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Introduction: Chinese fir (Cunninghamia lanceolata) is the fastest-growing

timber species in China. investigating its spatial structure and influence on

aboveground biomass allocation is crucial for understanding its adaptability to

environmental conditions, enhancing carbon sequestration, and maintaining

forest ecosystem stability.

Methods: In this study, airborne LiDAR technology was used to derive forest

structural metrics, and weighted Voronoi diagrams were constructed to extract

spatial configuration metrics. Biomass models for different components of

Chinese fir were developed using 20 harvested trees, and stem mass fraction

(SMF), branch mass fraction (BMF), and leaf mass fraction (FMF) were calculated.

Path analysis quantified the effects of stand structure variables on biomass

allocation among different organs.

Results: Theopenness ratio (OP), angle competition index (UCI), forest layer index (S),

and openness (K) were identified as the primary spatial structural factors influencing

aboveground biomass allocation. Stem biomass accumulation is maximized when

0.75 < OP ≤ 1, 0 < UCI ≤ 0.25, 0 < S ≤ 0.25, and 0.4 < K ≤ 0.5, with SMF reaching its

highest value. Branch biomass peaks when 0.5 <OP ≤ 0.75, 0 < UCI ≤ 0.25, 0.75 < S ≤

1, and 0.4 < K ≤ 0.5, maximizing BMF. Leaf biomass is highest when 0 <OP ≤ 0.25, 0.5

< UCI ≤ 0.75, 0.5 < S ≤ 0.75, and 0.2 < K ≤ 0.3, leading to the maximum FMF.

Discussion: The results of this study not only reveal the survival strategy of

Chinese fir in environmental change, but also provide a theoretical basis for

understanding ecosystem carbon sequestration and sustainable management of

Chinese fir plantations.
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1 Introduction

Biomass is a key indicator of forest ecosystem health, structure,

and function (Khan et al., 2021; Saarela et al., 2022; Salunkhe et al.,

2018). Its distribution among different organs of forest trees is

known as biomass allocation. Understanding how plants allocate

resources is crucial in forest ecology (Chen et al., 2021; Vasseur

et al., 2023; Weiner, 2004). Generally, biomass allocation can be

studied in two ways: by analyzing biomass fractions, which examine

the proportion of individual organs relative to total biomass, and by

investigating the quantitative relationships between different organ

biomass measurements (Poorter and Nagel, 2000).

In forest ecosystems, plants exhibit varying biomass allocation

patterns depending on environmental conditions, a phenomenon

known as the plasticity of biomass allocation. This plasticity

determines a plant’s ability to access heterogeneous resources

(SEBASTIA, 2007; Wu et al., 2022). Resource allocation among

different organs ensures survival by optimizing biomass distribution

patterns, reflecting a plant’s adaptability to external conditions

(Dolezal et al., 2021; Yan et al., 2016). Numerous factors

influence biomass distribution. Climatic conditions play a key

role, as reduced rainfall leads to drought, inhibiting plant growth

by decreasing soil moisture and nutrients (Schimel, 2018). To cope

with drought stress, plants increase their root–shoot ratio to

enhance water and nutrient uptake (Tang et al., 2024).

Conversely, increased rainfall promotes aboveground biomass

allocation, maximizing light energy capture (Zhang and Xi, 2021).

Other factors, including soil pollution (Delerue et al., 2022),

anthropogenic crop rotation (Oliveira et al., 2018), and

intraspecific competition (Wertz et al., 2020), also affect plant

biomass distribution. Therefore, examining these factors of plant

biomass can help us better understand the coping strategies of

plants in different environments and the carbon cycle and carbon

accumulation processes in forest ecosystems.

Forest structures are composed of spatial and non-spatial

structures that determine the stability, direction of succession and

management space of forest stands (Hui et al., 2019). Among them,

the forest stand spatial structure characterizes the distributional

arrangement and relative positioning of trees, shaping tree

competition and resource utilization (Pang et al., 2024). A well-

structured stand optimizes space, water, soil, and light resources,

creating favorable growth conditions (Fang et al., 2021; He et al.,

2022). As spatial arrangement is a manageable factor, it is often used

to guide harvesting and regeneration. Spatial structure parameters

inform harvesting optimization models that enhance tree

distribution suitability (Chen et al., 2023; Zhang et al., 2018,

2022). Stand spatial structure also affects tree growth and

understory vegetation diversity. Cao et al. (2020a) found that

horizontal stand structure had a greater influence on understory

diversity than vertical structure or tree competition. Similarly, Zhu

et al. (2018) identified mixing angle and horizontal tree distribution

as primary factors affecting understory shrub species diversity.

Given its importance, understanding forest stand geometry is

essential for sustainable forest management and ecosystem

stability. Analyzing stand spatial structure requires establishing
Frontiers in Plant Science 02
spatial relationships among individual trees. Attributes such as

tree position must be considered when developing weighted

Voronoi diagrams to ensure an accurate representation of tree

relationships (Feng et al., 2014; Li et al., 2015; Liu et al., 2023).

While these diagrams segment structural units, manual location

data collection in sample plots remains labor-intensive, requiring

considerable resources. At present, with the rapid development and

application of airborne lidar technology in forestry, it provides an

efficient technical means for the reconstruction of three-

dimensional structure of forests. By actively emitting laser pulses

and receiving reflected signals, UAV-LiDAR can quickly obtain

high-precision 3D point cloud data, and realize accurate inversion

of forest parameters by using single wood segmentation and point

cloud data processing technology (Fisher et al., 2020). Compared

with manual surveying, UAVs not only greatly improve the

efficiency of data collection, but also cover complex terrain and a

wide range of sample plots, reduce human error, and reduce the cost

and risk of field operations (Wang et al., 2019). In terms of applied

research, Chen et al. (2025) used airborne Lidar and field survey

data to extract the position and height of individual trees of multiple

tree species according to CHM and NPC, and then constructed a

tree height-DBH model of forest trees, which provides a scientific

basis for the application of lidar in forest ecosystems. Ye et al.

(2025), based on XGBoost and PLSR machine learning algorithms,

combined with 96 canopy structure indexes extracted by UAV-

LiDAR, achieved high-precision estimation of eucalyptus DBH

(R²=0.829) and biomass (R²=0.903), and confirmed that LiDAR

height and voxel indexes are the key characteristic parameters for

accurate measurement of forest carbon sinks. Xu et al. (2024)

reconstruct realistic 3D forest scenes based on UAV-LiDAR point

cloud data, and propose a 3D modeling method for complex tree-

shrub-grass forest scenes, considering the hierarchical structure of

trees, shrubs and grasses in the forest, with a single tree

segmentation accuracy of 87.3%, shrub segmentation accuracy of

60%, and grassland height accuracy evaluation of RMSE<0.15m,

which provides technical support for meeting the needs of large-

scale forest scene modeling. The above results show that UAV-

LiDAR can not only efficiently obtain the single-tree scale structural

parameters, but also provide a theoretical basis for the extraction of

stand spatial structure parameters, and can use UAV data to obtain

the location information and basic attribute parameters of forest

trees, and combine forest tree attributes with spatial attributes to

determine the spatial structure units of forest trees by constructing a

weighted Voronoi diagram, so as to realize the rapid calculation of

spatial structure parameters in the sample plot. The spatial structure

of forest stands is closely linked to forest carbon pools (Li et al.,

2023), influencing competition, growth potential, and the

development of adjacent trees (Weng et al., 2019). Stand spatial

structure directly affects forest quality and carbon sequestration

capacity, yet its impact on biomass distribution remains unclear.

