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Assessing leaf nitrogen
concentration in rice using
RGB imaging: a comparative
study at leaf, canopy, and
plot scales
Haixiao Ge1*, Gaoqiang Lv2, Yang Qin1 and Min Shen1

1College of Rural Revitalization, Jiangsu Open University, Nanjing, China, 2College of Agricultural
Engineering, Jiangsu University, Zhenjiang, China
Leaf nitrogen concentration (LNC) is a critical indicator for evaluating crop health

and optimizing nitrogen management in sustainable agriculture. While

multispectral and hyperspectral sensing techniques enable precise LNC

estimation, their high cost and technical complexity often hinder practical

application. This study assesses RGB imaging as a cost-effective and accessible

alternative for estimating rice LNC across leaf, canopy, and plot scales. Field

experiments conducted at two sites during the 2018–2019 reproductive stages

acquired RGB images at three spatial resolutions. For canopy and plot images,

rice vegetation was isolated using green minus red (GMR) band indices and

thresholding. Stepwise multiple linear regression (SMLR) models incorporating 13

color indices were developed. Results demonstrated that leaf-scale models

achieved superior accuracy (R2 = 0.84-0.87, RMSE = 0.16-0.25%), validating

RGB imaging’s potential for high-precision diagnostics. At the canopy scale,

vegetation segmentation enhanced model performance (an average R2 increase

of 3% compared to those from unsegmented images), confirming the necessity

of background removal. Plot-scale analysis revealed that UAV flight altitude

minimally affected model accuracy within the range tested, with 100 m

yielding comparable performance (R2 = 0.61-0.65) to other altitudes. Cross-

site validation indicated promising generalizability at the leaf scale, while canopy

and plot scale models exhibited greater sensitivity to environmental variations.

This research establishes RGB imaging as a scalable tool for rice nitrogen

monitoring, demonstrating that segmentation improves accuracy at larger

spatial scales. These findings provide practical insights for implementing

precision nitrogen management in smallholder farming systems, supporting

ecological sustainability through reduced fertilizer overuse.
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1 Introduction

Leaf nitrogen concentration (LNC, %) is a critical biophysical

parameter for diagnosing crop nitrogen status and guiding

precision fertilization. As a direct proxy of photosynthetic

capacity and metabolic activity, LNC reflects real-time plant

nitrogen assimilation efficiency, making it indispensable for

optimizing fertilizer use efficiency (Lu et al., 2021; Zhang et al.,

2024). Traditional methods for LNC quantification rely on

destructive sampling followed by laboratory Kjeldahl analysis.

This process is not only labor-intensive but also introduces

significant time lags between sampling and results (Padilla et al.,

2014). Such delays hinder timely field interventions, particularly

during rapid growth stages like booting or flowering.

Remote sensing technologies have emerged as transformative

alternatives by enabling non-destructive, real-time LNC estimation

through spectral reflectance measurements. Platforms spanning

satellites, unmanned aerial vehicles (UAVs), and ground-based

sensors now provide multi-scale monitoring capabilities. For

instance, satellite-derived vegetation indices (VIs) such as the

normalized difference vegetation index (NDVI) and the enhanced

vegetation index (EVI) facilitate regional-scale LNC assessment

(Kalacska et al., 2015; Lepine et al., 2016), while Sentinel-2’s red-

edge bands enhance nitrogen-sensitive spectral retrievals (Crema

et al., 2020). However, satellite-based approaches face inherent

limitations: coarse spatial resolutions obscure field-level

heterogeneity, cloud cover frequently compromises data

availability, and infrequent revisit cycles miss critical phenological

transitions (Li et al., 2010). These constraints necessitate

complementary proximal sensing solutions.

Proximal remote sensing platforms, including UAV-mounted

multispectral or hyperspectral sensors and tractor-integrated active

canopy sensors (e.g., GreenSeeker, Crop Circle), address satellite

limitations by delivering high spatiotemporal resolution (sub-meter

to centimeter scale) and cloud-independent operation (Dai et al.,

2023; Xu et al., 2023). These systems leverage red and near-infrared

(NIR) spectral regions to calculate VIs like the normalized

difference red edge index (NDRE) and the chlorophyll index red

edge (CIRE), which strongly correlate with LNC in crops such as

rice and wheat (Erdle et al., 2011; Li et al., 2012). Advanced machine

learning techniques, including random forests and neural networks,

further enhance prediction accuracy by integrating multi-sensor

data (Feng et al., 2014; He et al., 2016). Despite their technical

advantages, these systems face two critical barriers to widespread

adoption. First, the high costs of multispectral/hyperspectral

sensors and UAV platforms render them economically unviable

for smallholder farmers, who dominate agricultural production in

regions like southern China (Nirere et al., 2022; Shi et al., 2021; Tian

et al., 2022). Second, their operation demands specialized expertise

in sensor calibration, data processing, and spectral analysis—skills

often lacking in resource-limited settings. These challenges

underscore the urgent need for affordable, user-friendly

alternatives that democratize precision nitrogen management.

