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Introduction: Accurate classification of corn seeds is vital for the effective

utilization of germplasm resources and the improvement of seed selection and

breeding efficiency. Traditional manual classification methods are labor-

intensive and prone to errors. In contrast, machine learning techniques—

particularly convolutional neural networks (CNNs)—have demonstrated

superior performance in terms of classification accuracy, robustness, and

generalization. However, conventional hyperspectral data processing

approaches often fail to simultaneously capture both spectral and textural

features effectively.

Methods: To overcome this limitation, we propose a novel convolutional neural

network architecture with a variable-depth convolutional kernel structure (VD-

CNN). This design enables the network to adaptively extract continuous spectral

features by modulating kernel depth, while simultaneously capturing fine-grained

textural patterns through hierarchical convolutional operations. In our experiments,

we selected eight widely cultivated corn seed varieties and collected hyperspectral

images for 100 seeds per variety. A four-layer CNN framework was constructed, and

a total of 12 models were developed by varying the convolutional kernel depth to

evaluate the impact on classification performance.

Results: Experimental results show that the proposed VD-CNN achieves optimal

performance when the convolutional kernel depth is set to 15, attaining a training

accuracy of 98.65% and a test accuracy of 96.97%. To assess the generalization

ability of the model, additional experiments were conducted on a publicly

available rice seed hyperspectral dataset. The VD-CNN consistently

outperformed existing benchmark models, improving the classification

accuracy by 3.14% over the best baseline. These results validate the robustness

and adaptability of the proposed architecture across different crop species and

imaging conditions.
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Discussion: These findings demonstrate that the proposed VD-CNN effectively

captures both spectral and textural features in hyperspectral data, significantly

enhancing classification performance. Themethod offers a promising framework

for hyperspectral image analysis in seed classification and other

agricultural applications.
KEYWORDS

variable-depth convolutional kernels, 3D convolutional kernel, CNN, corn,
hyperspectral image, variety identification
1 Introduction

Corn is one of the three major cereal crops worldwide and

serves as a vital feed source and industrial raw material (Li et al.,

2025). The quality of corn seeds directly impacts yield, food

security, and the agricultural economy. However, with the rapid

advancement of hybrid corn seed production technology,

challenges related to seed purity have become increasingly

prominent. The complexity of hybrid breeding systems, large-

scale commercial seed multiplication, and potential for

unintended cross-pollination have collectively contributed to a

noticeable decline in seed purity in practical agricultural

applications. This decline not only increases the risk of varietal

admixture and identity confusion but also undermines the

consistency of crop performance and ultimately leads to reduced

yield and economic loss for producers. Therefore, accurate

identification of corn seed varieties serves as the foundation for

effective purity assessment and is vital for supporting downstream

measures aimed at preserving genetic integrity and ensuring stable

crop production (Xue et al., 2025).

Traditional identification methods, such as morphological

analysis, molecular biology techniques, and genetic markers, are

labor-intensive, time-consuming, and require specialized expertise

(Yu et al., 2018). Moreover, these approaches often cause

irreversible damage to samples, making them unsuitable for rapid

and non-destructive quality assessment in industrial settings (Yang

et al., 2018). Consequently, researchers have focused on developing

fast, non-invasive techniques for seed classification and

identification (Zhu et al., 2025).

In recent years, researchers have extensively explored non-

destructive detection techniques that leverage the morphological

and optical properties of seeds. These methods include X-ray

diffraction (Ahmed et al., 2018), laser speckle analysis (Sutton and

Punja, 2017), near-infrared spectroscopy (Li et al., 2018), multispectral

imaging (MSI) (Cheng et al., 2024), hyperspectral imaging (HSI)

(Geng et al., 2013), and Raman spectroscopy (Seo et al., 2016). Among

these, both MSI and HSI have gained significant attention for their

ability to combine imaging and spectral analysis. MSI captures

reflectance information at a limited number of discrete wavelengths,

offering a balance between data volume and analytical performance,
02
which makes it suitable for rapid and cost-effective applications. HSI,

on the other hand, is a more advanced technique that provides

continuous spectral data across a broad range of wavelengths,

enabling the simultaneous acquisition of detailed spectral and

spatial information from the target subject (He et al., 2019). This

high-resolution capability makes HSI particularly powerful for

identifying subtle differences in seed composition and quality. In

recent years, HSI technology has achieved significant research

advancements in the field of remote sensing. To improve semantic

segmentation performance across large-scale geospatial datasets, Li

et al. (Pang et al., 2025) proposed SegEarth, which enhances pixel-level

reasoning and benefits HSI tasks through transferable pretraining.