Evaluating how tree spatial arrangement influences biomass

distribution can improve carbon storage optimization and

ecosystem resilience in forest management.

Chinese fir (Cunninghamia lanceolata) is a vital timber species in

southern China, known for its rapid growth, strong environmental
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adaptability, high timber yield, and insect resistance. Its extensive

applications make it a preferred species for carbon-neutral forest

initiatives. Investigating how stand spatial structure affects the

distribution of aboveground biomass (AGB) in Chinese fir is crucial

for understanding its adaptation strategies and enhancing carbon

sequestration in plantations. This study examines Chinese fir

plantations using UAV LiDAR data to extract apex height, tree

height, crown width, and DBH. A weighted Voronoi diagram was

constructed to compute spatial structure parameters across six stands,

including size ratio, angle competition index, forest layer index,

openness ratio, openness, and uniform angle. A biomass model

developed from 20 felled trees was integrated with forest parameters

derived from point cloud data to estimate biomass for each organ. The

proportion of trunk, branch, and leaf biomass in total AGB was then

calculated. Path analysis quantified the effects of various structural

indices on biomass allocation in different organs of Chinese fir.
2 Methodologies and materials

2.1 Study area

The study area is situated within the Yangkou State-owned

Forest Farm in Shunchang County, Nanping City, Fujian Province,

located at 117°29′~118°14′ E longitude, 26°38′~27°12′ N latitude,

100–800 m above sea level, 15–30° slope (Figure 1). The area has a

central subtropical oceanic climate characterized by warm, humid

conditions. The average annual temperature is approximately 20°C,

with an annual precipitation of 2144.2 mm, 1740 h of sunshine, and

a frost-free period of 289 d. The soil is primarily deep, fertile,

mountainous red soil. As one of the core production areas for

Chinese fir in southern China, the region also hosts Masson pine

(Pinus massoniana), eucalyptus (Eucalyptus robusta), and Moso

bamboo (Phyllostachys heterocycla).
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2.2 Dataset acquisition

2.2.1 Ground data collection
In this study, 33 sampling plots measuring 25.82 × 25.82 m were

set up in Yangkou Forest Farm in August 2022, and three young

forests, six middle-aged forests, six near-ripe forests, six mature

forests, and 12 overripe forests were selected to ensure the

universality of the results. Survey information from the sample

plots, including the average tree height, average crown width,

average DBH, and other data, was procured. The survey results

are shown in Table 1. The results are shown as the average results ±

standard deviations for each age group. Approximately 10 trees

comprising a total of 353 trees were arbitrarily chosen from

each sample plot for RTK positioning (Table 2). This data served

to validate UAV measurement accuracy and construct the

DBH model.

2.2.2 UAV data collection and pre-processing
The dense LiDAR point cloud dataset was acquired utilizing a

Pegasus D500 UAV integrated with a HESAI XT32 sensor. The

aerial survey employed a terrestrial flight pattern, maintaining an

elevation of 150 m above ground level, with a velocity of 10 m/s,

while the lateral overlap percentage of laser scanning was

configured at 80%. The system operated in three-echo mode, and

the laser classification was designated as CLASS1. The point cloud

data were spliced using DJI Terra software. The LAS point cloud

files were imported into Cloud Compare V2.13 software for

preprocessing, and the obtained point cloud data were denoized.

The denoised point cloud was separated using the cloth filtering

algorithm (CSF). The ground point cloud was interpolated using

kriging interpolation to create DEM (0.1 × 0.1 m). The non-ground

point cloud interpolation was used to generate DSM (0.1 × 0.1m),

and the CHM (0.1 × 0.1m) was obtained by subtracting the DSM

and DEM of each sample plot (Figure 2).
FIGURE 1

Overview map of the study area.
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2.3 Development of aboveground organ
biomass model of Chinese fir

In this study, 20 representative Chinese fir were selected from

the sample plots for harvesting (Table 3). Basic information on the

harvested trees was recorded, and stratified harvesting was

performed (Lin et al., 2019).

To develop an AGB measurement model using tree height and

DBH as independent variables, we evaluated nine commonly used

correlations (Table 4) and selected the optimal model to estimate

the biomass of aboveground organs. The biomass fractions of the

stem, branches, and leaves were then determined by dividing their

respective biomass by the total AGB, yielding the stemmass fraction

(SMF), branch mass fraction (BMF), and leaf mass fraction (FMF).
Frontiers in Plant Science 04
2.4 Extraction of stand spatial structure
parameters

2.4.1 Individual tree segmentation
In this investigation, CHM was used for single-wood

segmentation. Before dividing a single tree, the location of each

tree was first detected to determine the position information of

the vertex of the single tree. Then, the extracted tree vertex served as

the seed point to segment and extract the crown of the single tree. In

the tree vertex detection process, the local maximum value

algorithm was utilized to determine the local maximum value in

the raster image by continuously moving the fixed-size detection

window and using it as a canopy vertex. Then, the watershed

algorithm was used to reverse and invert the tree canopy,
TABLE 1 Plot survey information form.

Age Group Tree height /m CW /m DBH /cm Stand Density /Trees/ha Canopy Density Slope/° Altitude/m

Young forest 9.1 ± 0.8 2.4 ± 0.2 12.2 ± 1.5 2533.7 ± 320.6 0.8 ± 0.02 23.0 ± 3.4 220.7 ± 8.10

Middle-
aged forest

13.2 ± 1.8 2.5 ± 0.6 14.6 ± 2.3 2006.5 ± 950.2 0.7 ± 0.05 27.3 ± 3.5 227.8 ± 47.7

Near-ripe forest 16.4 ± 1.2 2.6 ± 0.6 17.9 ± 1.5 2088.9 ± 265.9 0.8 ± 0.10 24.1 ± 3.1 215.5 ± 36.6

Mature forest 17.7 ± 1.1 2.8 ± 0.3 21.1 ± 2.5 1256.8 ± 507.5 0.7 ± 0.10 24.5 ± 4.8 233.5 ± 30.9

Overripe forest 22.9 ± 3.9 3.0 ± 0.7 21.4 ± 6.0 1279.4 ± 522.5 0.7 ± 0.10 29.2 ± 5.0 237.3 ± 50.9
CW is the crown width of the trees and DBH is the diameter at breast height of the trees.
TABLE 2 Sample tree information form.

Sample
Plot No.

Number of
sample
trees

Average
tree

height/m

Average
CW/m

Average
DBH/cm

Sample
Plot No.

