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for tomato leaf diseases with
small target detection head
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Technology, Weifang, China, 2Department of Smart Computing, Kyungdong University, Goseong-gun,
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In tomato cultivation, various diseases significantly impact tomato quality and

yield. The substantial scale differences among diseased leaf targets pose precise

detection and identification challenges. Moreover, early detection of disease

infection in small leaves during the initial growth stages is crucial for

implementing timely intervention and prevention strategies. To address these

challenges, we propose a novel tomato disease detection method called

TomatoLeafDet, which integrates multi-scale feature processing techniques

and small object detection technologies.Initially, we designed a Cross Stage

Partial -Serial Multi-kernel Feature Aggregation (CSP-SMKFA) module to extract

feature information from targets at different scales, enhancing the model's

perception of multi-scale objects. Next, we introduced a Symmetrical Re-

calibration Aggregation (SRCA) module, incorporating a bidirectional fusion

mechanism between highresolution and low-resolution features. This

approach facilitates more comprehensive information transmission between

features, further improving the efficacy of multi-scale feature fusion. Finally,

we proposed a Re-Calibration Feature Pyramid Network with a small object

detection head to consolidate the multi-scale features extracted by the

backbone network. This network provides richer multi-scale feature

information input for detection heads at various scales. Results indicate that

our method outperforms YOLOv9 and YOLOv10 on two datasets. Notably, on

the CCMT tomato dataset, the proposed model achieved improvements in mean

Average Precision (mAP50) of 4.4%, 1.9%, and 2.3% compared to the baseline

model, YOLOv9s, and YOLOv10n, respectively, exhibiting significant efficacy.
KEYWORDS

tomato disease detection, deep learning, multi-scale detection, serial multi-kernel
feature aggregation, symmetrical re-calibration aggregation, FPN
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1 Introduction

Tomatoes are one of the most widely consumed vegetables

globally, and they are esteemed for their versatility and high

nutritional value. Rich in vitamins, minerals, and antioxidants,

tomatoes play a crucial role in the balanced diet of most

households. However, in recent years, tomato cultivation has

faced significant challenges due to increasingly unstable

environmental conditions resulting from climate change. These

unpredictable weather patterns have led to a surge in various leaf

diseases and pest infestations, particularly during the early stages of

tomato plant growth Redmond et al. (2018). Common diseases such

as leaf spot, leaf blight, and yellow leaf curl have become more

prevalent, severely impacting both the yield and quality of tomato

crops Liu and Wang (2021). The rising incidence of diseases has

prompted farmers to increase their reliance on pesticides as a

defensive measure. However, this approach has also brought

about a series of problems. For instance, excessive use of

pesticides may lead to the development of pesticide resistance in

tomato plants, necessitating the application of different and more

potent, expensive pesticides. This vicious cycle increases the

economic burden on farmers and poses a serious threat to

ecosystems. Furthermore, pesticide residues on tomato surfaces

may significantly reduce the nutritional value of the fruit and

potentially endanger consumer health Amr and Raie (2022).

Early intervention and prevention strategies are crucial for

mitigating these issues. Farmers can significantly reduce pesticide

use, minimize expenses, and ensure better crop yield and quality by

detecting and addressing diseases initially. This approach protects the

nutritional integrity of tomatoes and enhances the economic benefits

of tomato cultivation. However, implementing effective early
Frontiers in Plant Science 02
intervention strategies requires accurate and timely leaf disease

detection methods, which have proven to be a formidable challenge

in agricultural practices, as illustrated in Figure 1. Traditional manual

inspection methods for identifying tomato leaf diseases have

numerous limitations; these methods are labor-intensive, time-

consuming, and often inefficient Shoaib et al. (2023). Furthermore,

the subtle symptoms of early-stage diseases can be easily overlooked

even by experienced professionals, leading to delayed interventions

and increased vegetable losses Demilie (2024). The need for more

advanced, reliable, and efficient detection methods has become

increasingly evident in modern agriculture.