RGB imaging has re-emerged as a promising low-cost solution,

building upon the legacy of the Leaf Color Chart (LCC)—a simple,
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color-based tool widely adopted since the 1990s for visual nitrogen

status diagnosis (Shukla et al., 2004). Modern RGB systems leverage

consumer-grade cameras and computational algorithms to extract

quantitative color indices from red, green, and blue channel digital

numbers (DNs). For example, the normalized redness intensity (NRI)

and excess green index (ExG) have demonstrated strong correlations

with LNC in maize and rice (Lu et al., 2021; Zhang et al., 2020). Recent

studies further integrate machine learning techniques with multiple VIs

to improve model robustness across varying lighting conditions and

growth stages (Shi et al., 2021). However, existing research

predominantly focuses on single spatial scales—either leaf-level (using

controlled lighting scanners) or canopy-level (using handheld cameras)

—overlooking the hierarchical nature of agricultural monitoring. This

oversight is critical because LNC variability manifests differently across

scales: leaf-level measurements capture physiological status, canopy-

level integrates plant architecture effects, and plot-level incorporates field

heterogeneity (Xu et al., 2024). Ignoring these scale-dependent

dynamics risks oversimplifying model interpretations and limiting

operational utility. Moreover, canopy- and plot-scale RGB imaging

faces unique challenges, such as background interference from soil and

water, which are rarely addressed systematically.

The specific objectives of this research are threefold: (1) to

develop stepwise multiple linear regression (SMLR) models by

integrating 13 color indices from three RGB devices (flatbed

scanner, digital camera, and UAV), and evaluate their predictive

power across different scales; (2) to quantify performance variations

(in terms of R2 and RMSE) among leaf-, canopy-, and plot-scale

models via cross-validation, and identify optimal spatial resolutions

for diverse end-users; (3) to assess the efficacy of the green-minus-

red (GMR) threshold segmentation technique in mitigating

background noise at canopy and plot scales, and evaluate its

impact on model accuracy and generalizability.

By clarifying scale-dependent correlations between RGB-

derived indices and LNC, this study advances scalable precision

nitrogen management tools. The findings directly inform the design

of cost-effective monitoring systems for smallholder farming,

balancing ecological sustainability with yield security.
2 Materials and methods

2.1 Experiment design

The two field experiments for this study were conducted in the

Pukou District (32°04’15” N, 118°28’21” E) and Liuhe District (32°

25’04” N, 118°59’18” E) of Nanjing City, Jiangsu Province, China

(Figure 1). Each experiment was organized into treatment plots

with multiple replications to study the effects of varying rates and

types of nitrogen input (Table 1). Specifically, the Pukou

experiment consisted of five treatments that examined different

rates of controlled-release fertilizer input, each with four

replications (20 plots in total), while the Liuhe experiment

involved four treatments, each with four replications except for

the control (CK), which had three replications, resulting in a total of

15 plots (each measuring 200 m²).
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The experimental sites in Pukou and Liuhe featured paddy soils

(anthrosols) with distinct fertility profiles. Pukou soils exhibited

organic matter content of 22.3 g kg-1, total nitrogen of 1.3 g kg-1,

Olsen phosphorus of 15.4 mg kg-1, and available potassium of 146.4

mg kg-1. Liuhe soils contained higher nutrient levels: 26.6 g kg-1

organic matter, 1.6 g kg-1 total nitrogen, 15.2 mg kg-1 Olsen

phosphorus, and 166.2 mg kg-1 available potassium. Regarding

agronomic practices, two japonica rice cultivars (Wuyunjing 23

and Nanjing 5055) were transplanted in Pukou on June 12 during

the 2018 and 2019 growing seasons, with harvests conducted on

October 22, 2018 and November 12, 2019, respectively. In Liuhe,

the single cultivar Nanjing 5055 was transplanted on June 25, 2019

and harvested on November 13, 2019, maintaining consistent

phenological scheduling across sites.
2.2 Data collection

2.2.1 Determination of LNC
At the booting, flowering, and filling stages, three representative

hill plants per plot were destructively sampled from both

experimental sites. All leaf samples were immediately transported

to the laboratory, where they were oven-dried at 80°C until constant

weight was achieved. The dried samples were then finely ground

using a stainless-steel mill to ensure homogeneity. LNC was
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quantified via the micro-Kjeldahl method, which involves sulfuric

acid digestion followed by steam distillation and titration, adhering

to standardized protocols for agricultural plant tissue analysis.