Number of
sample
trees

Average
tree

height/m

Average
CW/m

Average
DBH/cm

1 10 11.8 ± 0.7 2.1 ± 0.2 14.9 ± 1.3 18 10 21.3 ± 0.9 3.3 ± 0.2 33.5 ± 2.9

2 10 12.5 ± 0.6 2.3 ± 0.3 15.1 ± 0.8 19 11 16.8 ± 1.0 2.4 ± 0.3 17.9 ± 1.8

3 10 17.6 ± 0.9 2.5 ± 0.1 21.2 ± 2.4 20 15 17.5 ± 1.1 2.1 ± 0.2 18.4 ± 1.4

4 10 19.3 ± 0.3 2.6 ± 0.3 18.0 ± 3.0 21 12 19.3 ± 0.8 2.9 ± 0.3 21.4 ± 2.0

5 10 18.6 ± 1.2 2.6 ± 0.1 21.0 ± 2.8 22 10 15.0 ± 1.1 2.5 ± 0.3 17.6 ± 1.9

6 12 17.6 ± 0.8 3.0 ± 0.2 19.7 ± 2.2 23 11 14.0 ± 0.9 1.8 ± 0.1 17.7 ± 1.7

7 11 16.2 ± 0.6 2.3 ± 0.3 17.4 ± 2.3 24 14 17.4 ± 0.5 3.0 ± 0.1 20.4 ± 1.4

8 10 13.0 ± 1.3 2.9 ± 0.2 14.1 ± 2.1 25 11 19.9 ± 0.8 3.4 ± 0.1 26.7 ± 2.1

9 10 17.1 ± 0.8 1.9 ± 0.1 20.3 ± 2.8 26 10 17.7 ± 0.7 2.8 ± 0.2 20.8 ± 2.3

10 9 12.5 ± 0.5 2.2 ± 0.1 17.6 ± 1.3 27 10 19.3 ± 0.4 3.5 ± 0.3 22.8 ± 1.7

11 10 13.3 ± 0.8 2.1 ± 0.2 16.6 ± 1.5 28 10 23.4 ± 0.6 3.4 ± 0.3 32.1 ± 2.8

12 11 12.7 ± 0.5 2.2 ± 0.2 17.1 ± 1.3 29 12 19.1 ± 0.8 2.6 ± 0.1 28.7 ± 2.5

13 12 18.5 ± 1.3 2.4 ± 0.7 27.2 ± 3.5 30 11 23.1 ± 03 3.0 ± 0.1 35.0 ± 1.7

14 10 24.3 ± 0.6 4.3 ± 0.3 40.5 ± 3.3 31 11 8.5 ± 0.5 1.8 ± 0.3 12.5 ± 1.5

15 8 20.8 ± 0.7 3.6 ± 0.2 39.7 ± 3.7 32 11 9.5 ± 0.5 1.9 ± 0.2 14.3 ± 1.3

16 8 24.8 ± 0.7 4.0 ± 0.5 27.6 ± 2.9 33 11 10.5 ± 0.2 2.1 ± 0.1 13.9 ± 0.7

17 12 20.8 ± 0.8 3.8 ± 0.2 27.1 ± 2.7
f
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transforming the crown region into a drainage basin. The image was

divided into several regions using the image segmentation

algorithm of geomorphology, and segmentation of the tree crown

was conducted through the best segmentation window (Figure 3).

In this study, the detection rate (Equation 1), accuracy (Equation 2),

and F-score (Equation 3) were used to evaluate the accuracy of the

vertex extraction of a single tree and determine the ideal

configuration of local maximum detection windows, which was

calculated as follows:
Frontiers in Plant Science 05
r = TP
TP+FN (1)

P = TP
TP+FP (2)

F = 2(r�p)
r+p (3)

where TP denotes the successfully identified trees, FN signifies the

missed trees in detection, FP indicates instances of trees incorrectly
FIGURE 2

Point cloud data preprocessing, taking Y31 sample plot as an example. (a) sample site cloud data; (b) canopy point cloud of the sample plot;
(c) Ground point cloud of the sample plot; (d) digital elevation models; (e) digital surface models; (f) Canopy height model.
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classified by the algorithm, r stands for the detection rate, p represents

the detection precision, and the F-score reflects the detection accuracy.

Chinese fir is a coniferous tree with a conical crown shape and

advantages over tree vertices. Therefore, the tree height was

assigned to the corresponding CHM raster value for each

detected tree vertex. Meanwhile, the average values of the north–
Frontiers in Plant Science 06
south, and east–west widths of the canopy after single tree

segmentation were calculated as the crown width. The measured

tree height and crown width of 353 trees with RTK positioning in 33

sample plots were used to verify the accuracy of the UAV estimation

after individual tree segmentation.

2.4.2 Construction of DBH model of Chinese fir
Dense point clouds obtained from airborne lidar can accurately

extract parameters such as tree height and crown width.

Consequently, DBH can be indirectly obtained by establishing a

model (Mao et al., 2023). In this study, the correlation between

UAV-estimated tree height and crown width for 353 trees and their

corresponding measured DBH was tested to determine whether there

was a significant correlation. A UAV-based DBH estimation model

for Chinese fir was constructed using multiple linear regression. To

assess its accuracy, 70% of the 353 trees were used as the training set,

while the remaining 30% served as the validation dataset.

2.4.3 Extraction of stand spatial structure
parameters

Forest tree characteristics, including tree height, CW, and DBH,

are essential parameters for assessing tree development status and

spatial resource utilization. based on the research of Sun et al.

(2022), a weighted Voronoi diagram was constructed using
TABLE 3 Harvested wood biomass information sheet.

Tree NO.
Dry weight on the

ground/kg
Dry weight of

Stem/kg
Dry weight of
branch/kg

Dry weight of
leaf/kg

DBH/cm H/m

1 23.42 16.07 1.82 5.53 12.4 8.4

2 21.78 14.55 1.79 5.44 11.8 9.2

3 24.2 16.51 1.98 5.71 12.8 9.6

4 26.25 18.12 2.14 5.99 13.2 11.4

5 58.49 44.61 4.95 8.93 16.5 13

6 60.37 47.09 5.01 8.27 16.7 14.1

7 58.82 43.78 5.51 9.53 15.8 16.7

8 63.53 46.5 7.09 9.94 17.2 17.1

9 66.43 50.12 6.88 9.43 17.8 18.1

10 77.56 59.33 7.91 10.32 20.7 19.7

11 83.95 65.22 8.31 10.42 21.6 19.9

12 86.61 66.1 9.06 11.45 23.5 19.5

13 96.54 71.76 14.02 10.76 23.2 19

14 101.79 76.8 12.66 12.33 25.1 18.8

15 128.86 103.02 15.03 10.81 28.8 19.4

16 172.04 131.87 26.4 13.77 29.3 20.3

17 188.89 151.3 25.28 12.31 31.8 23.1

18 203.25 162.61 27.61 13.03 32.5 26.2

19 208.16 170.74 26.07 11.35 33.8 23.4

20 220.29 176.45 29.71 14.13 35.7 24.1
frontie
TABLE 4 Biomass estimation model based on tree height and DBH.

Model NO. Formula Variable

1 W1=aH
b H

2 W2=aD
b D

3 W3=a(D
2H)b D2H

4 W4=a+b(D
2H) D2H

5 lnW5=a+blnD D

6 lnW6=a+bD+cD
2 D

7 lnW7=a+blnH H

8 lnW8=a+bln(D
2H) D2H

9 lnW9=a+blnD+clnH D, H
D is the diameter at breast height (DBH) of the trees, H is the height of the trees, and W is the
biomass of the corresponding component of the trees.
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UAV-extracted tree height, DBH, and CW as weight factors to

define spatial structural units. A Delaunay triangulation network

was then constructed to calculate the distances and angles between

target trees and their neighboring trees. To eliminate the edge effect,

the distance buffering method (Zhou et al., 2009) was applied,

extending the plot to 20 × 20 m. Trees within the buffer zone were

included only as neighboring trees (Figure 4).