Addressing the challenge of scarce annotations in HSI classification,

Pang et al. (Sun et al., 2025) also introduced SPECIAL, which applies

CLIP to align HSI spectral features with textual descriptions, enabling

zero-shot classification of unseen categories. Furthermore, for

temporal HSI analysis, Sun et al. (Li et al., 2025) developed the

Mask Approximation Net (MAN), a diffusion-based model that

generates detailed natural language captions to describe changes

captured in multitemporal HSI data. In addition to the field of

remote sensing, hyperspectral imaging (HSI) has also yielded

numerous application results in desktop-level applications, such as

monitoring the moisture content of tea leaves, assessing citrus fruit

maturity, and detecting pesticide residues in vegetables (Wang and

Song, 2023). Furthermore, HSI has been extensively employed in non-

destructive testing of crop seed varieties, quality assessment, and

viability evaluation (Bo et al., 2022). Manggala et al. (2023)

provided a comprehensive review of pesticide residue detection

techniques and emphasized the potential of HSI, especially when

integrated with machine learning, to accurately identify and map

residues across crop surfaces. Despite its promise, the complexity and

cost of HSI limit its adoption among smallholder farmers. To address

similar challenges in plant health monitoring, Putra et al. (2022))

proposed a low-cost, smartphone-based optical sensing system

combined with deep neural networks to estimate in-situ chlorophyll

content in maize, achieving results comparable to SPAD meters.

In recent years, the combination of traditional machine learning

and spectroscopy has been widely applied to corn seed

identification (Saha and Manickavasagan, 2021). Zhang et al.

(Zhao et al., 2018) proposed an incremental learning model using
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various classifiers to identify five corn seed varieties based on

hyperspectral images, achieving an accuracy close to 100%. Fu

et al. (Zhang et al., 2022) employed HSI with an SSAE-CS-SVM

model to distinguish four corn varieties, obtaining a test accuracy of

95.81%. Wang et al. (Fu et al., 2022) developed a fusion model

integrating dual-band ratio images and texture features to identify

seeds harvested over four different years, achieving an accuracy of

97.5%. Other studies by Tu et al. (Wang et al., 2022) and Hu et al.

(Tu et al., 2022) further enhanced classification performance by

integrating machine learning with optimized algorithms. However,

models based on traditional feature engineering often suffer from

high complexity, limited flexibility, and the need for extensive

parameter tuning (Hu et al., 2022), which hinders their scalability

and practical application.

To overcome these limitations, deep learning has been

increasingly adopted for hyperspectral seed analysis (Medus et al.,

2021). With its capacity to extract hierarchical feature

representations automatically, deep learning reduces the reliance

on manual feature engineering and improves model generalization

(Barbedo, 2023). Li et al. (2023) integrated the CBAM attention

module into the MobileNetV3 network for corn seed defect

detection, achieving 93.14% accuracy. Zhang et al. (2022)

combined a convolutional autoencoder with a bionic recognition

model for incremental learning, achieving 98.76% accuracy. Qi et al.

(2024) applied several deep learning models—including LeNet,

GoogLeNet, and ResNet—for classifying ten watermelon seed

varieties, with a maximum accuracy of 99.56%. Wang et al.

(2024) developed an improved E-VGG16 model by incorporating

batch normalization and deep convolutional layers, achieving

98.13% accuracy. Li et al. (2024) proposed a lightweight model

based on an optimized ResNet50 framework, incorporating an

efficient channel attention (ECA) mechanism and depthwise

separable convolutions, achieving 91.23% accuracy. Zhang et al.

(2024) used a sparse attention mechanism for hyperspectral band

selection, resulting in 93.27% classification accuracy. Tang et al.

(2023) introduced the HSI-3DResNet model using 3D convolution

to extract joint spatial–spectral features, achieving an accuracy

of 97.47%.

Currently, the application of convolutional neural networks

(CNNs) to hyperspectral image (HSI) processing can be broadly

categorized into three primary approaches. The first approach

employs dimensionality reduction or feature selection techniques

—such as the Successive Projections Algorithm (SPA) and

Competitive Adaptive Reweighted Sampling (CARS)—to reduce

spectral dimensionality prior to classification, thereby lowering

computational complexity. However, this strategy often neglects

the spatial structural information that is intrinsic to HSIs. The

second approach transforms high-dimensional HSI data into three-

channel pseudo-RGB images using methods such as Principal

Component Analysis (PCA), enabling the use of conventional

2D-CNNs. While simplifying model input, this process inevitably

leads to the loss of critical spectral information, substantially

limiting classification accuracy.

