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Unveiling unique metabolomic
and transcriptomic profiles in
three Brassicaceae crops
Liyong Zhang* and Isobel A. P. Parkin*

Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon,
SK, Canada
Brassica napus, Camelina sativa and field pennycress (Thlaspi arvense), represent

one highly economically valuable crop and two emerging oilseed crops of the

Brassicaceae family, respectively. As sessile organisms, these crops are

continuously exposed to various stresses when grown in the field. Interestingly,

the responses of these three crops to different environmental stimuli vary to a

great extent, but there is very limited knowledge about the molecular basis of

these differential responses. In this study, we employed untargeted

metabolomics to compare the metabolic profile of these crops, and examined

the potentially related genes through further integration with transcriptomic

analysis. Our data revealed distinctive overall metabolic profiles among these

three crops, where in particular, a variety of phenylpropanoids showed

differential accumulation and the corresponding putative genes’ expression

varied significantly. The results provide a valuable resource for those studying

Brassicaceae species and will provide insight into the understanding of metabolic

variation among these three important oilseed crops, and provide potential

targets for the future breeding of stress tolerant crops.
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1 Introduction

The Brassicaceae family contains many economically important species, which are

widely used as sources of oil and food, as well as ornamental plants (Raza et al., 2020). For

oilseed crops, the most productive cultivated species is Brassica napus, which is a hybrid

species derived from an interspecific cross between Brassica oleracea and Brassica rapa, and

is grown as both an annual and biennial crop, mainly for oil extraction, in many countries

(Kirkegaard et al., 2021). More recently two lesser known oilseeds from the Brassicaceae

family have been garnering interest. One is Camelina sativa, which has a versatile oil profile

and a unique ability to adapt to many different environmental conditions, along with

several other favorable agronomic traits, that has generated worldwide recognition of its

potential as a crop (Berti et al., 2016). The second, field pennycress (Thlaspi arvense), has

become known as an attractive non-food oilseed crop for biodiesel given its high content of

monounsaturated fatty acids (Zanetti et al., 2019).
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In their natural field environment, along with various abiotic

stresses, these oilseed crops are exposed to the pathogens and

insects common to crops in the Brassicaceae family. Interestingly,

these three closely related oilseed species display tolerance

variations towards different stresses. Such as, B. napus and

pennycress are very susceptible to drought, while C. sativa shows

a greater degree of tolerance (Gugel and Falk, 2006; Vollmann and

Eynck, 2015). Flea beetles commonly feed on plants of the

Brassicaceae family, causing serious damage to the young

seedlings (Li et al., 2024), where B. napus is very susceptible to

flea beetles, but C. sativa and pennycress show strong resistance

(Soroka and Grenkow, 2013). With their sessile nature, plants have

to adapt rapidly to unfavorable environmental conditions (i.e.

abiotic and biotic stresses), and to successfully cope with the

diverse environmental stimuli, plants have evolved a set of

sophisticated strategies including complex physiological and

metabolomic changes (Bartwal et al., 2013; Hanada et al., 2008;

He et al., 2018). The plant metabolome consists of hundreds of

thousands of organic compounds, which can be divided into two

general groups: primary and secondary metabolites, whereat

primary metabolites are essential for the normal plants’ growth

and development, and secondary metabolites are important for

plant survival by mediating plant-environment interactions under

unfavorable conditions (Erb and Kliebenstein, 2020; Llanes et al.,

2018; Salam et al., 2023).

One unique group of secondary metabolites that are found

mainly in Brassicaceae plants are glucosinolates (GSLs), which are

nitrogen and sulphur-containing compounds (Prieto et al., 2019).

Based on the amino acid precursor, GSLs can be classified into three

different types, i.e. aliphatic, aromatic and indole GSLs (Halkier and

Gershenzon, 2006). GSLs have been documented to be involved in

various responses to abiotic and/or biotic stresses within different

members from the Brassicaceae family (Chhajed et al., 2020; Del

Carmen Martinez-Ballesta et al., 2013; Variyar et al., 2014).

Interestingly, B. napus and pennycress have been reported to

contain high amounts of aliphatic GSLs in their leaves, on the

contrary, C. sativa has almost no detectable GSLs present in the

leaves (Bhandari et al., 2015; Chopra et al., 2020; Czerniawski et al.,

2021). Whether these differences in GSLs among these three

oilseeds will affect their responses to various environmental

perturbations are largely unknown. Beyond GSLs, little is known

regarding the potential metabolites that differentiate these three

species, with their varying responses to important abiotic and biotic

stresses. An effective way to study the overall metabolic profile in

plants is metabolomics, which consists of two general approaches:

targeted and untargeted analyses (Martins et al., 2021). Untargeted

metabolomics analysis has been successfully applied to large-scale

metabolic profiling to identify discriminative metabolites between

different plant species and/or in response to environmental stimuli

(Allwood et al., 2021; Arbona et al., 2013; Castro-Moretti et al.,

2020). More recently, the integration of metabolomics with

transcriptomics provides a more comprehensive view of gene-

metabolite pairs, which allow us to explore the correlation

between the transcriptional and metabolic profiles (Arias et al.,

2023; Wang et al., 2021; Zhao Y. et al., 2019).
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In this study, we employed untargeted metabolomics and

transcriptomics to analyze the metabolites of B. napus, C. sativa,

and pennycress, our main objectives were to 1) provide a

comprehensive overview of metabolites in the leaves and

cotyledons of these three oilseed crops; 2) identify the

discriminative compounds among these three species; and 3)

attempt to elucidate the potential links between metabolites and

regulatory genes.
2 Results

2.1 Summary of metabolomics data

To get a general idea of the metabolite profile of leaves and

cotyledons from B. napus, C. sativa and T. arvense (field

pennycress), we carried out untargeted metabolomics through

LC-MS analysis on a Chemical Isotope Labeling (CIL)

Metabolomics Platform (Zhao S. et al., 2019). In total, of the

thousands of metabolites that were detected 718 could be

classified with confidence. The metabolites were classified into the

following categories: short and medium-chain fatty acids,

polyamine, neurotransmitter, phytohormone, phenol and

quinone, flavonoid, vitamins and derivatives, phenylpropanoid,

polyphenol, lipid, amino acids and derivatives, dipeptides and

tripeptides, alkaloid, terpene, and others (Table 1). The most

abundant two categories are amino acids and derivatives,

dipeptides and tripeptides, which contributed 131 (18.2%) and

122 (16.9%) compounds respectively.

To have an overview of the metabolites’ distribution across all

examined samples, we performed a hierarchical clustering analysis,

the clustering results indicated that the 718 metabolites could be

classified into 10 subclasses according to their relative abundance

(Figure 1). The abundance level of metabolites in each subclass

varied to a great extent across the experimental samples. Notably,

subclasses 2, 3, and 7 exhibited distinctive patterns, which effectively

distinguished B. napus, C. sativa, and pennycress from one another.

Metabolites in subclass 2 displayed significantly higher levels of

accumulation in both Camelina’s leaf and cotyledon tissues;

metabolites in subclass 3 demonstrated higher levels in both B.

napus lines compared to C. sativa and pennycress. In contrast,

metabolites in subclass 7 showed a much greater accumulation in

pennycress (Figure 2). Analyses of each of the three differential

subclasses showed no significant enrichment for metabolites in any

one biochemical pathway. The specific details regarding the 10

subclasses as well as their included metabolites can be found in

Supplementary Data Sheet 1.
2.2 PCA analysis and sample-sample
correlation

To determine the variability between different groups (species/

tissue), as well as the metabolic differences among the three

biological replicates for each group, a principal component
frontiersin.org

https://doi.org/10.3389/fpls.2025.1597905
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang and Parkin 10.3389/fpls.2025.1597905
analysis (PCA) were performed with all detected 718 compounds.

Figure 2A showed that the first principal component (PC1)

accounted for 30.1% of the variation, and largely separated

pennycress from the other two species. Meanwhile the second

principal component (PC2) accounted for 16.8% of the variation

and separated B. napus from C. sativa (Figure 2A). The PCA plot

shows that for each group, three biological replicates are highly

clustered together, suggesting there is a high cohesion within each

group. Meanwhile, the samples from the three oilseed crops

separated into three distinct areas in the plot, indicating each

species possessed a distinct metabolic profile overall. Further, two

B. napus lines, DH12075 and N99, were closely grouped together,

implying there was limited differences between these two genotypes

with regards to the metabolic profile (Figure 2A). To further

confirm the reproducibility, a sample-sample correlation analysis

was performed, where the resultant heatmap showed very high

correlation between the three biological replicates for each group.

Although, for each species, the metabolic profiles of their cotyledons

and leaves were very similar, it was clear from the B. napus data that

the individual tissues from the two genotypes were more similar to

each other than the differences between the genotypes (Figure 2B).

Yet, as the main goal was to identify differentially accumulated

metabolites at the species-level, results from leaves and cotyledons

were combined for each species during subsequent analysis.

Additionally, since the two B. napus genotypes (i.e. DH12075 and

N99) possessed very similar metabolites overall, DH12075 was used

to represent the oilseed B. napus during the following analysis.
Frontiers in Plant Science 03
2.3 Pairwise comparisons

To check the overall metabolic differences between these three

oilseed crops, we performed pairwise comparisons among them.