2.2.2 Image acquisition
Image acquisition was synchronized with destructive leaf

sampling at the booting, flowering, and filling stages across both

experimental sites (Table 2). At the leaf scale, freshly collected

samples from each plot were scanned using a BenQ M209 Pro

flatbed scanner (BenQ, Inc.) under laboratory conditions. Leaves

were horizontally positioned on the scanner platform (297

mm×431.8 mm imaging area) and captured under uniform LED

illumination (Figure 2). For canopy-scale imaging, a Canon EOS 6D

Mark II digital camera (Canon, Inc.) was employed between 11:00

AM and 1:00 PM under stable ambient light, utilizing automated

settings for focus, exposure, and white balance. Plot-scale data were

acquired via a DJI Phantom 4 Pro UAV (SZ DJI Technology Co.,

Ltd) equipped with a consumer-grade RGB camera. Three

autonomous flights at 50 m, 100 m, and 150 m altitudes

maintained a speed of 2 m/s, with 75% lateral and 85% forward

overlap to ensure seamless coverage. The camera operated in

shutter priority mode (1/1000 s exposure, 2-second intervals),

capturing images in JPG format (approximately 20 megapixels)

under consistent midday lighting. All RGB images were geotagged

and stored in standardized folders for subsequent analysis.
FIGURE 1

Geographical distribution of the experimental sites. (A) Jiangsu Province, (B) Pukou site, (C) Liuhe site.
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2.3 Image processing

2.3.1 Image segment
A hierarchical image segmentation workflow was implemented

across leaf, canopy, and plot scales to address distinct background

complexities. At the leaf scale, images acquired by the BenQ M209

Pro flatbed scanner exhibited uniform white backgrounds

(Figure 2A). Otsu ’s thresholding algorithm—a method

maximizing inter-class variance between foreground (leaf) and

background (white) pixel intensities—was applied for automated
Frontiers in Plant Science 04
binarization, leveraging the bimodal histogram characteristic of

these high-contrast images.

For canopy-scale images captured by the Canon EOS 6D Mark

II, which contained heterogeneous backgrounds (soil, water, plant

residues), vegetation segmentation was achieved through GMR

index analysis (Equation 1) This method subtracted red band (R)

values from green band (G) values in RGB images, enhancing

vegetation/non-vegetation contrast (Wang et al., 2013). Five

candidate thresholds (GMR = 0, 5, 10, 15, 20) were empirically

tested to optimize canopy-background separation (Figure 3). The

GMR index was calculated using the following equation:

GMR = G − R (1)

where G and R represent the green and red band values of the

RGB image, respectively. The segmentation was implemented using

Python, leveraging libraries such as OpenCV and NumPy for image

processing. This approach allowed for the efficient application of

the GMR threshold to distinguish between vegetation and non-

vegetation areas.

At the plot scale, UAV-acquired RGB images first underwent

photogrammetric preprocessing in Agisoft PhotoScan Professional
TABLE 1 Fertilization information of field experiments in this study.

Experimental site Fertilization treatment Compound fertilizer (kg N ha-1) Proportion of controlled release N

Pukou

N1 0 0%

N2 240 0%

N3 240 30%

N4 240 40%

N5 240 50%

Liuhe

N1 158 50%

N2 176 50%

N3 196 50%

N4 196 0%
TABLE 2 Images acquisition from leaf, canopy and plot scales in 2018
and 2019.

Experimental
site

Year

Spatial scale

Leaf
scale

Canopy
scale

Plot
scale

Pukou
2018 ✓ × ✓

2019 ✓ ✓ ✓

Liuhe 2019 ✓ ✓ ✓
FIGURE 2

Schematic images from different spatial resolutions: (A) leaf-scale image acquired via flatbed scanner (BenQ M209 Pro); (B) canopy-scale
photograph captured using digital SLR camera (Canon EOS 6D Mark II); (C) plot-scale aerial imagery obtained from UAV-mounted consumer-grade
camera (DJI Phantom 4 Pro).
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(v1.7.3), including feature-based image alignment, orthorectification

for geometric correction, and mosaicking to generate georeferenced

composites. Subsequently, the GMR segmentation methodology,

identical to canopy-scale processing, was applied to ensure multi-

scale consistency. This tiered approach balanced scale-specific

challenges (uniform vs. complex backgrounds) while maintaining

methodological coherence across spatial resolutions.

2.3.2 Calculation of the color indices
In this study, most of the selected color indices have been

extensively studied for estimating leaf chlorophyll content,

aboveground biomass, and nitrogen status (Li et al., 2010;

Saberioon et al., 2014; Wang et al., 2013; Yue et al., 2019). The R,

G, and B channels from the color images were used to calculate

thirteen color indices (Table 3). At the leaf scale, the computation of

color indices involved using the mean values of leaf pixels from

segmented images of each plot. At the canopy scale, images from

each plot were selected to calculate color indices both before and

after applying the GMR threshold segmentation method. For the

plot scale, the area of interest within each plot was delineated by

clipping the UAV-derived orthomosaic images to the plot

boundaries. The color indices were then calculated using the

mean values of the pixels within the clipped area for each plot.