Based on the relationship between the target trees and adjacent

trees, the spatial structure parameters of the stand reflect the structural
Frontiers in Plant Science 07
state of the whole stand. Therefore, six spatial structure indices were

selected, which were size ratio U (Wan et al., 2020), angle competition

index UCI (Hui et al., 2013), openness K (Wang et al., 2013), openness

ratio OP (Lin et al., 2021), and uniform angleW (Zhao et al., 2016) and

forest layer index S (Cao et al., 2020b). This reflected the spatial

distribution of trees in terms of size differentiation, degree of

competition, size of growth space, light reception of trees, horizontal

distribution, and vertical structure complexity, respectively. The

calculation method and meaning are shown in Table 5.
FIGURE 3

The results of tree vertex and canopy contour extraction based on local maxima and watershed methods, take the extraction results of Y31 sample
plot as an example.
FIGURE 4

Determination of the spatial structural units of the stand.
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TABLE 5 Calculation method of stand spatial structure parameters.

Value

(0.25,0.5] (0.5,0.75] (0.75,1]

moderation disadvantage absolute disadvantage

medium pressure greater pressure great pressure

medium open open extremely open

random aggregation cluster distributions

medium slightly complex complex

Value

(0.3,0.4] (0.4,0.5] (0.5, +∞)

basic sufficiency sufficient more than sufficient

ring tree j, tij is a discrete variable, aij represents the minimum angle between i and j, a0
ee i is located. According to Zhou et al. (2019), the height difference (Hdist) between the
/3Hdist<H<Hmin+2/3Hdist, and the lower layer: H≤Hmin+1/3Hdist.
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kij

tij =
1   if  Hi<  Hj

0   if  Hi>  Hj

( superior sub-superior

UCI

UCIi =
Ui

180� no
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(a1 + a2)

a1 =
arctan ( Hi

dij
)� 180
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Hj

dij
)� 180

p          Otherwise :            
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Hi−Hj

dij
)� 180

p  When  Hj>Hi;

                0                                                        Otherwise :  

8<
:

no pressure less pressure

OP

OPi =
1
no

n

j=1

tij

tij =
1   if   dij > Hi −Hj

�� ��
0   if   dij ≤ Hi −Hj

�� ��
( completely occluded occluded

W
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n
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tij

tij =
1   aij < a0
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S
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3
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tij
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1    When   i   and   j   belong   to   the   same   forest   layer

0                                                      Otherwise :                                                                            

( single slightly simple

K
Ki =

1
no

n

j=1

dij
Hij (0,0.2] (0.2,0.3]

serious insufficiency In-sufficiency

i represents the central tree and j represents the neighboring tree;Hi is the height of the tree i,Hj is the height of the tree j, dij is the distance between the central tree i and the neighbo

represents the standard angle, n represents the number of neighboring trees in the center tree i, and zi represents the number of forest layers in the structural unit where the center tr
tallest tree (Hmax) and the lowest tree (Hmin) in the sample plot was calculated, and then the forest layer was divided, the upper layer: H≥Hmin+2/3Hdist, the middle layer: Hmin+
1
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2.5 Statistical analysis

The accuracy of this study’s models was evaluated using R2,

Root Mean Square Error (RMSE), and Mean Absolute Error Loss

(MAE) (Bhatt and Chouhan, 2024). A paired t-test was conducted

to compare UAV-extracted tree height and crown width with

predicted values. Differences in spatial structure parameters

across age groups were analyzed using ANOVA and descriptive

statistical analysis. The distribution percentage of biomass across

different components within the total aboveground mass was

calculated. Path analysis, performed using multiple stepwise

regression, examined the impact of stand spatial structure on the

proportion of biomass of each component of Chinese fir.
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Statistical analysis and data modeling were conducted using SPSS

Statistics 26, Origin 2022, and Python 3.9.

3 Results

3.1 Construction of biomass models

According to the results shown in Table 6. The formula for

calculating the biomass of the aboveground organs of Chinese fir is

as follows:

Stem biomass model (Equation 4):

Wstem = 0:054(D2H)0:786 (4)
TABLE 6 The results of the construction of the aboveground organ biomass model of Chinese fir.

Organ Model NO.
Model parameters

R2 RMSE MAE
a b c

Stem biomass/kg

1 0.022 2.775 – 0.867 19.132 16.221

2 0.108 2.083 – 0.977 7.948 7.026

3 0.054 0.786 – 0.980 7.361 6.054

4 14.623 0.006 – 0.979 7.691 6.457

5 -2.570 2.190 – 0.960 0.157 0.131

6 0.297 0.252 -0.003 0.956 0.165 0.142

7 -2.387 2.291 – 0.900 0.248 0.218

8 -2.755 0.768 – 0.976 0.123 0.099

9 -2.753 1.552 0.752 0.976 0.122 0.097

Branch biomass/kg

1 0.001 3.103 – 0.826 3.947 2.934

2 0.007 2.353 – 0.946 2.194 1.464

3 0.003 0.888 – 0.946 2.190 1.338

4 1.007 0.001 – 0.944 2.244 1.433

5 -5.718 2.582 – 0.962 0.180 0.154

6 -2.374 0.301 -0.004 0.961 0.181 0.153

7 -5.454 2.685 – 0.890 0.306 0.261

8 -5.920 0.904 – 0.973 0.150 0.115

9 -5.907 1.921 0.779 0.974 0.150 0.118

Leaf biomass/kg

1 0.937 0.828 – 0.871 0.939 0.708

2 1.291 0.666 – 0.830 1.077 0.928

3 1.106 0.245 – 0.869 0.943 0.789

4 7.395 0.001 – 0.648 1.469 1.277

5 -0.078 0.771 – 0.840 0.117 0.104

6 0.327 0.148 -0.002 0.902 0.092 0.073

7 -0.187 0.868 – 0.912 0.088 0.069

8 -0.200 0.277 – 0.894 0.096 0.083

9 -0.238 0.214 0.656 0.922 0.081 0.066
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Branch biomass model (Equation 5):

lnWbranch = −5:907 + 1:921lnD + 0:779lnH (5)

Leaf biomass model (Equation 6):

lnWleaf = −0:238 + 0:214lnD + 0:656lnH (6)

where Wstem represents stem biomass, Wbranch represents

branch biomass, Wleaf represents leaf biomass, D represents tree

diameter at breast height, and H represents tree height.
3.2 Calculation of stand spatial structure
parameters

3.2.1 Extraction of forest parameters
The results of single-tree segmentation are presented in Table 7,

indicating varying optimal window combinations across different

plots. Tree vertex detection accuracy ranged from 0.809 to 0.943.

The detection accuracies for young, middle-aged, near-ripe, mature,

and overripe forests were 0.893, 0.856, 0.843, 0.879, and 0.849,

respectively. The local maximum algorithm achieved detection

precision exceeding 0.8 in all sample plots. Across all plots, the

mean accuracy was 0.859, indicating strong performance in tree

vertex extraction.