The emergence of deep learning techniques has opened a new

phase for vegetable disease detection methods. Convolutional

Neural Networks (CNNs) have provided promising solutions for

vegetable disease classification. Various CNN-based models have

been proposed and applied in agricultural environments,

demonstrating significant advantages over traditional methods.

However, these initial deep learning approaches primarily focused

on classification tasks Ferdinand and Al Maki (2022); Madhav et al.

(2021), failing to address the crucial issue of disease localization.

This limitation hindered their ability to fully replace manual

inspection processes, as precise location information is essential

for targeted treatment and intervention strategies. The latest

advances in computer vision have facilitated the development of

faster and more accurate object detection models. These models can

classify diseases and precisely locate the diseased areas in images,

marking a significant leap in automated plant disease detection.

Object detection models can be broadly categorized into two types:

two-stage detectors and single-stage detectors. The Faster R-CNN

Ren et al. (2015) model is particularly prominent among two-stage

models. The methods divide the task of identifying objects into two
FIGURE 1

The current status of tomato cultivation.
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key steps: the first step involves producing potential areas or

bounding boxes that might contain objects of interest; the second

step focuses on categorizing these candidate regions and

determining their exact positions He et al. (2023); Zhao et al.

(2022); Wang et al. (2022b). In contrast, single-stage detectors,

especially the YOLO (You Only Look Once) Redmon et al. (2016);

Redmon and Farhadi (2016); Redmon and Farhadi (2018);

Bochkovskiy et al. (2020); Ultralytics (2022); Wang et al. (2022a);

Wang et al. (2024); Li et al. (2022); Jocher et al. (2023) series models,

have garnered attention due to their efficiency and accuracy.

Researchers have also begun to focus on improving the

performance of YOLO models in vegetable disease detection. For

instance: Wang et al. (2021) proposed a YOLOv3 detection model

incorporating a novel IOU by enhancing tomato pest and disease

sample data Wang et al. (2021). Liu et al. (2022) proposed a novel

YOLOv4 detection model for tomato pests by integrating three sets

of attention mechanisms Liu et al. (2022). Liu et al. (2023)

developed a YOLOv5 model with a novel loss function to address

the detection of tomato brown rot Liu et al. (2023). Wang et al.

(2024) integrated Transformer into YOLOv8 to improve tomato

disease detection, enhancing the model’s ability to capture disease

detail features Wang and Liu (2024). Jiang et al. (2024) combined

Swin Transformer and CNN to optimize YOLOv8’s feature

extraction capability, improving the model’s detection ability for

cabbage diseases in complex environments Jiang et al. (2024). Liu

and Wang (2024) proposed a multi-source information fusion

method based on YOLOv8 to improve the accuracy of multi-

vegetable disease detection Liu and Wang (2024).

Although these improved YOLO models address some issues in

crop disease detection, they primarily focus on solving problems

such as small sample sizes, complex background environments, and
Frontiers in Plant Science 03
model parameter optimization. However, the impact of leaf size

variation on detection accuracy has rarely been addressed or

mentioned. As shown in Figure 2, some data samples are

collected from one or two leaves, while others are collected from

multiple leaves. Despite having the same sample size, the scale of the

target data varies significantly. Most existing models have been

optimized to detect diseases on leaves of normal size, potentially

overlooking early infections on smaller leaves. This limitation is

particularly important in the context of early intervention strategies.

Therefore, it is crucial to be able to specifically perceive diseases on

leaves of various sizes, especially smaller ones. To address this

critical gap in current tomato disease leaf detection methods, we

propose a novel tomato disease leaf detection algorithm,

TomatoLeafDet. The contributions of this study can be

summarized as follows:
• We propose a real-time detection model named

“TomatoLeafDet”. By integrating various novel multiscale

strategies, this model aims to simultaneously capture and

process features of leaves of various sizes, with particular

emphasis on improving the detection capability for

smaller leaves.