This approach ensures that the indices are representative of the

entire plot, accounting for spatial variability within the area

of interest.
2.4 Stepwise multiple linear regressions

In this study, the SMLR technique was employed to establish a

correlation between color indices (predictor variables) and LNC

(response variable). The SMLR method integrates both forward

selection and backward elimination processes to optimize the model.

Initially, the forward selection process identifies and includes the

predictor variable with the highest statistical significance, provided it

meets the 5% significance criterion. At each subsequent step, the

process continues to add the most significant remaining variables.

Once a new variable is added, the backward elimination process

evaluates all included variables, applying a 10% significance criterion

to decide whether to remove any variable that no longer meets this

threshold. This iterative process of adding and removing variables

ensures that only the most statistically significant predictors are

retained in the model, enhancing its predictive accuracy and

interpretability (Jin et al., 2012).

To further validate the robustness of the SMLR models and

mitigate the risk of overfitting, the leave-one-out cross-validation

(LOOCV) method was employed. In LOOCV, the model is trained

on all data points except one, which is used as the validation set.

This process is repeated such that each data point is used once as the

validation set. The results are then averaged to provide an estimate

of the model’s performance, ensuring that the SMLR model

maintains high generalization capability on unseen data.

Additionally, to assess the model’s transferability across different
Frontiers in Plant Science 05
sites, cross-site validation was performed. Models were trained on

data from the Pukou site and tested on the independent Liuhe site.
2.5 Statistical analysis

The correlations between measured LNC and color indices at

different growth stages were analyzed using SAS software (version

9.2, SAS Institute Inc., Cary, NC, USA). Model fitness was evaluated

by comparing estimated and measured LNC values in a 1:1 plot.

The performance of SMLR models for LNC estimation was assessed

using the coefficient of determination (R2), root mean square error

(RMSE), and normalized root mean square error (NRMSE). These

statistical indicators were defined in Equations 2–4, respectively, as

follows:

R2 = 1 −on
i=1(Pi − Oi)

2 ∕ on
i=1(Pi − �O)2 (2)

RMSE = 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�on

i=1(Pi − Oi)
2

r
(3)

NRMSE =
100
�O

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�on

i=1(Pi −Oi)
2

r
(4)

where n represents the number of observations, �O denotes the

average value of measured LNC, Pi and Oi are the estimated and
TABLE 3 Color indices or bands calculated from RGB images in
this study.

Index Description Formula Reference

R The R band of
UAV imagery

DN values of
R band

–

G The G band of
UAV imagery

DN values of
G band

–

B The B band of
UAV imagery

DN values of
B band

–

NRI Normalized red index R/(R+G+B) Liu et al. (2019)

NGI Normalized green index G/(R+G+B) Liu et al. (2019)

NBI Normalized blue index B/(R+G+B) Liu et al. (2019)

ExR Normalized excess
red index

(1.4R-G)/(G
+R+B)

Meyer and
Neto (2008)

ExG
Normalized excess

green index
(2G-R-B)/(G

+R+B)
Liu et al. (2019)

G/R Green red ratio index G/R Maimaitijiang
et al. (2019)

G/B Green blue ratio index G/B Maimaitijiang
et al. (2019)

R/B Red blue ratio index R/B Maimaitijiang
et al. (2019)

GMR Green minus red index G-R Wang et al. (2013)

INT Color intensity index (R+G+B)/3 Ahmad and
Reid (1996)
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observed values of LNC, respectively. Typically, the simulation is

classified as excellent when NRMSE is less than 10%, good if

NRMSE is between 10% and 20%, fair if NRMSE is between 20%

and 30%, and poor if NRMSE exceeds 30%.

3 Results

3.1 Variation of measured LNC

The measured LNC across growth stages, experimental sites,

years, and nitrogen treatments exhibited substantial variability,

ranging from 0.93% to 3.95% (Table 4). Consistent with the

nitrogen dilution effect, mean LNC declined progressively from

booting to filling stages at both sites. At Pukou, mean LNC

decreased by 14.3% from 2.31% at the booting stage to 2.01% at

the flowering stage, followed by a further 15.4% reduction to 1.71%

at the filling stage. Liuhe displayed higher baseline LNC values than

Pukou at equivalent phenological phases, with a 15.0% decline from

3.00% at booting to 2.55% at flowering and a 22.4% decrease to

1.98% at filling. This site-specific disparity likely reflects differences

in soil fertility, as Liuhe soils contained 19.3% higher organic matter

and 23.1% more total nitrogen compared to Pukou.
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3.2 Estimating LNC from the leaf scale