To overcome these limitations, a third class of methods has

emerged, leveraging 3D-CNNs (e.g., HSI-3DResNet) and attention-
Frontiers in Plant Science 03
based CNN architectures to jointly extract spatial-spectral features.

These models preserve partial spectral structure and enhance focus

on informative bands or regions through attention mechanisms.

Nonetheless, they remain insufficient in capturing the continuous

spectral dependencies across sequential HSI bands. This

shortcoming is primarily attributed to the fixed-size nature of 3D

convolutional kernels, which offer limited receptive fields along the

spectral dimension and fail to model long-range spectral continuity.

Furthermore, most attention modules are primarily designed for

spatial modeling, with limited capability to explicitly learn inter-

band sequential relationships. As a result, these methods often

suffer from incomplete spectral feature extraction, particularly in

complex classification tasks.

To address this issue, we propose a CNN architecture with

variable-depth convolutional kernels, enabling multi-scale receptive

fields that can flexibly adapt to different spectral correlations. By

preserving the continuity of spectral signatures while

simultaneously integrating spatial features, the proposed method

enables efficient joint spectral-spatial modeling without relying on

explicit dimensionality reduction. Experimental results

demonstrate that our approach significantly enhances

classification performance in high-precision tasks such as corn

seed variety identification, offering a promising solution for

detailed hyperspectral analysis.
2 Materials and methods

2.1 Preparation of experimental materials

The corn seeds used in this study were sourced from the corn

seed bank of the Jilin Academy of Agricultural Sciences, which is

known for its comprehensive collection of high-quality varieties.

Eight corn seed varieties were carefully selected based on their intact

appearances and overall seed quality. These varieties included

Youdi919, Xianyu335, Simi21, KX3564, Ruipu909, Zhongdan111,

Limin33, and Jidan209, which represent a diverse range of genetic

backgrounds and characteristics commonly used in commercial

production. For each variety, 100 seeds were meticulously collected,

totaling 800 experimental samples. This selection process ensured

that the samples were representative of the variations typically

encountered in real-world agricultural settings.

The sample size of 100 seeds per variety is considered

sufficiently large to provide robust data for statistical analysis and

model validation. With a total of 800 seeds across eight distinct

varieties, the sample size is large enough to capture a wide range of

variability within and between varieties, which is crucial for drawing

reliable conclusions about the generalizability of the results. This

sample size ensures that the findings from this study can be

confidently extended to other similar varieties, enhancing the

applicability of the research to broader contexts.

Moreover, the diverse selection of varieties helps address

potential variability in seed traits, such as size, shape, and surface

characteristics, further strengthening the reliability and applicability

of the experimental results. For the purpose of easier labeling and
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organization during the experiment, the eight corn seed varieties

were designated as Category0, Category1, Category2, Category3,

Category4, Category5, Category6, and Category7. The experimental

samples are visually represented in Figure 1.
2.2 Experimental equipment and
environment

The hyperspectral imaging system used in this study comprises

a hyperspectral camera (Pika XC2, Resonon Inc., Bozeman, MT,

USA), a zoom lens (XENOPLAN, F/1.4 FL 23 mm, Schneider-

KREUZNACH, Bad Kreuznach, Germany), a computer (Lenovo,

China), a movable tray, and four halogen supplementary lights
Frontiers in Plant Science 04
(OSRAM, Munich, Germany). The hyperspectral camera was

positioned 46 cm above the tray, which measured 30 cm × 40 cm.

To eliminate the influence of ambient light sources, all

hyperspectral image acquisitions were performed in a darkroom.

The experimental setup is illustrated in Figure 2.

Hyperspectral image acquisition was conducted using Resonon

Pro software with the following configuration parameters: a

wavelength range of 400–1000 nm, a spectral resolution of 1.3

nm, 462 spectral bands, a spatial resolution of 0.15 mm/pixel, a

maximum frame rate of 165 frames per second, and a tray

movement speed of 30 mm/s. Image acquisition was performed

using a line-by-line scanning method.