• We propose a Cross Stage Partial - Serial Multi-kernel

Feature Aggregation (CSP-SMKFA) module, which

introduces a serial multi-kernel convolutional network

capable of extracting multi-scale feature information from

the input. It combines 1x1 convolutional layers and residual

connections to fuse features of different scales, enhancing

the model’s expressive ability.

• We propose a Symmetrical Re-calibration Aggregation

(SRCA) module. Through an adaptive attention
FIGURE 2

Sample Data Collected from Tomato Leaves at Different Scales.
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Fron
mechanism, it adaptively adjusts the weights of features

according to the different resolutions and contents of

feature maps, thereby better capturing the multi-scale

features of the target.

• Utilizing the CSP-SMKFA and SRCA modules, we propose

a Re-Calibration Feature Pyramid Network (Re-

CalibrationFPN) with a small target detection head. It

introduces a bidirectional fusion mechanism between

high-resolution and low-resolution features, enabling

more comprehensive information transmission between

features and further enhancing the effect of multi-scale

feature fusion. Simultaneously, it incorporates a

specialized small target detection head aimed at

improving the sensitivity and accuracy of disease

detection on smaller leaves.

• Through comparative and ablation experiments, our model

demonstrates significant advantages compared to the

baseline model, while also surpassing YOLOv9 and

YOLOv10. Our method has the potential to provide a

more comprehensive and detailed tool for early disease

intervention in tomato cultivation.
2 Materials and methods

2.1 Materials

2.1.1 Dataset
We evaluated our model on two public datasets: the PlantDoc

plant disease detection dataset Singh et al. (2019) and the CCMT

tomato disease dataset Mensah et al. (2023). The PlantDoc contains

2,598 data samples for 13 plant species and 17 disease classes. The

CCMT consists of 4960 samples distributed across 5 tomato leaf

disease classes. Figure 3 presents the details of specific diseased

leaves: (a) septoria leaf spot, (b) leaf blight, (c) leaf verticillium wilt,

(d) healthy leaf, (e) leaf curl.

However, the detection targets in this tomato data sample were

not annotated. Therefore, we first used the LabelImg annotation

tool to annotate the 4960 images in the tomato leaf disease dataset,

as shown in Figure 4. Then, corresponding XML files containing

bounding box coordinates and category labels were generated.
tiers in Plant Science 04
Subsequently, these XML files were converted into txt annotation

files used by the YOLO model. After preprocessing, the dataset was

partitioned into three distinct subsets: 4059 instances for training,

451 for validation, and 450 for testing. The training set served to fit

the model parameters, while the validation set was employed to

fine-tune hyperparameters during the learning process and conduct

initial assessments of model performance. Ultimately, the test set

was utilized to gauge the final model’s capacity for generalization.

2.1.2 Implementation details
The models proposed in the study use PyTorch as the learning

framework, and the experimental acceleration is configured with

AMD and RTX 4090. During the training process, 640 × 640 images

are randomly cropped from the sample images. The batch size for

each GPU is set to 12. Each model undergoes a training regimen

consisting of 150 iterations. The optimization process employs the

Adam algorithm, with the learning rate initially set at 0.01. As

shown in Table 1, detailed experimental setup details are presented.
2.2 Methods

2.2.1 Macroscopic architecture
Figure 5 illustrates the structural diagram of the TomatoLeafDet

model architecture for detecting tomato leaf diseases. It is primarily

divided into three parts: Backbone, Re-Calibration FPN, and P2345

Head. Through the introduction of new modules and optimized

design, this model aims to enhance multi-scale feature extraction,

fusion, and detection capabilities.

In the initial step of the Backbone section, the model replaces

the original C2F module with CSPSMKFA, combined with Conv

convolutional modules for feature extraction. Through multi-scale

partial convolution, the CSP-SMKFA module can more effectively

capture different scale information in the image, especially

enhancing feature expression ability when dealing with large

differences in target sizes. This improvement helps to enhance the

model’s capture of input image features, providing richer semantic

information for subsequent feature fusion processing.