To assess the efficacy of 13 color indices derived from the leaf

scale, correlations between LNC and color indices across various

growth stages were established. At the booting stage, nearly all color

indices demonstrated significant correlations (p-value< 0.05) with

LNC, with the exception of G/R (Figure 4). The NBI index exhibited

the highest positive correlation with LNC, achieving a coefficient of

0.86**, while other color indices showed negative correlations

(Supplementary Table 1). At the flowering stage, color indices

displayed slightly lower correlations with LNC than those

observed at the booting stage. NBI and G/B exhibited the highest

positive and negative correlations with LNC, achieving coefficients

of 0.86** and -0.86**, respectively. Furthermore, G/R and GMR

demonstrated no significant correlations with LNC. At the filling

stage, NRI revealed the highest correlation with LNC, achieving a

coefficient of -0.75**. Additionally, all color indices demonstrated

significant correlations with LNC in rice at the filling stage.

Subsequently, these color indices were utilized to construct

SMLR models for LNC estimation, as described in Section 2.4.

The selected SMLR models at the leaf scale demonstrated

remarkable performance across both single-stage and combined-
TABLE 4 Basic information of measured LNC (%) at two experimental sites across various years and growth stages.

Experimental site n
Booting stage Flowering stage Filling stage

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

Pukou 40 1.49 2.96 2.31 ± 0.41 1.25 2.67 2.01 ± 0.35 0.93 2.5 1.71 ± 0.42

Liuhe 30 2.11 3.95 3.00 ± 0.49 1.88 3.39 2.55 ± 0.39 1.21 3.12 1.98 ± 0.50
FIGURE 3

Digital images of rice at canopy scale before and after GMR threshold segmentation. Yellow rectangle indicates the background post-segmentation,
while the red rectangle denotes the panicle portion of the canopy image.
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stages datasets. Statistical indicators such as R², RMSE, and NRMSE

ranged from 0.84 to 0.87, 0.16% to 0.25%, and 6.85% to 10.79%,

respectively, across various growth stages (Figure 5).
3.3 Estimating LNC from the canopy scale

3.3.1 Estimation of LNC from the canopy scale
before image segmentation

Correlations of color indices derived from canopy images with

LNC across various growth stages were assessed before image

segmentation (Figure 4; Supplementary Table 2). The highest

correlation coefficients were observed for B, R, and G/R indices,

achieving 0.75**, -0.87** and 0.81**, respectively at the booting,

flowering, and filling stages. None of the selected optimal color

indices exhibited consistent performance in their correlation with

LNC across various growth stages.

Among the SMLR models to estimate LNC for single-stage and

combined-stages datasets, the SMLR model at combined stages had the

poorest performance (R2 = 0.54, RMSE = 0.41% andNRMSE = 17.74%)

(Figure 6D). At the booting stage, the SMLR model overestimated LNC

for values lower than 2% and underestimated it for values higher than

3.6% (Figure 6A, data not shown). The performances of the SMLR

models at the flowering and filling stages were similar, with R2 values of

0.73 and 0.72, RMSE values of 0.22% and 0.27%, and NRMSE values of

9.24% and 14.21%, respectively (Figure 6).

3.3.2 Estimation of LNC from the canopy scale
after image segmentation

The performance of SMLRmodels derived from canopy-scale images

after GMR threshold segmentation is illustrated in Figure 7. To compare

the robustness and reliability of themodels across varyingGMR threshold

values, these were set from 0 to 20 in increments of 5. Generally, the R2
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values exhibited similar trends across various GMR threshold values, with

the exception of a GMR value of 20 at the filling stage. R2 values tended to

decrease as GMR threshold values increased, both in single-stage and

combined-stages datasets. When GMR threshold values exceeded 5, both

RMSE and NRMSE tended to increase with higher GMR thresholds.

Following image segmentation, the SMLR model at the flowering stage

showed optimal performance for estimating LNC, both in single-stage

and combined-stages datasets, at consistent GMR threshold values. This

result parallels the performance observed with the SMLR model at the

flowering stage before image segmentation (Figure 6B).
3.4 Estimating LNC from the plot scale

3.4.1 Performance of SMLR models across flight
altitudes (pre-segmentation)

Correlation analysis between LNC and UAV-derived color

indices revealed altitude-dependent patterns (Supplementary

Table 3). At booting and flowering stages, the NRI exhibited the

strongest negative correlations with LNC across most altitudes (|r| =

0.66–0.79), except at 50 m during booting. At the filling stage,

optimal indices shifted: ExR dominated at 50 m and 150 m, while

the R band showed peak correlation at 100 m.