For hyperspectral image processing and data analysis, ENVI 5.6,

MATLAB R2022b, and Visual Studio Code 1.86.2 were utilized. The
FIGURE 2

The data collection equipment consists of a Hyperspectral imaging camera, lighting system, sample automated moving tray, power system, and
computer. The entire experimental process is conducted in a darkroom.
FIGURE 1

8 varieties of corn seed samples.
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software environment consisted of Windows 10 22H2, Python 3.11,

scikit-learn 1.4.2, PyTorch 2.2.1, and CUDA 12.1. The hardware

environment included an AMD Ryzen 7 5800X 8-Core Processor

(3.80 GHz), 64 GB DDR4 RAM, and an NVIDIA GeForce RTX

3090 GPU.
2.3 Hyperspectral image acquisition and
sample segmentation

In order to reduce the impact of light source fluctuations and

dark current on high-spectral images, it is necessary to perform

black and white correction on the experimental equipment. Place a

polytetrafluoroethylene standard white plate with a reflectance of

99.99% at the same height as the sample, scan and collect the

standard white light calibration data W . Then cover the lens with a

black lens cap and collect the dark field calibration data B. If the

original image is I0, the final corrected data I is obtained as shown in

Equation 1:

I =
I0 − B
W − B

(1)

The acquired hyperspectral images were opened using ENVI

software, and a color composite image was constructed using the

images at 640 nm, 550 nm, and 470 nm wavelengths, which are the

default band selections in ENVI for generating RGB composites.

The generated color images are then processed using a series of

image processing techniques. First, the images are converted to

grayscale using a weighted average method. Next, mean filtering
Frontiers in Plant Science 05
with a 7 × 7 kernel is applied to reduce noise. Finally, binary

thresholding is employed to perform threshold segmentation,

generating a mask for extracting the regions of interest

corresponding to individual seed samples. The hyperspectral data

for each segmented seed are then extracted from the original

hyperspectral dataset, forming the experimental dataset. The

extraction process and results are illustrated in Figure 3.

The average spectra of all samples were extracted, as shown in

Figure 4. Significant differences in the spectral curves are observed

between the wavelengths of 500 nm–550 nm and 600 nm–700 nm,

with notable variations in both the shape and intensity of the curves.

The summary of the average spectral profiles for each sample is

shown in Figure 5. Within the same variety, the spectral curves of

each sample are generally consistent in shape, with the primary

differences observed in intensity. This confirms that the spectral

variation within samples of the same variety is minimal. When

combined with the previous observation of significant spectral

differences between varieties, it can be concluded that the

hyperspectral image contains valuable variety-specific features and

differential information, which serves as a foundational dataset for

variety classification.

Due to the varying sizes of the extracted images, a

standardization procedure is applied to the 800 experimental

samples to uniformly resize each sample’s hyperspectral image to

462×100×100. In this study, the 800 experimental samples are

divided into training and testing sets in a 4:1 ratio, with 640

samples in the training set and 160 samples in the testing set. The

recognition accuracy for both the training and testing sets is

calculated and analyzed separately.
FIGURE 3

Using RGB color images processed to construct segmentation masks to extract hyperspectral image data of individual seeds.
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3 Model construction

3.1 Construction of variable-depth
convolutional kernels

Hyperspectral data is a three-dimensional structured dataset

consisting of multiple spectral bands, which not only captures

spectral feature information but also incorporates spatial texture
Frontiers in Plant Science 06
characteristics of the image. Due to its unique 3D structure,

hyperspectral data exhibits rich features in both the spatial and

spectral dimensions, posing challenges for conventional

convolutional kernels in processing such data. The three-dimensional

nature of hyperspectral data requires convolutional kernels to

simultaneously extract feature information across all three dimensions.

To address the limitations of traditional 3D convolutional

kernels in hyperspectral data analysis, a Variable-Depth
FIGURE 5

Summary of average spectral profiles for each sample.
FIGURE 4

Average spectral profiles of eight corn seed varieties.
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Convolutional Kernel (VD) structure is proposed. This structure is

designed to extract both spectral and texture features from

hyperspectral data.

The core concept of the variable-depth convolutional kernel is

based on the understanding that different datasets or regions may

exhibit varying degrees of correlation in the depth dimension.

Traditional fixed-depth convolutional kernels may limit the

model’s feature extraction capabilities. Therefore, dynamic

adjustment in the depth dimension is introduced, allowing the

model to adaptively select the appropriate depth range based on

local data characteristics. This approach enables the extraction of

meaningful features at multiple depth scales.