Simultaneously, the SPPF module is retained at the end of the

Backbone, further processing features at multiple scales, and

increasing the robustness of feature representation. Subsequently,

in the Neck section, the model introduces a new Re-Calibration
FIGURE 3

Display of five tomato disease leaves. (a) septoria leaf spot, (b) leaf blight, (c) leaf verticillium wilt, (d) healthy leaf, (e) leaf curl.
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FPN, where the SRCA module can perform spatial recalibration on

feature maps at different levels, enabling the network to more

effectively select and focus on useful feature information.

Combined with the CSP-SMKFA module, it enhances the effect of

multi-scale feature fusion. This structure allows for more

comprehensive information transmission between features at

different levels, optimizing the detection performance of multi-

scale targets. Finally, in the Head section, the model introduces a P2

detection head specifically for small target detection, working in

conjunction with P3, P4, and P5 detection heads. This design can

better capture fine-grained information in low-level feature maps,

thereby improving the model’s detection accuracy for small-scale

targets. In terms of loss functions, the model still employs

traditional regression loss (box loss), classification loss (cls loss),

and DFL loss (dfl loss) to ensure the accuracy of predicted bounding

box positions and categories. Overall, the model has been optimized

at the Backbone, Neck, and Head levels, particularly through the

introduction of CSP-SMKFA and SRCA modules, enhancing the
Frontiers in Plant Science 05
ability of multi-scale feature extraction and fusion. This makes the

improved TomatoLeafDet model more robust and accurate in

multi-scale object detection tasks.

2.2.2 Cross stage partial - serial multi-kernel
feature aggregation

The CSP-SMKFA module adopts a novel partial multi-scale

feature concatenation aggregation strategy to enhance

computational efficiency and feature representation capability. As

shown in Figure 6, its structural process is as follows: Initially, the

input features undergo preliminary processing through Conv1 x 1,

subsequently dividing into two branches. The main branch then

employs a cascaded convolution structure: a) Conv3 x 3 extracts

local features, b) Conv5 x 5 captures medium-scale contextual

information, and c) Conv7 x 7 obtains global features with a

larger receptive field. Each convolutional layer allocates 50% of its

output channels to the next convolutional layer and skips the

connection. The skip connection branch directly transmits the

remaining 50% of the Conv1 x 1, Conv3 x 3, Conv5 x 5, and

Conv7 x 7 outputs, preserving original feature information. A

Concat operation then concatenates features of different scales

(1x1, 3x3, 5x5, 7x7 convolution outputs) along the channel

dimension. Subsequently, Conv1 x 1 further fuses these multi-

scale features, producing a unified feature representation. Finally, a

residual connection adds the original input features to the processed

features, forming the final output. This design effectively integrates

spatial information at different scales while reducing computational

complexity through partial channel multi-scale processing. The

cascaded convolution structure progressively expands the

receptive field, capturing multi-scale context. Skip connections
TABLE 1 Our experimental environment.

Computational Ecosystem Details

System software 64 Bit Windows 11

Coding Python 3.9

GPU RTX 4090

CPU 4.20 GHz AMD 16 Core Processor

Pytorch 2.2.2

CUDA 11.8
FIGURE 4

LabelImg annotation.
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and residual connections ensure the preservation of original

information, facilitating gradient propagation. The final feature

aggregation and fusion steps further enhance the model’s

expressive capacity, enabling it to better adapt to the demands of

various multi-scale object detection tasks. Therefore, the process of

CSP-SMKFA can be formulated as:
Frontiers in Plant Science 06
O11
0,O12

0 = S(0:5,0:5)(Conv1�1(Input)) (1)

O31
0,O32

0 = S(0:5,0:5)(Conv3�3(O11
0)) (2)

O51
0,O52

0 = S(0:5,0:5)(Conv5�5(O31
0)) (3)
FIGURE 6

The structure of CSP-SMKFA and SRCA.
FIGURE 5

The overall architecture of TomatoLeafDet.
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O0
7 = (Conv7�7(O51

0)) (4)

Output = Conv1�1(Concat(O12
0,O32

0,O52
0,O0

7))⊕ Input (5)

where S(0:5,0:5)( · ) represents splitting the output feature map

vector along the channel dimension with a ratio of 0.5 for each part.