The SMLR models demonstrated distinct altitude-dependent

performance in estimating rice LNC from UAV-based RGB

imagery (Table 5). At 100 m flight altitude, models consistently

achieved optimal accuracy across growth stages, with R2 values

ranging from 0.61 (filling stage) to 0.65 (booting stage), RMSE

between 0.29% (flowering) and 0.35% (all stages), and NRMSE of

13%-16%. This altitude outperformed both lower (50 m) and higher

(150 m) alternatives—for instance, at the booting stage, 100 m

altitude improved R2 by 3.2% compared to 50 m and 8.3% over 150
FIGURE 4

Correlations between color indices and LNC at the leaf and canopy scales before GMR segmentation across growth stages. “BT”, “FLS”, “FIS”, and
“All” denote the booting, flowering, grain-filling, and combined stages, respectively. ** indicates significance at p < 0.01.
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m. The exception occurred during flowering stage, where 150 m

altitude unexpectedly showed marginally better NRMSE (12% vs.

13% at 100 m), though with comparable R2 (0.63 vs. 0.61). Notably,

combined-stage models at 100 m altitude maintained robust

performance (R2 = 0.65, NRMSE = 16%), suggesting stable

generalizability across phenological phases. The superior

performance at 100 m likely stems from an optimal balance

between spatial resolution and reduced atmospheric interference,

enabling precise vegetation indexing while minimizing sensor noise.

These findings establish 100 m as the recommended operational

altitude for plot-scale LNC monitoring via consumer-grade UAVs

in rice paddies.

3.4.2 Performance of the SMLR models obtained
from different flight altitudes after image
segmentation

Post-segmentation analysis of SMLR models across flight altitudes

revealed nuanced performance patterns tied to GMR threshold
Frontiers in Plant Science 08
selection (Figure 8). At 50 m altitude, R2 values exhibited a unimodal

trend with increasing GMR thresholds (0–20), peaking at intermediate

thresholds before declining in both single-stage and combined datasets.

This pattern corresponded to minimal variation in RMSE and NRMSE

(coefficient of variation< 1.5%, Supplementary Table 4). At an altitude

of 100 m, model performance demonstrated stability across different

thresholds. Single-stage datasets yielded R2 ranging from 0.58 to 0.66,

with RMSE of 0.29% to 0.36% and NRMSE of 11.6% to

16.5%. Combined-stage datasets showed R2 values of 0.63 to 0.66,

RMSE values of 0.34% to 0.36%, andNRMSE values of 15.4% to 16.1%.

At 150 m altitude, LNC estimation accuracy deteriorated sharply when

GMR thresholds exceeded 10, except in the combined-stage dataset,

mirroring trends observed at 100 m but with lower robustness.

Statistical variability across thresholds remained moderate, with

coefficients of variation ranging from 0.83% to 7.8% for R2, 0.8% to

6.6% for RMSE, and 0.79% to 8.08% for NRMSE—confirming the

tested thresholds exhibited minimal sensitivity within the evaluated

range. Post-segmentation performance peaked consistently at 100
FIGURE 5

Relationship between measured and predicted LNC using SMLR models at the leaf scale across different growth stages: (A) booting, (B) flowering,
(C) filling, and (D) combined stages.
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FIGURE 6

Relationship between measured and predicted LNC using SMLR models at the canopy scale before GMR segmentation across different growth
stages: (A) booting, (B) flowering, (C) filling, and (D) combined stages.
FIGURE 7

Performance of SMLR models in estimating rice LNC at the canopy scale following GMR threshold segmentation. (A) R2, (B) RMSE, (C) NRMSE.
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FIGURE 8

Performance of the selected SMLR models for estimating LNC at the plot scale after image segmentation. (A, D, G) R2, RMSE, and NRMSE at 50-m
flight altitude; (B, E, H) R2, RMSE, and NRMSE at 100-m flight altitude; (C, F, I) R2, RMSE, and NRMSE at 150-m flight altitude.
TABLE 5 Performance metrics of SMLR models for LNC estimation across flight altitudes and growth stages (pre-segmentation).

Growth stage

Flight altitude

50 m 100 m 150 m

R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE

Booting stage 0.63 0.34% 13% 0.65 0.33% 13% 0.60 0.36% 14%

Flowering stage 0.57 0.30% 13% 0.61 0.29% 13% 0.63 0.28% 12%

Filling stage 0.58 0.31% 17% 0.61 0.29% 16% 0.57 0.31% 17%

All 0.61 0.37% 16% 0.65 0.35% 16% 0.63 0.36% 16%
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m altitude, where models achieved a balanced trade-off between

precision (R2 up to 0.66) and error minimization (NRMSE 10%–

20%), validating the GMR segmentation framework detailed in

Section 2.4. These findings establish 100 m as the most

operationally suitable altitude for plot-scale LNC monitoring

using UAV-derived RGB imagery.
3.5 Model transferability across sites

To evaluate model general izabi l i ty across spat ia l

heterogeneities, cross-site validation was performed using models

trained on Pukou site data and tested on the independent Liuhe site.