The measurements of tree height and crown width were

obtained from individual sample plots, and validation was

conducted by comparing UAV-extracted data against ground-

truth measurements from 353 trees with RTK positioning data

(Table 8). The validation outcomes for tree height are displayed in

Figure 5, crown width validation results appear in Figure 6 and

Table 9. These results demonstrate no statistically significant

variation between field-measured and UAV- predicted values for

both parameters, confirming the high precision of UAV-based

estimation methods for Chinese fir dimensions.
3.2.2 DBH model construction results
According to the Pearson correlation test, there is a strong

positive correlation between UAV-derived predictions of tree

height(r=0.771, p<0.05) and CW (r=0.589, p<0.05)with

measured DBH values. Based on this relationship, multiple

linear regression analysis was employed to develop a

DBH model.

The training outcomes of the developed model are presented in

Figure 7. With a determination coefficient of R2 = 0.673 and absence

of multicollinearity issues, the established model demonstrates

statistical validity(VIF<5). According to the results of the paired

t-test(T=1.097, p=0.142>0.1), there was no significant difference

between the observed and predicted DBH, the predictive results of

the constructed DBH model are better and can be used for the

inversion of DBH of Chinese fir. The formula used is as follows

(Equation 7):

DBH = 1:475� H + 2:965� CW − 13:117 (7)
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3.2.3 Analysis of the spatial structure
characteristics of Chinese fir plantations

Table 10 shows the variation in spatial structure parameters

across different Chinese fir age stages. The angular scale reflects the

horizontal spatial distribution of trees, and results indicate a

significant difference across growth stages (P<0.01). The average

angular scale of young and middle-aged Chinese fir forests was

significantly higher than that of other stages. The average uniform

angle for young, middle-aged, near-mature, and mature forests was

0.625, 0.553, 0.526, and 0.501, respectively, all indicating an

aggregated distribution pattern. However, as Chinese fir aged, the

horizontal distribution structure gradually evolved to a random

distribution, becoming completely random in overripe forests,

where the average uniform angle reached 0.496.

The size ratio reflected the growth differences among trees within a

structural unit. There were either no significant differences or small

differences among the five age stages (P > 0.05), with values of 0.514,

0.548, 0.522, 0.512, and 0.500, respectively. However, the overall trend

suggests that the size ratio of Chinese fir forests gradually decreases

with age, indicating a shift from inferior to moderate growth.

The competition index of the intersection angle reflects the degree

of competition for survival resources among trees. No significant

differences were observed across the five age stages (P>0.05). The

average competition index for young, middle-aged, near-mature,

mature, and overripe forests was 0.267, 0.293, 0.298, 0.288, and

0.283, respectively, all reflecting moderate competitive pressure.

The forest layer index represents vertical space utilization and

structural complexity. The average layer indices for Chinese fir

plantations at the five age stages were 0.353, 0.415, 0.424, 0.443, and

0.513, respectively, with significant differences observed (P<0.05).

The layer index was notably higher in overripe plantations than in

the other four stages. The general trend indicated that as Chinese fir

ages, the forest layer index increased, with the vertical structure

evolving from simple to complex.

Openness and openness ratios reflect understory and canopy

light exposure. Significant differences were found across age groups

(P< 0.01). The openness values for the five age stages were 0.246,

0.240, 0.187, 0.188, and 0.164, respectively, showing a continuous

decline. This suggests that as Chinese fir grows, light transmission

in the understory decreases due to increasing canopy cover,

restricting growth space. The openness ratios by age group were

0.916, 0.880, 0.804, 0.796, and 0.784, also showing a decreasing

trend. The combined changes in these spatial structure indices

indicate that as Chinese fir matures, canopy coverage increases,

leading to reduced light penetration within the forest.
3.3 Effects of stand spatial structure on
AGB distribution of Chinese fir

3.3.1 Screening of key spatial structure factors
based on path analysis

The effect of stand spatial structure on the biomass mass

fraction of each Chinese fir component was analyzed using path
frontiersin.org

https://doi.org/10.3389/fpls.2025.1599094
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2025.1599094
TABLE 7 Optimal window combination for each plot.

Sample
plot NO.

Age Group
Window

combination
Observed

trees
Detecting

trees
Correct
amount

Number
of errors

Number of
missed
points

R P F

Y1
middle-

aged forest
0.2×0.2 187 177 158 19 29 0.845 0.893 0.868

Y2
middle-

aged forest
0.1×0.1 250 189 178 11 72 0.712 0.942 0.811

Y3 mature forest 0.2×0.3 152 120 112 8 40 0.737 0.933 0.824

Y4 overripe forest 0.3×0.3 113 116 108 8 5 0.956 0.931 0.943

Y5 overripe forest 0.3×0.3 92 100 87 13 5 0.946 0.87 0.906

Y6 near-ripe 0.2×0.2 160 153 142 11 18 0.888 0.928 0.907

Y7 overripe forest 0.3×0.2 112 126 98 28 14 0.875 0.778 0.824

Y8 near-ripe 0.3×0.2 157 139 125 14 32 0.796 0.899 0.845

Y9 near-ripe 0.2×0.1 149 155 129 26 20 0.866 0.832 0.849

Y10
middle-

aged forest
0.4×0.4 83 70 69 1 14 0.831 0.986 0.902

Y11
middle-

aged forest
0.4×0.4 91 89 83 6 8 0.912 0.933 0.922

Y12
middle-

aged forest
0.3×0.4 74 71 59 12 15 0.797 0.831 0.814

Y13 overripe forest 0.4×0.4 50 53 44 9 6 0.880 0.830 0.854

Y14 overripe forest 0.4×0.5 44 48 40 8 4 0.909 0.833 0.870

Y15 mature forest 0.5×0.6 40 41 34 7 6 0.85 0.829 0.840

Y16 overripe forest 0.3×0.2 102 108 85 23 17 0.833 0.787 0.810

Y17 overripe forest 0.2×0.3 114 116 101 15 13 0.886 0.871 0.878

Y18 overripe forest 0.1×0.2 125 116 99 17 26 0.792 0.853 0.822

Y19 overripe forest 0.1×0.2 118 115 103 12 15 0.873 0.896 0.884

Y20 mature forest 0.1×0.2 139 122 112 10 27 0.806 0.918 0.858

Y21 near-ripe 0.2×0.2 135 106 99 7 36 0.733 0.934 0.822

Y22 near-ripe 0.2×0.2 152 121 111 10 41 0.730 0.917 0.813

Y23
middle-

aged forest
0.2×0.2 156 133 119 14 37 0.763 0.895 0.824

Y24 near-ripe 0.2×0.3 118 108 97 11 21 0.822 0.898 0.858

Y25 mature forest 0.5×0.5 62 71 56 15 6 0.903 0.789 0.842

Y26 mature forest 0.5×0.3 88 90 72 18 16 0.818 0.800 0.809

Y27 mature forest 0.2×0.5 75 77 64 13 11 0.853 0.831 0.842

Y28 overripe forest 0.5×0.4 47 42 39 3 8 0.830 0.929 0.876

Y29 overripe forest 0.4×0.4 79 71 62 9 17 0.785 0.873 0.827

Y30 overripe forest 0.5×0.5 40 43 38 5 2 0.950 0.884 0.916

Y31 young forest 0.2×0.5 152 132 130 2 22 0.855 0.985 0.915

Y32 young forest 0.1×0.4 162 152 143 9 19 0.883 0.941 0.911

Y33 young forest 0.1×0.2 193 170 155 15 38 0.803 0.912 0.854
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analysis. The size ratio was excluded from the regression model due

to collinearity with the angle competition index.