Each compound was compared between two species by a Student’s

t-test, the p-value of which was further corrected through the

Benjamini-Hochberg procedure. Significantly different metabolites

were selected based on their adjusted p-values with 0.05 as a cut-off

value. During the three pairwise comparisons, a total of 267

compounds showed differential abundance when comparing B.

napus vs. C. sativa, 383 for B. napus vs. pennycress, and 376 for

C. sativa vs. pennycress (Figure 3A; Table 2). The comparisons

revealed very similar results between B. napus vs. pennycress and C.

sativa vs. pennycress, with the number of their differential

metabolites reaching 383 and 376 respectively, among which they

shared 268 common metabolites (Table 2; Figure 3B). Meanwhile,

the smallest difference was detected in comparisons of B. napus vs.

C. sativa, where only 267 compounds showed differential

abundance (170 had higher abundance in B. napus while 97 were

higher in C. sativa) (Figures 3A, B; Table 2).
2.4 PLS-DA identifies differential
metabolites

After the explorative analysis above, our main question

concerned those metabolites that showed a discriminant pattern
TABLE 1 Classification of metabolites identified in untargeted metabolomics analysis.

Categories C. sativa B. napus (DH12075) B. napus (N99) pennycress Overall

Short & Medium-Chain
Fatty Acids

9 9 9 9 9

Polyamine 6 6 6 6 6

Neurotransmitter 5 5 7 5 7

Phytohormone 7 7 8 8 8

Phenol and Quinone 3 3 3 3 3

Flavonoid 14 15 14 13 15

Vitamins & Derivatives 6 6 6 6 6

Phenylpropanoid 39 39 40 37 40

Polyphenol 4 4 4 4 4

Lipid 7 7 7 7 7

Amino Acids & Derivatives 131 131 130 130 131

Dipeptides & Tripeptides 122 121 122 121 122

Alkaloid 31 32 32 32 32

Terpene 3 3 3 3 3

Others 316 322 323 323 325

Total metabolites 703 711 714 707 718
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among these three oilseed crops. The partial least squares-

discriminant analysis (PLS-DA) is an effective method for

separating differentially abundant metabolites (DAMs) between

different groups in metabolomics data because of its ability to

handle highly collinear and noisy data, and maximize the

differences between groups (Gromski et al., 2015; Qi et al., 2022).

To find the most discriminant metabolites between B. napus, C.

sativa and pennycress, we carried out a PLS-DA with all 718

identified metabolites. According to the variable importance in

projection (VIP) scores from PLS-DA, DAMs were initially

selected if their VIP scores were higher than 1. Further, all initial

DAMs were filtered by an ANOVA to only keep the ones with p-

value smaller than 0.05. Thus, DAMs were defined as metabolites

with VIP score > 1 and ANOVA p-value < 0.05, which resulted in a

total of 149 final DAMs (Supplementary Data Sheet 2). Based on the

relative metabolite abundance, these 149 DAMs were divided into

three distinct sub-groups (Figure 3C). Among the three sub-groups,

there were distinct metabolite distributions: sub-group 1 comprised

47 metabolites, exhibiting the highest abundance in C. sativa; sub-

group 2 encompassed 52 metabolites, demonstrating highest

concentration in pennycress; 50 metabolites in the 3rd sub-group,

displayed the highest concentration in B. napus instead (Figure 3C).
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To check the top DAMs among these three crops, we selected the 20

metabolites with the highest VIP scores, and plotted these metabolites

along with their relative abundance across all three oilseed crops for

visualization (Figure 4A). Agmatine, a precursor for polyamine

biosynthesis, has the highest VIP score, and its abundance was

significantly higher in C. sativa compared with the other two oilseed

crops (Figure 4A). To further gain knowledge of what biological

pathways these 149 compounds were involved in, we performed a

functional enrichment analysis according to the Kyoto Encyclopedia of

Genes andGenomes (KEGG) database through the pathway enrichment

analysis of MetaboAnalyst6 (https://www.metaboanalyst.ca/). As shown

in Figure 4B, several amino acid metabolism pathways, including

“Tyrosine metabolism”, “Arginine and proline metabolism”, and

“Cysteine and methionine metabolism” have very small p-values (p-

value < 0.01), which is in line with the large number of overall

“Amino Acids & Derivatives” identified in the untargeted

metabolomics results (Table 1). Meanwhile, “Isoquinoline alkaloid

biosynthesis” also had a small p-value (p-value < 0.05). More

noticeably, “Phenylpropanoid biosynthesis” pathway has the

smallest p-value and the ensuing “Flavonoid biosynthesis” and

“Flavone and flavonol biosynthesis” also have small p-values (p-

value = 0.056 and 0.037 respectively).
FIGURE 1

Hierarchical clustering analysis of 718 metabolites based on their relative abundance level separating these metabolites into 10 subclasses. DH12075
and N99 represent two different genotypes of B. napus.
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2.5 Transcriptomic profiles

To investigate the candidate genetic regulators related to the

abovementioned DAMs, we performed a concomitant RNA

sequencing along with the metabolomics. Since the three species vary

in ploidy level, in order to compare the gene expression between these

three oilseed crops, all their genes were first projected onto their

corresponding orthologs in A. thaliana, and the sum of the

normalized expression of all orthologous genes in B. napus and C.
Frontiers in Plant Science 05
sativawas calculated for each A. thaliana gene (see details in Methods).