⊕ represents addition. Concat(·) is concatenation.

2.2.3 Symmetrical re-calibration aggregation
When processing targets of different scales, there is a tendency

to lose significant semantic information. Shallow features contain

less semantic content but have clear boundaries and rich details.

Deep features, however, encompass abundant semantic

information. Directly fusing shallow and deep features may result

in redundant information in the fused features Han et al. (2019). To

address this issue, we propose the Symmetrical Re-calibration

Aggregation (SRCA) module, which utilizes a self-attention

mechanism to fuse high-resolution and low-resolution features.

Feature fusion is conducted selectively through weighting,

capturing more comprehensive fine-grained information, and

recalibrating target positions.

Figure 6 illustrates the structure of the SRCA module, designed

to effectively fuse high-resolution and low-resolution features. The

module comprises four parallel complementary processing paths,

each handling high-resolution (H1) and low-resolution (L1)

features. For instance, in the first two paths’ processing flow:

Initially, high-resolution feature H1 is processed through a 1x1

convolutional layer and Convolutional Block Attention Module

(CBAM) Woo et al. (2018), yielding compressed mapped feature

H1’ and attention weight a1. Low-resolution feature L1 undergoes

the same processing, producing L1’. Subsequently, through a self-

attention mechanism, (1-a1) is fused with L1 and L1’. Then, the

fused features are added to the original H1. The latter two paths

follow a similar processing flow but interchange the input positions

of high and low-resolution features: First, L1 is processed through

1x1 convolution and CBAM, yielding L1’ and attention weight b1.

Then, H1 undergoes the same processing to obtain H1’. Internal

upsampling and downsampling functions adjust the sizes of (1-b1),

H1, and H1’ for three-part fusion. The fusion result is then added to

the original L1. Finally, the outputs of these four paths are channel-

fused and passed through a Conv3 x 3 layer to output a rich fused

feature. This design allows the model to adaptively select and fuse

features from different resolutions, effectively capturing multi-scale

information. By cross-processing high and low-resolution features,

the module can more comprehensively utilize spatial information at

different scales, thereby enhancing the richness and effectiveness of

feature representation. Therefore, the process of SRCA can be

formulated as:

H
0
1, a1 = CC(H1) (6)

L
0
1, b1 = CC(L1) (7)
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outputup = H1 ⊕ (H
0
1 ⊙H1)⊕ (L

0
1 ⊙ L1 ⊙ (1 − a1)) (8)

outputdown = L1 ⊕ (L
0
1 ⊙ L1)⊕ (H

0
1 ⊙H1 ⊙ (1 − a1)) (9)

Output = Conv3�3(Concat(outputup, outputdown)) (10)

Where CC represents Conv1×1 and CBAM, used to process

input features, halve the channels, and obtain new feature maps and

weight coefficients. ⊕ represents addition. ⊙ represents matrix

product. Concat(·) is concatenation.
3 Experiments

3.1 Experimental indicators

In this study, we employed multiple metrics to evaluate our

model’s performance: Parameters, GFLOPs (Giga Floating Point

Operations Per Second), mean Average Precision (mAP50-90), and

mean Average Precision (mAP50). Among these, mAP50 was

selected as the primary evaluation metric. The calculation process

for mean Average Precision is delineated in Equations 11-14.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

AP =
Z 1

0
P(R) dR (13)

mAP = o
K
i=1APi
K

(14)