The path analysis results are presented in Table 11 and Figure 8

(Please find attached for more details). DBH was the most directly

affected variable, followed by tree height. The influence of spatial

structure factors was primarily exerted through DBH and tree

height, either enhancing or restricting the biomass proportion of

each component. The uniform angle had a minimal effect on

biomass mass fractions, and its effect was not significant.

For SMF, the openness ratio and openness had significant

positive direct effects, while the angle competition index and

forest layer index had notable negative direct effects. The

openness ratio also had a strong positive indirect effect on SMF

through other factors, resulting in a significant overall correlation.

Conversely, the competition index had a significant negative

indirect effect on SMF, leading to a strong negative correlation.

Although openness had a significant positive direct effect on SMF,

its indirect limiting effects outweighed its direct positive effect,

making the correlation with SMF negative and not significant.

The forest layer index had a negative direct effect but a significant

positive correlation with SMF by influencing DBH and tree height.

Based on decision coefficients, the order from largest to smallest is

the openness ratio, angle competition index, forest layer index,

and openness.
TABLE 8 The paired t-test of predicted tree height and observed
tree height.

Difference

T df pMean
value

SD SE

0.109 1.297 0.105 1.041 352 0.299
p-value indicates significance, p>0.05 means no significant difference, p<0.05 means
significant difference, SD means Standard deviation, SE means Standard error.
FIGURE 5

The fitting result of predicted tree height and observed tree height.
FIGURE 6

The fitting result of predicted CW and observed CW.
TABLE 9 The paired t-test of predicted CW and observed CW.

Difference

T df pMean
value

SD SE

0.039 0.357 0.029 1.357 352 0.177
fro
p-value indicates significance, p>0.05 means no significant difference, p<0.05 means
significant difference, SD means Standard deviation, SE means Standard error.
FIGURE 7

DBH model validation results.
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For BMF, the openness ratio, openness, and forest layer index

had significant positive direct effects, while the competition index

had a notable negative direct effect. The openness ratio and forest

layer index also had significant positive indirect effects on BMF by

influencing tree height, DBH, and other spatial structure factors,

resulting in a strong positive correlation with BMF. The

competition index limited BMF through its effects on tree height

and DBH, leading to a significant negative indirect effect. The

negative indirect effect of openness on BMF was greater than its

positive direct effect, making its overall correlation with BMF not

significant. Based on decision coefficients, the order from largest to

smallest is the competition index, openness ratio, forest layer index,

and openness.

For FMF, the openness ratio and openness exhibited a strong

negative direct effect, while the competition and forest layer indices

had significant positive direct effects. The openness ratio also had a

significant negative indirect effect on FMF, leading to a strong

negative correlation. Although openness had both positive and

indirect effects, they were weaker than its negative direct effect,

resulting in no significant positive correlation with FMF. The

competition index, aside from its negative indirect effect through

openness, had positive indirect effects through other indicators,

leading to a highly significant positive correlation with FMF. The

forest layer index had a significant negative indirect effect on FMF

through tree height and DBH, which outweighed its positive direct

effect, resulting in a strong negative correlation. Based on decision

coefficients, the order from largest to smallest is the openness ratio,

competition index, forest layer index, and openness.

3.3.2 Four-element distribution of SMF, BMF, and
FMF

After identifying OP, UCI, S, and K as the main spatial structure

factors influencing AGB allocation in Chinese fir, a four-element

distribution map was constructed to analyze biomass allocation

under different spatial structure combinations. Since each spatial

structure factor had five values, UCI&K were used as the x-axis and

OP&S as the y-axis, resulting in 625 spatial structure combinations.

The four-element distribution of SMF is shown in Figure 9. The

SMF ranged from 0% to 81.4%, with almost no trees having OP = 0.

From the perspective of UCI&K, SMF decreased as the competition

index increased, reaching its highest value when 0< UCI ≤ 0.25 and

0.4< K ≤ 0.5. From the OP&S perspective, SMF increased with a
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higher openness ratio, peaking at 0.75< OP ≤ 1 and 0< S ≤ 0.25. The

mass fraction of Chinese fir trunk biomass was maximized under

conditions of low competition pressure, ample living space, high

light availability, and a relatively simple forest layer structure.

The four-element distribution of BMF in Chinese fir is shown in

Figure 10. The value of BMF ranged from 0% to 15.5%. From the

perspective of UCI&K, the BMF displayed a diminishing trend with

the increase of the competition index, in which the BMF was the

highest when the combination of 0<UCI ≤ 0.25, 0.4<K ≤ 0.5. From

the perspective of OP&S, the BMF showed a trend of increasing

with the increase of the open ratio. The BMF was the highest when

the combination of 0.5<OP ≤ 0.75, 0.75<S ≤ 1. The mass fraction of

Chinese fir branch biomass reaches its maximum when competition

pressure is low, the living environment is sufficient, light availability

is high, and the forest layer structure is complex.

The four-element distribution of the Chinese fir FMF is shown

in Figure 11. The value range of the FMF was 0–34.9%. From the

perspective of UCI & K, FMF showed an increasing trend when the

UCI of forest trees gradually increased. FMF reached its highest

when Chinese fir were in the combination of 0.5< UCI ≤ 0.75 and

0.2< K ≤ 0.3. From the perspective of OP&S, large FMF mainly

appears when 0< OP ≤ 0.25; that is, when Chinese fir is in the

combination of 0< OP ≤ 0.25 and 0.5< S ≤ 0.75, FMF will reach the

highest. The biomass fraction of Chinese fir leaves reached a

maximum when the competition pressure of Chinese fir was high,

the living environment was insufficient, the light was blocked, and

the forest layer structure was more complex.

OP, UCI, S, and K were the four major spatial structural factors

affecting the aboveground biomass distribution pattern of Chinese fir.

When the four spatial structure factors were combined, as shown in

Table 12, the biomass mass fraction of the corresponding

components of Chinese fir reached a maximum. Therefore, the

aboveground biomass distribution pattern of Chinese fir could be

altered by adjusting the spatial structure of stands.
4 Discussion

4.1 UAV parameter extraction

With the application of UAV technology in forestry, airborne

LiDAR, with its superior convenience, penetration, and
TABLE 10 Spatial structure parameters of Chinese fir plantations at different ages.

Age group
Spatial structure parameters

W U UCI S K OP

Young forest 0.625 ± 0.108A 0.514 ± 0.014 0.267 ± 0.011 0.353 ± 0.074b 0.246 ± 0.016A 0.916 ± 0.025A

Middle-aged forest 0.553 ± 0.041A 0.548 ± 0.037 0.293 ± 0.033 0.415 ± 0.076ab 0.240 ± 0.024A 0.880 ± 0.041A

Near-ripe forest 0.526 ± 0.028B 0.522 ± 0.029 0.298 ± 0.014 0.424 ± 0.085ab 0.187 ± 0.047B 0.804 ± 0.059B

Mature forest 0.501 ± 0.016C 0.512 ± 0.032 0.288 ± 0.021 0.443 ± 0.053ab 0.188 ± 0.033B 0.796 ± 0.092B

Overripe forest 0.496 ± 0.025C 0.500 ± 0.019 0.283 ± 0.024 0.513 ± 0.104a 0.164 ± 0.027C 0.784 ± 0.226C
The uppercase letters in the table indicate a very significant difference, p<0.05, and the lowercase letters in the table indicate a significant difference, p<0.1.
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TABLE 11 Path analysis between the spatial structure of the stand and the biomass fraction.