Although it is recognized that there may be differential expression

among the orthologues in B. napus and C. sativa, summing the

expression across the duplicate copies allowed us to identify those

genes which could play a role in differentiating the species. In total,

there were 14,025 unique A. thaliana genes possessing corresponding

orthologous genes in all three oilseed crops, which were selected for

further comparison (Supplementary Data Sheet 3). To identify the

most differentially expressed genes (DEGs) among these three crop
FIGURE 2

Principal component analysis (PCA) and sample-sample correlation analysis. (A) PCA score plot. (B) Heatmap indicating Pearson correlation
coefficients between individual samples.
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species, a likelihood ratio test (LRT) in DESeq2 and a PLS-DA were

employed for these 14,025 genes. Under the definition of DEG as “LRT

adjusted p-value < 0.05 and PLS-DA VIP score > 2”, there were 644

DEGs in total. Further, a hierarchical clustering was performed for

these 644 DEGs based on their expression profiles. As shown in

Figure 5A, these DEGs’ expression patterns varied to a great degree,

and the three oilseed crops could be distinguished clearly according to

the expression level of these DEGs (Figure 5A). To functionally

characterize these identified DEGs, a KEGG enrichment analysis was

performed, where pathways “2-Oxocarboxylic acid metabolism”,

“Glucosinolate biosynthesis” and “Tropane, piperidine and pyridine

alkaloid biosynthesis” etc. were significantly enriched (Figure 5B).
Frontiers in Plant Science 06
2.6 Integration of genes and metabolites in
phenylpropanoid pathway

As the 149 DAMs above were mainly attributed to the

“Phenylpropanoid biosynthesis” pathway (Figure 4B), to further

examine this pathway in more detail, we selected all DAMs that

were classified as phenylpropanoids or flavonoids by the KEGG

database, and compared their relative abundances across these three

oilseed crops. The compounds were involved in general

phenylpropanoid pathway (e.g. p-Coumaric acid), flavonoid

pathway (e.g. Afzelin, Vitexin, Kaempferol-3-O-galactoside), and

phenolic acid pathway (e.g. Chlorogenic acid). The relative
FIGURE 3

Pairwise comparisons of 718 metabolites between three oilseed crops and clustering of 149 differentially abundant metabolites (DAMs). (A) Bar plots
showing results of pairwise species comparisons. (B) Venn diagram showing the overall differential metabolites among three crops. (C) Plot
indicating mean value of abundance of the 149 differentially abundant metabolites (DAMs) identified by partial least squares-discriminant analysis (left
panel) as well as the number of DAMs belonging to each sub-cluster (right panel).
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abundances of these phenylpropanoids varied to a great extent, for

example, C. sativa contains the highest levels of Chlorogenic acid

and cis-3,4-Leucopelargonidin, while B. napus contains the highest

levels of Kaempferol-3-O-galactoside, trans-Ferulic acid, and p-
Frontiers in Plant Science 07
Coumaroyl quinic acid, meanwhile Vitexin and Afzelin

accumulated the most in pennycress (Figure 6).

To identify genes that were responsible for the abovementioned

phenylpropanoids, multiple putative regulatory genes involved in
TABLE 2 Pairwise comparisons of three oilseed crops.

Comparison group
Significantly differential metabolites

Non-differential Sig Diff %
Down Up

B. napus vs. C. sativa 170 97 451 37.2%

B. napus vs. pennycress 235 148 335 53.3%

C. sativa vs. pennycress 254 122 342 52.4%
FIGURE 4

Top twenty differentially abundant metabolites (DAMs) and pathway enrichment analysis. (A) Plot showing 20 metabolites with the highest variable
importance in projection (VIP) scores from partial least squares-discriminant analysis (left panel) and their relative abundance across the three oilseed
crops (right panel). (B) KEGG pathway enrichment analysis result of 149 differentially abundant metabolites (DAMs).
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phenylpropanoid biosynthesis were selected to compare their

expression levels. As might be expected, there was great variation in

expression levels for phenylpropanoid biosynthetic genes between

these three oilseed crops (Figure 7); for example, homologs of

flavonol 3’-hydroxylase (F3’H/TT7) and dihydroflavonol reductase

(DFR/TT3) were predominantly expressed in C. sativa, meanwhile

homologs of leucoanthocyanidin dioxygenase (LDOX/ANS/TT18)

were mainly expressed in B. napus, these expression differences were
Frontiers in Plant Science 08
in line with the high accumulation of cis-3,4-Leucopelargonidin in

C. sativa (Figures 6, 7). However, given the limitation of untargeted

metabolomics, there were only a small amount of identified

phenylpropanoids, which makes it difficult to link the variation

in gene expression directly to the corresponding change

in phenylpropanoids.

