) A phylogenetic tree based on shared single-copy gene families, gene family expansions, and
contractions among (G) longituba and ten other species. The bar chart on the right displays gene family clustering in (G) longituba and ten other
plant species. (B) Venn Diagram Representation of Gene Family Overlaps and Specificities Among (G) longituba, L. japonicus, T. grandis, and S.
miltiorrhiza in Labiatae.
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(ncRNAs) were predicted, comprising 121 rRNAs, 96 miRNAs, 264

snRNAs, and 579 tRNAs.
3.3 Phylogenetic analysis of G. longituba

A total of 401,514 proteins from 11 species were clustered, yielding

268 single-copy orthologs (Supplementary Table S4). A divergence time

tree was constructed by incorporating known fossil calibration points

(Figure 2A), which estimated the divergence time between G.

longitumba and S. miltiorrhiza to be 25.99 million years ago (MYA).

Gene family expansion and contraction analysis using the CAFE

program revealed 50 contracted and 668 expanded gene families in

the G. longituba genome. Comparative analysis of gene families among

G. longituba, L. japonicus, T. grandis, and S. miltiorrhiza identified 475

conserved gene families and 1,279 species-specific gene families

(Figure 2B). These genes are significantly enriched in biological

processes such as terpenoid biosynthesis (e.g., monoterpenes

and sesquiterpenes).
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