Performance metrics are stratified by spatial scale (leaf, canopy,

plot) and flight altitude (for plot-scale models: 50 m, 100 m, 150 m),

as summarized in Supplementary Table 5.

For the leaf scale, Pukou-trained models showed strong cross-site

performance, with training R2 of 0.72, RMSE of 0.32%, and NRMSE

of 12.3%. Test results were R2 of 0.59, RMSE of 0.37%, and NRMSE of

16.8%, demonstrating robustness against inter-site spectral

variability. At the canopy scale, transferability declined: training

yielded R2 of 0.63, RMSE of 0.34%, and NRMSE of 15.1%, while

test values dropped to R2 of 0.45, RMSE of 0.48%, and NRMSE of

19.8%. Plot-scale performance proved altitude-sensitive: at 50 m, test

R2 was 0.40 with RMSE 0.47% and NRMSE 21.4%. Slight

improvements were observed at 100 m (R2 = 0.39, RMSE = 0.46%,

NRMSE = 21.1%), followed by a marginal decline at 150 m (R2 = 0.38,

RMSE = 0.46%, NRMSE = 20.9%), likely due to reduced spatial

resolution limiting fine-scale nitrogen detection.
4 Discussion

4.1 Effect of spatial scale on LNC
estimation accuracy

This study highlights the critical role of spatial scale

in determining the efficacy of RGB imaging for rice LNC
Frontiers in Plant Science 11
assessment. At the leaf scale, the SMLR models achieved superior

accuracy (R2 = 0.84–0.87) compared to canopy- and plot-scale

approaches (Figure 9). This advantage stemmed from stringent

laboratory conditions: leaves were flattened against the scanner

surface, ensuring uniform orientation and lighting, while the white

background facilitated near-perfect segmentation via Otsu’s

method. By eliminating field variability (e.g., shadows, soil

interference), leaf-scale imaging isolated spectral responses

directly linked to nitrogen content. These findings align with

Saberioon et al. (2014), who demonstrated that controlled leaf-

scale imaging enables rapid nitrogen diagnostics, though their focus

on single leaves contrasts with our multi-stage integration. The

cross-site validation (Section 3.5) further supported the leaf-scale

model’s generalizability, showing relatively stable performance

when applied to a different site. This indicates that the leaf-scale

model can capture fundamental spectral-nitrogen relationships

that persist across environments, making it promising for

broader applications.

At thecanopy scale, the high-resolution DSLR camera

(26 megapixels) captured intricate canopy details but introduced

noise from heterogeneous backgrounds (soil, water residues). Model

performance exhibited phenological dependency: flowering and

filling stages achieved higher accuracy (R2 improvement > 15% vs.

booting stage), likely due to stabilized canopy architecture. During

booting, dense foliage and vertical leaf angles increased intra-canopy

shadowing, reducing spectral discriminability. This aligns with

Bendig et al. (2015), who reported similar structural complexity

challenges in barley biomass estimation. Additionally, visible

reflectance saturation at booting stage—attributable to high leaf

area index (LAI > 4.5) and chlorophyll density—limited model

sensitivity, as observed in rice nitrogen accumulation studies

(Zheng et al., 2018). Such saturation phenomena are well-

documented in crops with overlapping leaves, underscoring the

need for phenology-specific calibration.

Plot-scale UAV imaging faced unique tradeoffs between spatial

resolution and environmental interference. At 50 m altitude,

bidirectional reflectance under solar noon conditions necessitated

intensive image stitching to mitigate angular artifacts. Conversely,
FIGURE 9

Comparison analysis between the optimal SMLR models from leaf, canopy and plot scales. “BT”, “FLS”, “FIS”, and “All” represent the booting,
flowering, filling, and combined stages, respectively. (A) R2, (B) RMSE, (C) NRMSE.
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150 m altitude introduced motion blur and chromatic aberrations in

consumer-grade cameras, degrading spectral fidelity. The 100 m

altitude optimally balanced resolution and stability, yielding

consistent accuracy (NRMSE< 16%). These observations corroborate

Rasmussen et al. (2016), who identified solar angle variations as a key

uncertainty in UAV-based vegetation indexing. Post-segmentation

GMR thresholding further enhanced accuracy by suppressing soil/

water interference, validating its utility in operational settings.