The variable K signifies the total count of distinct object

classifications within the dataset, while each class’s precision is

quantified by its specific Average Precision (AP) score. In the

performance evaluation equations, several key indicators are

utilized: True Positives (TP) represent accurately identified

instances of the target condition, False Positives (FP) indicate

cases where the algorithm incorrectly flagged non-existent

conditions as present, and False Negatives (FN) encompass actual

occurrences of the condition that the system failed to recognize.
3.2 Comparison studies

To validate the effectiveness of the proposed model in this study,

we first conducted comparative experiments on the publicly available

PlantDoc dataset. We compared current mainstream object detection

models, with each comparative model using the same experimental

parameters. Table 2 presents the experimental results of our proposed
frontiersin.org
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TomatoLeafDet model compared to other state-of-the-art real-time

detection models on the PlantDoc dataset. Compared to the baseline

model, TomatoLeafDet achieved improvements of 9.3% and 13.7% in

mAP50 and mAP50-95, respectively. When compared to the

advanced YOLOv10n, TomatoLeafDet also demonstrated a 7.2%

increase in mAP50 and a 12.2% increase in mAP5095. Figure 7

visually illustrates the performance gap between the TomatoLeafDet
Frontiers in Plant Science 08
model and the baseline model, clearly showing that TomatoLeafDet

consistently outperforms the baseline model throughout the entire

training process.

After that, we conducted a comprehensive comparative

evaluation of the TomatoLeafDet model on the tomato leaf

disease dataset. As shown in Table 3, we selected the two-stage

model Faster R-CNN and current mainstream single-stage YOLO
TABLE 3 Object detection with different frameworks on CCMT tomato dataset.

Model Parameters GFLOPs mAP50-95 mAP50

Faster-rcnn 137,101,141 370.0 0.670 0.888

YOLO7 3,760,872 105.5 0.641 0.853

YOLOv8n (baseline) 3,011,823 8.2 0.735 0.905

YOLOv8s 11,127,519 28.4 0.757 0.931

YOLOv9t 2,618,510 10.7 0.739 0.913

YOLOv9s 9,601,118 38.7 0.760 0.927

YOLOv10n 2,696,366 8.2 0.743 0.924

Ours 3,348,532 9.8 0.768 0.945
TABLE 2 Comparison with advanced real-time object frameworks on the PlantDoc dataset.

Model Parameters GFLOPs mAP50-95 mAP50

YOLOv8n (baseline) 3,011,498 8.1 0.282 0.420

YOLOv9t 2,628,260 10.7 0.302 0.443

YOLOv10n 2,706,116 8.3 0.286 0.428

Ours 3,351,832 9.8 0.321 0.459
FIGURE 7

The mAP comparison between baseline and TomatoLeafDet on PlantDoc dataset.
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series models for comparison. Notably, compared to these real-time

detection models, our model demonstrated superior performance in

mAP50–95 and mAP50, primarily attributed to the CSP-SMKFA

and Re-CalibrationFPN multi-scale feature processing styles, which

enhanced the model’s multi-scale perception capabilities.

Compared to the baseline model, TomatoLeafDet achieved

improvements of 4.5% and 4.4% in mAP50–95 and mAP50,

respectively. Compared to the two stage Faster r-cnn model,

TomatoLeafDet significantly reduced parameters and GFLOPs

while improving mAP50 by 6.1%. Our model also showed

significant advantages over larger single-stage models, for

example, compared to YOLOv8s, TomatoLeafDet reduced

parameters by approximately 70% while notably increasing

mAP50 by 1.5%. Compared to YOLOv9s, TomatoLeafDet

reduced GFLOPs by about 74.7% while significantly improving

mAP50 by 2.0%. It is also worth noting that compared to the

current advanced model YOLOv10n, our TomatoLeafDet model

surpassed it by 0.021 mAP50. Figure 8 visually illustrates the

average precision advantage of our model over the baseline model

throughout the entire training process.
3.3 Ablation studies

TomatoLeafDet incorporates Re-CalibrationFPN, CSP-SMKFA,

and P2 detection head. We conducted ablation experiments on these

components sequentially, with results shown in Table 4. We first

added the ReCalibrationFPN without the P2 head structure, which
Frontiers in Plant Science 09
improved performance by 1.7%mAP. Subsequently, we added the P2