To explore the 644 DEGs in a more general manner, co-expressed

gene modules were identified through weighted gene co-expression
FIGURE 5

Differentially expressed genes (DEGs) and KEGG pathway enrichment analysis. (A) Heatmap showing the hierarchical clustering analysis of all 644
differentially expressed genes (DEGs). (B) Dot plot showing the KEGG pathway enrichment analysis result. Color bar indicating the p-values from
Fisher’s exact test, and dots size indicating the number of genes belonging to the each pathway.
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network analysis (WGCNA) (Langfelder and Horvath, 2008). As

shown in Figure 8A, these 644 DEGs were divided into 9 separate

modules based on their expression levels. According to the eigengene

expression of each module, module red, green and yellow were B.

napus, pennycress and C. sativa specific, respectively (Figure 8B).

Interestingly, C. sativa-specific module yellow was highly correlated
Frontiers in Plant Science 09
with the 47 DAMs in sub-group 1, which accumulated the highest

abundance in C. sativa (Figure 3C; Figure 8C). Similarly, B. napus-

specific module red and pennycress-specific module green were

strongly correlated with 50 DAMs in sub-group 3 and 52 DAMs in

sub-group 2 (Figure 3C; Figure 8C), thus suggesting that the species-

specific gene expression identified among these three oilseed crops
FIGURE 6

Phenylpropanoids, flavonoids, and phenolic acids in three oilseed crops. 3D boxplots showing relative abundance of individual metabolite. B. napus
was labelled in green, C. sativa in orange and pennycress in grey.
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might contribute to their distinct metabolic profiles. To mine

potential candidate genes associated with variation of the

abovementioned phenylpropanoids, we further examined the

correlations between the identified phenylpropanoids and the 644
Frontiers in Plant Science 10
DEGs above. Pearson’s correlation coefficients showed that 171

DEGs were significantly related to 10 phenylpropanoids (R2 > 0.9),

whereat 104 pairs were positively correlated, and 76 pairs were

negatively correlated (Supplementary Data Sheet 4), these 171
FIGURE 7

Expression of the genes involved in pathway of phenylpropanoid and flavonoid biosynthesis. The genes’ standard scores (Z-scores) were used for
comparison and expression levels are illustrated with white, blue or red blocks. Left column corresponds to expression in cotyledon tissue, and right
column corresponds to expression in leaf tissue. Orthologous genes from B. napus, C. sativa and pennycress were labelled in green, orange and
grey respectively. The dotted blue line separates the alternative anthocyanin biosynthesis pathway. PAL, phenylalanine ammonia-lyase; C4H/
CYP73A5, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; CHS/TT4, chalcone synthase; CHI/TT5, chalcone isomerase; FNS, Flavone
synthase; F3H/TT6, flavanone 3-hydroxylase; F3'H/TT7, flavonoid 3'-hydroxylase; FLS, flavonol synthase; DFR/TT3, dihydroflavonol reductase; ANS/
LDOX/TT18, leucoanthocyanidin dioxygenase.
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DEGs were highly enriched in GO terms “secondary metabolite

biosynthesis process” and “glycosyl compound metabolic process”.

In summary, to document the metabolic profiles of B. napus, C.

sativa, and field pennycress, a total of 718 metabolites including

flavonoids, phenylpropanoids, amino acids and derivatives, were

characterized through untargeted metabolomics analysis. Moreover,
Frontiers in Plant Science 11
149 DAMs were identified through PLS-DA, indicating the different

metabolic profiles of these three crops were mainly attributed to

phenylpropanoids. Further integration with transcriptomics revealed

a great variation of the candidate genes’ expression between these

three species. Our data provides a novel resource for understanding

the metabolism of these three oilseed crops at the molecular level.
FIGURE 8

WGCNA identifies co-expressed gene modules. (A) dendrogram indicating 9 distinct modules and different colors were assigned to each individual
module. (B) Plot showing eigengene expression of each module across the three species. (C) heatmap showing the correlation of 149 DAMs from
Figure 3C with co-expression module green, blue and yellow.
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3 Discussion