Indirect diameter factor
Decision coefficient Residual

P W S H DBH Total

26 0.000 -0.003 -0.017 -0.112 -0.160** 0.025

0.043

25 -0.001 0.000 -0.001 -0.016 -0.047 0.002

0.001 0.006 0.009 0.061 0.084* 0.031

04 – 0.000 -0.003 0.002 0.002 0.000

22 0.000 – 0.026 0.079 0.077* 0.004

07 0.000 -0.005 – 0.573 0.582** 0.182

11 0.000 -0.004 0.130 – 0.149** 0.563

11 0.000 0.002 -0.038 -0.117 -0.165** 0.012

0.006

11 0.000 0.000 -0.001 -0.017 -0.032* 0.001

0.000 -0.003 0.019 0.064 0.082* 0.011

01 – 0.000 -0.006 0.002 -0.004 0.000

09 0.000 – 0.057 0.083 0.128** 0.004

03 0.000 0.003 – 0.601 0.611** 0.477

05 0.000 0.002 0.291 – 0.304** 0.804

24 0.000 0.002 0.021 0.114 0.164** 0.023

0.049

23 0.001 0.000 0.001 0.017 0.044 0.002

-0.001 -0.005 -0.011 -0.062 -0.086* 0.027

03 – 0.000 0.004 -0.002 -0.001 0.000

19 0.000 – -0.033 -0.081 -0.089* 0.004

06 0.000 0.005 – -0.586 -0.595** 0.243

10 0.000 0.003 -0.165 – -0.182** 0.628
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Organ Factor Correlation coefficient Direct diameter factor
UCI K O

SMF

UCI -0.225** -0.065** – 0.002 -0.0

K -0.014 0.033* -0.004 – -0.0

OP 0.195** 0.111** 0.015 -0.008 –

W 0.021 0.019 0.001 -0.001 0.0

S 0.048* -0.029* -0.006 0.000 -0.0

H 0.722** 0.140** 0.008 0.000 0.0

DBH 0.765** 0.616** 0.012 -0.001 0.0

BMF

UCI -0.197** -0.032** – 0.001 -0.0

K -0.009 0.023** -0.002 – -0.0

OP 0.130** 0.048** 0.008 -0.005 –

W 0.004 0.007 0.000 -0.001 0.0

S 0.146** 0.017** -0.003 0.000 -0.0

H 0.924** 0.313** 0.004 0.000 0.0

DBH 0.950** 0.646** 0.006 -0.001 0.0

FMF

UCI 0.223** 0.059** – -0.002 0.0

K 0.013 -0.031** 0.003 – 0.0

OP -0.185** -0.099** -0.014 0.007 –

W -0.018 -0.017 0.000 0.001 -0.0

S -0.062** 0.027* 0.005 0.000 0.0

H -0.772** -0.178** -0.007 0.000 -0.0

DBH -0.813** -0.630** -0.011 0.001 -0.0

In the table, ** represents p<0.05, i.e., there is a very significant correlation, and * indicates p<0.1, i.e., there is a significant correlation.
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applicability, can describe ground object information with high

precision and has unique advantages in reconstructing complex

forest vertical structures (Tang et al., 2019). Therefore, it is widely

used to determine the forest tree parameters (Almeida et al., 2019;

Ferraz et al., 2016).

In this study, the extraction of tree parameters and spatial

structure parameters was based on the results of tree top extraction;

therefore, the accuracy of tree top extraction is a key factor affecting

parameter extraction. Since Chinese fir is a coniferous species with a

distinct advantage in tree vertices, a circular window was used to

extract tree vertices through a local maximum algorithm. The
Frontiers in Plant Science 15
overall detection accuracy for young forests was 0.893, for

middle-aged forests it was 0.856, for near-mature forests it was

0.843, for mature forests it was 0.879, and for over-mature forests it

was 0.849. The detection results for young forests were better than

those of other age groups, and there was a noticeable trend that tree

top detection results decreased as the age of the Chinese fir

increased, due to the increasing density of the forest and the

overlap of tree crowns leading to blurred edges between trees.

Some studies have shown that the mutual occlusion of the canopy

can affect the detection results of the vertices of single trees

(Brunner and Houtmeyers, 2022). Therefore, it may be possible
FIGURE 8

Path analysis of the influence of independent variables on dependent variables. (a) Path analysis diagram of stand structure factors and SMF; (b) Path
analysis diagram of stand structure factors and BMF; (c) Path analysis diagram of stand structure factors and FMF.
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FIGURE 9

SMF distribution under different spatial structure combinations. (a) the four-element distribution of SMF; (b) the four-element distribution from the
perspective of UCI&K; (c) the four-element distribution from the perspective of OP&S.
FIGURE 10

BMF distribution under different spatial structure combinations. (a) the four-element distribution of BMF; (b) the four-element distribution from the
perspective of UCI&K; (c) the four-element distribution from the perspective of OP&S.
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to further improve the accuracy of Chinese fir tree vertices detection

by using a variable maximum detection window and adjusting the

CHM pixel size (Brieger et al., 2019; Picos et al., 2020). In this study,

using the local maximum value algorithm yielded high accuracy in

extracting tree vertices, with an average accuracy of 0.859. The local

maximum value algorithm has strong applicability for extracting

treetops in coniferous forests (Mohan et al., 2017), aligning with the

findings obtained in this investigation.

In terms of tree parameter extraction, the tree height extraction

accuracy was R²= 0.896, RMSE = 1.687 m, and MAE = 1.187 m. The

crown-width extraction accuracy was R²= 0.804, RMSE = 0.460 m,

and MAE = 0.336 m, indicating a high level of precision. This high

accuracy was largely due to the small sample plot area, relatively flat

terrain, and uniform tree species, which created favorable

conditions for extracting tree vertices and parameters (Zhang

et al., 2023). However, even under such conditions, errors in
Frontiers in Plant Science 17
forest tree parameter extraction persist. LiDAR is a high-precision

three-dimensional geographic data acquisition technology based on

laser pulse emission and echo reception. It measures the time

difference of light pulse propagation to determine the distance

between the target object and the sensor (Cheng et al., 2024).

Variations in UAV flight height affect the quality of point cloud

data generation. Flying too low causes data redundancy and

increases processing difficulty, whereas flying too high may

reduce or eliminate ground point clouds, thus failing to generate

accurate DEM data (Liu et al., 2022). In order to obtain more

accurate parameter extraction results, in the follow-up research, we

will explore the influence of different flight altitudes on individual

tree segmentation and forest parameters, and also combine airborne

lidar and ground lidar to improve the quality of point cloud data, so

as to further improve the accuracy of parameter extraction.

In addition to the quality of the point cloud, the accuracy of

individual tree segmentation will also have an impact on the

extraction of forest parameters. In this study, the watershed

algorithm was used to segment the tree canopy. The principle of

the watershed algorithm is derived from the concept of watersheds,

which can treat each watershed as a closed basin formed by the

connection of ridgelines, and apply it to the division of individual

trees in the forest, and each watershed corresponds to a canopy

(Wang et al., 2010). The processing process of the watershed

algorithm is to filter the original lidar data by point cloud

filtering, separate ground points and non-ground points,

interpolate the corresponding DEM and DSM, and subtract DEM
FIGURE 11

FMF distribution under different spatial structure combinations. (a) the four-element distribution of FMF; (b) the four-element distribution from the
perspective of UCI&K; (c) the four-element distribution from the perspective of OP&S.
TABLE 12 Effects of OP, UCI, S and K on aboveground biomass
allocation pattern of Chinese fir.