detection head on this basis, further increasing the mean Average

Precision (mAP) by 1.1%. To verify the effectiveness of the CSP-

SMKFA module, we independently added it to the baseline model,

resulting in a 3.0% improvement in mAP50–90 and a 2.7%

improvement in mAP50. Finally, we integrated both Re-

CalibrationFPN with P2 and CSP-SMKFA into the baseline model,

constructing our new model, TomatoLeafDet. As shown in the last

row of Table 4, the combination of our proposed modules effectively

improved the model’s performance by 4.5% and 4.4% in mAP50–95

and mAP50, respectively. This validates the effectiveness of our

proposed Re-CalibrationFPN, CSP-SMKFA, and P2 detection head

in tomato leaf disease detection.
3.4 Visual comparative studies

To visualize the advantages of TomatoLeafDet for different sizes

of tomato leaves detection, the differentiated detection results of the

baseline model, the advanced model yolov10n, and our proposed

model on the CCMT tomato dataset are shown in Figure 9. It can be

observed that our model exhibits increased attention and sensitivity

to small-scale leaves while simultaneously detecting normal-sized

leaves. In contrast, the other two models predominantly focus on

normal-scale target leaves. Consequently, these results demonstrate

that our proposed novel model performs excellently in tomato leaf

disease detection. Therefore, it provides a potential solution for

early predicting and preventing tomato leaf diseases.
FIGURE 8

The mAP comparison between baseline and TomatoLeafDet on the CCMT tomato dataset.
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4 Conclusion

In this study, we introduced Re-CalibrationFPN as a solution to

address the limitations of the baseline model in handling multi-scale

object features. It comprises two key components: CSP-SMKFA and

SRCA. CSP-SMKFA utilizes concatenated multi-kernel partial

convolutions to perceive multi-scale feature information. At the

same time, SRCA further effectively integrates deep rich

information and shallow detail information through a

symmetrically complementary structure. Additionally, we

incorporated a P2 small object detection head, enabling the model

to focus on detailed features of small-sized objects while attending to

multi-scale object features. Through extensive experimentation, we
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demonstrated that our proposed model achieved advanced

performance on both the PlantDoc dataset and the CCMT tomato

dataset, surpassing current mainstream object detection models.

Although our model has significantly advanced tomato leaf disease

detection, further research is required to bridge the gap between

experimental results and practical applications. In subsequent studies,

we plan to collect and establish more comprehensive datasets to train

and improve model performance. We will continue to address the

limitations in multi-scale and small object detection while gradually

considering research into lightweight models. Future research focuses

on integrating lightweight detection models with drones and robots,

accelerating the establishment of early prediction and prevention

systems for precision vegetable cultivation.
TABLE 4 Ablation studies of key components on CCMT tomato dataset.

Model Re-Calibration FPN
without P2

Re-Calibration FPN
with P2

CSP-SMKFA Parameters
GFLOPs mAP50-95 mAP50

1 × × × 3,011,823 8.2 0.735 0.905

2 ✓ × × 3,806,303 9.9 0.743 0.920

3 × ✓ × 3,761,476 10.9 0.746 0.930

4 × × ✓ 2,802,695 8.1 0.757 0.929

5 ✓ × ✓ 3,402,375 8.9 0.760 0.936

Ours × ✓ ✓ 3,348,532 9.8 0.768 0.945
fro
The symbol “√” indicates that the module is included, while the symbol “×” indicates that the module is removed.
FIGURE 9

Comparison of the visualization detection result of different models, (a) Baseline Model; (b) Yolov10n Model; (c) TomatoLeafDet.
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