3.1 Untargeted metabolomics analyses
reveals large metabolic variation of three
oilseed crops in unstressed leaf tissue

Although, metabolomics has been widely used to study the

metabolites of plants (Allwood et al., 2021; Wang et al., 2016; Yan

et al., 2022), in oilseed crops, most attention has focused on

dissecting the metabolic profile of their seeds, in order to further

improve the oil quality. For example, Boutet et al. (2022) revealed a

large diversity of specialized metabolites in Camelina seeds through

untargeted metabolomics and lipidomics (Boutet et al., 2022). Li

et al. (2023) utilized targeted metabolomics to study the oil content

of Brassica napus seeds, which identified marker metabolites that

were correlated with oil content (Li et al., 2023). However, there is

very limited knowledge about the metabolites in the leaf and/or

cotyledon tissues of these oilseed crops. Metabolites play key roles

in plants ’ physiological and biochemical responses to

environmental stimuli, and the accumulation of metabolites also

has been shown to vary to a great extent in different species (Qi

et al., 2021; Wang et al., 2016). Understanding the metabolite

differences between species in tissues such as cotyledons and

young leaves, which are often the first to recognize new threats,

could provide insights into why some species are more resilient than

others. In this instance, two novel oilseed crops C. sativa and T.

arvense that have often been associated with higher tolerance to a

number of biotic and abiotic stresses compared to their more widely

grown relative B. napus were used to test this hypothesis.

In this study, we detected more than 3,465 metabolic peak

signals through LC-MS-based untargeted metabolomics

(Supplementary Data Sheet 5). Underlying the current limitations

of these technologies, only 718 metabolites could be identified given

that the majority of metabolites in the plant kingdom are still

unknown or unannotated (Wang et al., 2019; Yonekura-Sakakibara

and Saito, 2009). The analysis of these 718 identified metabolites

revealed great variation between these three oilseed crops,

indicating a species-specific accumulation pattern of metabolites

(Figure 1), which was further supported by the PCA plot that

showed complete separation of these three species (Figure 2A). The

149 DAMs identified by PLS-DA were highly enriched in

“Phenylpropanoid biosynthesis”, and amino acid metabolism

pathways (Figure 4B), suggesting that both phenylpropanoids and

amino acids play important roles in distinguishing these three

oilseed crops.
3.2 Cross-species transcriptomic
comparison reveals distinct expression
pattern of GLSs biosynthetic genes in three
oilseed crops

Utilizing untargeted metabolomic analysis to these three oilseed

crops provides us a comprehensive description of their metabolic

variations. To mine the putative genes related to their distinct
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metabolic patterns, a cross-species transcriptomic analysis was

employed between these three species to identify DEGs. As

shown in Figure 5A, these 644 DEGs display distinctive

expression patterns across three species. Interestingly, these DEGs

are significantly enriched in KEGG pathways, “2-Oxocarboxylic

acid metabolism” and “Glucosinolate biosynthesis”. Glucosinolates

(GLSs), the unique class of secondary metabolites that are prevalent

in the Brassicaceae family members. The type and concentration of

GLSs vary to a great extent between different species of the

Brassicaceae family and between different tissues within the same

species (Bhandari et al., 2015; Essoh et al., 2020). Moreover, a

number of environmental factors, including seasons, abiotic/biotic

stresses, largely affect the accumulation of GLSs (Essoh et al., 2020;

Mitreiter and Gigolashvili, 2021).

For the three oilseed crops in this study, all their seeds contain

significant amount of GLSs (Bhandari et al., 2015; Chopra et al.,

2020; Czerniawski et al., 2021). However, only B. napus and

pennycress are reported to contain large amounts of GSLs in their

leaves, with no detectable GLSs in the leaves of C. sativa (Bhandari

et al., 2015; Chopra et al., 2020; Czerniawski et al., 2021), which

coincided with the fact that the majority of GLSs biosynthetic genes

were “off” in C. sativa leaves but highly expressed in both B. napus

and field pennycress based on the expression level (Supplementary

Data Sheet 3). The expression level of these GLSs related genes in C.

sativa leaves is verified by the publicly available transcriptome atlas

of C. sativa (Kagale et al., 2016), which further suggests a tissue-

specific expression pattern of these GLSs related genes in roots and

seeds of C. sativa. Given the essential roles of GLSs in Brassicaceae

plants’ response to biotic and abiotic stresses (Del Carmen

Martinez-Ballesta et al., 2013; Variyar et al., 2014), it will be very

interesting to investigate what’s the evolutionary benefits of no

GLSs in C. sativa leaves?
3.3 Phenylpropanoids and flavonoids in the
Brassicaceae family

Flavonoids are a subgroup of phenylpropanoids, which are an

important class of plant secondary metabolites synthesized via the

shikimate pathway from phenylalanine (Dixon et al., 2002; Fraser

and Chapple, 2011; Vogt, 2010). In addition to flavonoids,

phenylpropanoids contain other different subgroups, including

lignins, phenolic acids, stilbenes, and coumarins (Deng and Lu,

2017; Vogt, 2010). Both phenylpropanoids and flavonoids have

been shown to play important roles in plant defense against abiotic

and/or biotic stresses (Ramaroson et al., 2022; Sharma et al., 2019).