Collectively, these results establish a scale-dependent

hierarchy: leaf-scale precision, canopy-scale field adaptability,

and plot-scale scalability. Each scale addresses distinct

agricultural needs, from high-stakes breeding trials to regional

fertilizer management.
4.2 Impact of GMR threshold segmentation
on LNC estimation

To assess the sensitivity of SMLR models to GMR segmentation

thresholds in rice LNC estimation, we systematically evaluated

threshold values from 0 to 20 in 5-unit increments. This analysis

excluded leaf-scale imagery due to its uniform white background,

which permits reliable segmentation via Otsu’s method without

requiring advanced techniques. Wang et al. (2013) established the

efficacy of GMR segmentation for rice-background isolation in digital

imagery, providing a methodological foundation for our canopy- and

plot-scale analyses.

At the canopy scale, GMR thresholds > 5 during the booting

stage effectively differentiated rice canopies from complex

backgrounds (soil, water residues) in intact images (Figure 3).

Paradoxically, post-segmentation SMLR models exhibited reduced

accuracy compared to pre-segmentation models (Table 6),

suggesting that canopy-level segmentation may filter ecologically

relevant spectral variation. This observation aligns with Lee and Lee

(2013), who demonstrated stronger correlations between VIs and

crop parameters in non-segmented datasets, implying that

segmentation disrupts natural reflectance gradients associated

with canopy density and microtopography. The challenge

intensified during flowering and filling stages, where panicles and

senescing leaves exhibited spectral similarities (Figure 3),

complicating pixel classification. However, combined-stage

models demonstrated notable accuracy improvements post-
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segmentation (R2 increase ≤ 9.26%, Table 6), likely because multi-

temporal calibration compensates for illumination variations and

structural heterogeneity. This compensation mechanism aligns with

the principle that temporal integration buffers single-stage

segmentation errors (Zheng et al., 2018).

At the plot scale, it is notable that most researchers have not

incorporated UAV-based image segmentation into their models for

crop parameter estimation (Li et al., 2016). This oversight may lead

to inaccuracies in parameter estimation. In this study, we adopted

specific GMR threshold values to segment images obtained from

different flight altitudes, aiming to enhance the accuracy of LNC

estimation. This approach allowed us to address the variations in

lighting and perspective associated with different altitudes. During

the reproductive stage, rice achieves nearly full coverage, creating

significant shading effects. The darker regions in the plot images

were primarily due to the lower parts of the rice canopy being

shaded by the upper parts (Wang et al., 2013). This shading effect

poses challenges for accurate image segmentation and analysis.

When the GMR threshold value exceeded 0, darker areas were

classified as background. After segmentation, the optimal SMLR

models showed some enhancement in the reliability of the

assessments (Table 6), indicating the potential benefits of

segmentation in improving model accuracy. However, ANOVA

revealed no significant differences in the R2 values obtained from

various altitudes at the same growth stage after GMR segmentation

(p > 0.05). This suggests that while segmentation can enhance

model reliability, its impact may be limited by other factors such as

altitude and growth stage.

In summary, our findings indicate that while GMR

segmentation can enhance the reliability of SMLR models for

LNC estimation, its effectiveness varies across different spatial

scales and growth stages. This variability underscores the need for

tailored segmentation approaches when monitoring rice

nitrogen status.
5 Conclusions

In this study, the performance of SMLR models in estimating

the LNC of rice was investigated using color digital images from

three different spatial scales. The results indicated that SMLR
TABLE 6 The statistic of the improved accuracy (R2) of the optimal SMLR models after GMR threshold segmentation method at canopy and
plot scales.

Spatial scales Altitudes above canopy
Growth stage

Booting stage Flowering stage Filling stage All

Canopy scale 1m -1.59% 4.11% 0.00% 9.26%

Plot scale

50m 4.76% 8.77% 5.17% 4.92%

100m 6.15% 0.00% 4.92% 1.54%

150m 15% 0.00% 10.53% 1.59%
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models at the leaf scale demonstrated the most robust predictive

abilities for LNC estimation across growth stages when compared to

other spatial scales. At the canopy scale, SMLR models exhibited

acceptable precision and accuracy in LNC estimation prior to image

segmentation. Further research indicated that accuracy

improvements were more significant in combined-stage datasets

than in single-stage datasets following GMR segmentation. At the

plot scale, the impact of images derived from UAVs at different

flight altitudes on LNC estimation was analyzed both before and

after GMR threshold segmentation. Generally, UAV images

acquired at a flight altitude of 100 m showed relatively suitable

performance for estimating rice LNC, applicable to both single and

combined growth stages. Cross-site validation revealed that the leaf-

scale model maintained strong performance when applied to an

independent site, while the canopy and plot-scale models showed

greater sensitivity to site-specific conditions. These findings

underscore the importance of considering the effects of different

spatial scales and environmental conditions when developing

models for assessing crop biophysical and biochemical

parameters. This information will also be useful for selecting

sensors and designing improved sensors for ecosystem

observation. Moreover, it highlights the significant advantages

and potential of using threshold segmentation techniques in

digital images to enhance the accuracy of crop nitrogen monitoring.
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