Organ
Spatial structure parameters

OP UCI S K

SMF 0.75<OP ≤ 1 0<UCI ≤ 0.25 0<S ≤ 0.25 0.4<K ≤ 0.5

BMF 0.5<OP ≤ 0.75 0<UCI ≤ 0.25 0.75<S ≤ 1 0.4<K ≤ 0.5

FMF 0<OP ≤ 0.25 0.5<UCI ≤ 0.75 0.5<S ≤ 0.75 0.2<K ≤ 0.3
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from DSM to obtain the canopy height model (CHM=DSM-DEM).

When generating DEM and DSM, it is necessary to rasterize and

interpolate the point cloud data, and at the same time, the DSM data

needs to be filled with invalid values. Due to the corresponding

smoothing and removal of the data in this process, part of the

information of the original point cloud data is lost, which affects the

accuracy of the later single-wood segmentation to a certain extent,

which shows that the watershed single-timber segmentation has a

high dependence on the accuracy of DEM and DSM, so we will also

explore the influence of different interpolation methods and

smoothing methods on the segmentation results in the future.
4.2 Effects of spatial structure on biomass
allocation of aboveground various organs
of Chinese fir

Plants adapt to their environment by regulating biomass

allocation among different organs, maximizing resource acquisition

(light, water, and nutrients) to maintain optimal growth (Poorter and

Nagel, 2000; Xie et al., 2016; Zhou et al., 2023). The findings indicate

that spatial structure factors influence biomass proportions primarily

through DBH and tree height, either facilitating or restricting

resource allocation to different components of Chinese fir. This

suggests that stand spatial structure does not independently

determine biomass ratios but interacts with the growth

characteristics of individual trees. A well-structured stand can

enhance resource availability, such as light, water, and nutrients,

thereby promoting DBH and tree height growth (Ali, 2019; Zhang

et al., 2019) and indirectly affecting biomass proportion. Among the

spatial structure indicators, the openness ratio, angle competition

index, openness, and forest layer index had the most prominent

influence. In plant communities, light conditions and available

growth space are key factors affecting tree growth (Chiang et al.,

2019; Lundqvist and Elfving, 2010). The competition index,

openness, and forest layer index reflect spatial utilization in both

horizontal and vertical dimensions, while the openness ratio indicates

how effectively trees use light. Together, these indicators illustrate the

adaptive strategies of Chinese fir under varying growth conditions. As

observed in this study, when light conditions were favorable,

competition pressure was low, and survival space was sufficient,

Chinese fir allocated more resources to trunk and branch growth.

Enhanced photosynthesis increases organic matter production,

providing the necessary energy and material for tree development.

Since trunks and branches support the tree structure and facilitate

nutrient and water transport (Maier, 2001), trees prioritize their

growth when resources are abundant. Conversely, under insufficient

light conditions, high competition pressure, and restricted survival

space, Chinese fir shifts resource allocation toward leaf growth.

suppressed within the forest, these trees compete for limited light

resources. Since Leaves are the primary sites of photosynthesis, an

increased leaf surface area allows trees to capture more light energy in

dim environments, supplying the energy needed for survival and

providing a competitive advantage in accessing sunlight.

Additionally, in environments with complex forest layer structures,
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Chinese fir allocated more resources to branch and leaf development.

Intense spatial competition within a multilayered forest affects both

vertical and horizontal growth. In such cases, excessive trunk growth

may be constrained by surrounding trees, limiting space expansion.

However, branches and leaves can grow flexibly; when not in direct

conflict with the surrounding trees, they can extend outward and

occupy different canopy layers. This strategy enables trees to optimize

light capture within limited space, securing an advantage in highly

competitive environments.
4.3 Future improvements

The main purpose of this study was to explore the influence of

stand spatial structure on the aboveground biomass distribution

pattern of Chinese fir, so for the spatial structure parameters,

whether it is the determination of structural units or the calculation

of parameters, it is inseparable from the participation of tree height,

crown width and DBH. In addition, in the weighted Voronoi

construction, we only considered the three forest attributes: tree

height, crown width and DBH, while in the actual environment,

healthy trees usually have stronger ecological competitiveness and

adaptability, and can accumulate biomass through vigorous

photosynthesis, promote crown expansion and root extension, and

thus occupy a broader ecological niche in horizontal and vertical space.

In addition, different tree species will form a unique spatial distribution

pattern due to their differences in biological characteristics, ecological

adaptability and competitive strategies. Therefore, the health status of

the trees, the type and age of the trees (Brumelis et al., 2007) will have a

significant impact on the true spatial extent of the trees.

In this study, the extraction of forest parameters was based on

the point cloud after terrain normalization, although the parameter

extraction was more accurate, but indirectly eliminated the

influence of terrain undulation on spatial structure parameters. In

the forest environment, complex topography will form a variety of

niches, leading to increased spatial heterogeneity of light, water and

nutrients, thereby shaping the distribution pattern of forest trees.

Topography will interfere with the competition of trees, and in areas

with strong environmental stress, such as steep slopes or ridges, the

competition between tree species may be weakened, resulting in a

more uniform spatial distribution. However, in resource-rich areas

such as gentle slopes or valley floors, intensified competition may

lead to obvious differentiation of tree size and the formation of more

complex spatial patterns. Therefore, the influence of topography on

the spatial structure of forest stands will ultimately be reflected in

the spatial arrangement, size differentiation and competition of

forest trees, which in turn will affect the stability, productivity and

ecological function of forests.

In summary, in order to truly reflect the growth of trees in the

horizontal and vertical space of the forest, in addition to the tree

height, crown width and DBH of the trees, we will also focus on the

influence of factors such as tree health, tree type, and topography on

the spatial range of forest trees in the future, so as to quantify the

real situation of forest tree growth and conduct more in-depth

research on the extraction of spatial structure parameters.
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5 Conclusion

The purpose of this study was to quantify the spatial structure

parameters of forests by UAV lidar, and to explore the effects of

different spatial structure parameters on the biomass allocation of

each component of aboveground biomass of Chinese fir. The results

showed that the openness ratio (OP), competition index (UCI),

forest layer index (S) and openness (K) were the key structural

factors affecting the aboveground biomass allocation of Chinese fir.

When the competition pressure of Chinese fir is small, the living

environment is sufficient, the light reception is very open and the

forest structure is relatively simple, it is conducive to the

accumulation of trunk biomass of Chinese fir. When the

competition pressure of Chinese fir is small, the living

environment is sufficient, the light reception is open and the

forest structure is complex, it is conducive to the accumulation of

branch biomass of Chinese fir. When the competition pressure of

Chinese fir is extremely high, the living environment is seriously

insufficient, the light reception is somewhat blocked, and the forest

structure is relatively complex, it is conducive to the accumulation

of leaf biomass of Chinese fir. The results of this study not only

reveal the survival strategy of Chinese fir in environmental change,

but also provide a theoretical basis for understanding ecosystem

carbon sequestration and sustainable management of Chinese

fir plantations.
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