Our current results indicated that there was great variation in the

phenylpropanoids, including flavonoids and phenolic acids,

between these three oilseed crops, e.g. C. sativa contains high

amount of chlorogenic acid (Figure 4B, 6). However, given the

limitation of using untargeted metabolomics, where a significant

portion of the detected peaks are not characterized, only a small

number of phenylpropanoids were identified, which hinders our

understanding of where the different metabolic pathways diverge in

the three species. A previous study by Onyilagha et al. (2003) using
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a targeted approach, presented a more detailed view of leaf

flavonoid distribution among different crops from the

Brassicaceae family through Thin-layer Chromatography (TLC)

and high-performance liquid chromatography (HPLC), whereat

quercetin was the only type of flavonoid detected in C. sativa;

while B. napus accumulated at least two types of flavonols, with

kaempferol as the major type and quercetin in a small concentration

(Onyilagha et al., 2003). A further study confirmed that B. napus

leaves mainly contained kaempferols, while C. sativa accumulated

large amount of quercetins instead (Onyilagha et al., 2012).

Interestingly, high kaempferols in B. napus and high quercetins in

C. sativa is in line with our transcriptomic data, where the homologs

of TT7, which encodes a flavonol 3’-hydroxylase to convert

kaempferols to quercetins, were predominately expressed in C.

sativa (Figure 7). Genetic editing and kinetic analysis of TT7

homologs in C. sativa could be useful for further verification of

their functions.
3.4 High polyamines endow C. sativa with
resistance against broad range of abiotic
stresses?

Compared with other Brassicaceae oilseed species, C. sativa has

been shown to tolerate a broad range of abiotic stresses, including

but not limited to drought, freezing, lodging, and salinity (Berti

et al., 2016; Čanak et al., 2020; Gao et al., 2018; Matthees et al.,

2018). However, the mechanisms underlying these tolerances of C.

sativa are largely unknown. Our results here indicated that there

were particularly high content of polyamines in C. sativa compared

to other two crops. Noticeably there are two polyamines in the top

20 DAMs, agmatine and spermidine, both of which accumulate in

C. sativa (Figure 4A). Interestingly, both agmatine and spermidine

are involved in the “Arginine and proline metabolism” pathway

(Figure 4B), where agmatine is an intermediate metabolite formed

by arginine decarboxylase (ADC) from arginine, further agmatine is

used to generate spermidine through sequential reactions (Chen

et al., 2018).

More importantly, both agmatine and spermidine have been

shown to play important roles during plant defense against a variety

of abiotic stresses, including drought, freezing and salinity etc

(Gupta et al., 2013; Kasukabe et al., 2004; Seifi and Shelp, 2019;

Shao et al., 2022). For example, Kasukabe et al., 2004 showed that

overexpression of spermidine synthase in A. thaliana significantly

increased the spermidine content in leaves, and provided enhanced

tolerance to various abiotic stresses (Kasukabe et al., 2004).

Therefore, it’s reasonable to speculate that the high content of

polyamines (e.g. agmatine and spermidine) in C. sativa is likely to

contribute to its resistance to a broad range of abiotic stresses. In the

future, quantifying and comparing other major polyamines (e.g.

diamine putrescine and tetraamine spermine) between these oilseed

crops, as well as genetic modification of related polyamine

biosynthetic genes in C. sativa; for example, targeted knock-out of

agmatine and spermidine biosynthetic genes, encoding arginine

decarboxylase (ADC) and Spd synthase respectively, would help us
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better elucidate the function of polyamines in the broad abiotic

resistances of C. sativa.
4 Materials and methods

4.1 Plant materials

Brassica napus (DH12075 and N99), Camelina sativa (DH55),

and pennycress (Thlaspi arvense; line collected from field at

Saskatoon, SK, Canada) were grown in a growth chamber (22°, 16

h light/18°, 8 h dark cycles) for up to 2 weeks after germination.

Three biological replicates of cotyledons and first true leaves for

each species were collected and ground into powder in liquid

nitrogen, then stored at -80° freezer for metabolomic and

transcriptomic analyses.
4.2 Metabolite extraction and LC-MS
analysis

Untargeted metabolomic analyses was carried out by the

Metabolomics Innovation Centre (University of Alberta, CA). In

short, metabolites were extracted from 40 mg of tissue powder for

each of three biological replicates per species and tissue, where 6

ceramic beads were placed in the sample vials, and 500 µL LC-MS

grade MeOH/water (4:1 v/v) was added before homogenizing at 4.5

m/s for 15 seconds. Then, the homogenates were incubated at -20°C

for 10 minutes and centrifuged at 15,000 g for 10 minutes, after

which the supernatants were carefully transferred into new vials and

completely dried. Sample extracts were then re-suspended in 30 µL

LC-MS grade water before chemical isotope labeling. The

subsequent LC-MS analyses were carried out with a Thermo

Scientific Vanquish LC linked to Bruker Impact II QTOF Mass

Spectrometer (Bruker, Germany) using the eclipse plus reversed-

phase C18 column (150 x 2.1 mm,1.8 µm particle size; Agilent) at

40°C with a flow rate of 400 mL/min.
4.3 Metabolite quantification and data
analysis

The raw LC-MS data were first processed using DataAnalysis

4.4 (Bruker), which then exported data to IsoMS Pro 1.2.16 (Nova

Medical Testing Inc, CA) for quality check and processing with the

following parameters: minimum m/z: 220, maximum m/z: 1000,

saturation intensity: 20,000,000, retention time tolerance: 9s, mass

tolerance: 10 ppm. Further, data files were filtered out peak pairs

present in less than 80% of samples, and normalized by ratio of total

useful signal. Metabolite Identification were carried out against the

NovaMT Metabolite Database v3.0 (The Metabolomics Innovation

Centre, CA).

The hierarchical clustering analysis, principle component analysis

(PCA), and partial least squares-discriminant analysis (PLS-DA) were

carried out through scikit-learn (version 1.2.2) in Python (version
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3.10.9).KEGGpathway functional enrichmentanalysiswasperformed

via MetaboAnalyst6 (https://www.metaboanalyst.ca/) using the

A. thaliana database.
4.4 RNA sequencing and data analysis

Total RNA of each sample was extracted using RNAeasy plant

mini Kit (Qiagen) according to the manufacturer’s instructions,

with three biological replicates per sample (24 in total). The quality

of total RNA were examined by BioAnalyzer with RNA 6000 Nano

Kit (Agilent) to ensure RNA integrity number value > 7. Total RNA

were used to prepare cDNA libraries following Illumina Stranded

mRNA Prep guide, further 150 bp paired-end sequencing was

performed on the NovaSeq 6000 platform (Illumina).

The raw RNA-seq data were first filtered using Trimmomatic

(version 0.32) to remove adapter and low-quality sequences. Then

clean reads were aligned to the corresponding reference

transcriptomes of B. napus (DH12075 v3.1; cruciferseq.ca), C. sativa

(Kagale et al., 2014) and pennycress (Nunn et al., 2022) respectively

using Salmon (version 1.10.0). Subsequently, tximport (version 1.30.0)

was used to obtain the gene expression levels as TPM (transcripts per

million), which were further normalized through log2 transformation.

Syntelog tables of the A. thaliana orthologous genes were

collected for B. napus (DH12075 v3.1; cruciferseq.ca) and C.

sativa (Kagale et al., 2014). Homologous pairs between

pennycress and A. thaliana were obtained through Reciprocal

BLAST Hits (RBH). To make the expression comparable across

three different species, all genes were projected to their

corresponding A. thaliana orthologs for each species. Given the

polyploidy of B. napus and C. sativa, they contain multiple copies of

orthologs for each A. thaliana gene. The sum of the normalized

expression for all orthologous genes in B. napus and C. sativa for

each A. thaliana gene was used for subsequent comparison.

To identify the most differentially expressed genes (DEGs)

between these three species, a partial least squares discriminant

analysis (PLS-DA) through scikit-learn (version 1.2.2) in Python

(version 3.10.9) and a likelihood ratio test (LRT) in DESeq2 (version

1.42.1) in R (version 4.3.3) were performed. The KEGG enrichment

analysis of DEGs was performed using clusterProfiler (version

4.11.0) in R (version 4.3.3). The 644 DEGs were used to construct

a co-expression network using the WGCNA package in R with the

blockwiseModules function and parameters “power= 12,

maxBlockSize = 5000, networkType = “signed”, TOMType =

“signed”, minModuleSize = 10, mergeCutHeight = 0.15” to

construct a signed network and generate co-expressed gene

modules (Langfelder and Horvath, 2008).
4.5 Integration of metabolome and
transcriptome

For integration of metabolomic and transcriptomic data,

Pearson correlation coefficients were calculated for each gene-

metabolite pair using the ‘cor’ package in R (version 4.3.3). The
Frontiers in Plant Science 14
gene-metabolite network was constructed with R2 > 0.9, where the

nodes correspond to genes/metabolites, and the edges between the

nodes represent the correlation coefficients calculated

(Supplementary Data Sheet 4).
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