As illustrated in Figure 6, the computational effects of 3D

convolutional kernels with varying depths on hyperspectral

structured data demonstrate that, as the depth of the
Frontiers in Plant Science 07
convolutional kernel increases, it can extract more comprehensive

spectral feature information. This further highlights the advantages

of the variable-depth convolutional kernel in hyperspectral

data processing.

There are significant differences between two-dimensional

convolutional neural networks (2D CNNs) and three-dimensional

convolutional neural networks (3D CNNs) in terms of convolution

operation dimensions, data structure processing, computational

complexity, and application scenarios. The differences in their

computational processes are illustrated in Figure 7. In the 2D

convolution operation, sliding occurs only within the two-

dimensional plane, and the feature extraction is completed by

fully covering all the plane information. In contrast, the 3D

convolution operation requires sliding not only within the two-

dimensional plane but also along the depth dimension. Compared
FIGURE 7

Schematic diagram of the 2D and 3D convolution operation processes.
FIGURE 6

Schematic diagram illustrating the feature extraction differences of convolutional kernels with varying depths in hyperspectral data.
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to 2D convolution, 3D convolution can handle more complex

structural data and extract more feature information.

In three-dimensional convolution operations, the input data is

represented as a three-dimensional tensor, typically denoted as X ∈
RH*W*D, whereH is the height,W is the width, andD is the depth of

the input data. The three-dimensional convolutional kernel K is a

three-dimensional tensor, generally represented as K ∈ RF*F*Dk ,

where F is the two-dimensional spatial dimension of the kernel, and

Dk is the depth of the kernel. The standard three-dimensional

convolution operation is described by the following Equation 2. The

value at a specific position in the output feature map of a 3D

convolution operation can be expressed as follows:

y   (i, j, k) = o
F−1

m=0
o
F−1

n=0
o
Dk−1

p=0
X(i +m, j + n, k + p) · K(m, n, p) (2)

This study draws conceptual inspiration from the Successive

Projections Algorithm (SPA), which identifies characteristic

wavelengths through a process of variable initialization, iterative

refinement, and performance-based selection of the optimal

solution (de Souza et al., 2025). In a similar manner, the

proposed variable-depth convolutional kernel is constructed

through an iterative optimization strategy, as schematically

illustrated in Figure 8, wherein the kernel depth is dynamically

adjusted and refined based on performance evaluations throughout

the training process. The fundamental principle involves

dynamically adjusting the depth of the convolutional kernel at

each iteration, evaluating the resulting model performance, and

ultimately selecting the configuration that yields the highest

classification accuracy.

The process begins by defining a feasible range for the kernel

depth parameter. In the context of hyperspectral data analysis,

where the informative spectral regions are typically confined to

specific bands, selecting an excessively broad initial depth range

may introduce spectral redundancy and impair feature extraction
Frontiers in Plant Science 08
efficiency. To mitigate this, the initial range is carefully bounded to

balance expressiveness and computational cost.

Following initialization, the kernel depth is incrementally sampled

within the predefined range. At each sampling step, a corresponding

convolutional neural network model is instantiated, trained on the

available data, and quantitatively evaluated using appropriate

performancemetrics (e.g., overall accuracy or F1-score). The evaluation

results are recorded for each depth setting. This iterative procedure

continues until the upper bound of the kernel depth range is reached.

After all candidate configurations have been assessed, the depth

value that achieves the best classification performance is selected as

the optimal setting for the convolutional kernel. This adaptive

mechanism enables the network to self-tune its architectural

complexity based on data-driven performance feedback, thereby

enhancing its capacity for efficient and discriminative feature

representation in hyperspectral image analysis.

First, define P(Dk) as the model’s accuracy when using a

convolutional kernel with a depth of Dk, and let Dmax represent

the maximum depth of the convolutional kernel. Based on the

spectral characteristics of hyperspectral data, the typical response

length of continuous bands ranges from 10 to 20. Therefore, Dmax is

set to 25 as the termination criterion for the computation process.

Dbest denotes the optimal convolutional kernel depth. Next, by

continuously increasing the convolutional kernel depth Dk, the

optimal depth Dbest is determined, which maximizes the accuracy

P(Dk). The specific process is shown in Equation 3.

maximize   P(Dk)  with   respect   to  Dk (3)

The variation in convolutional kernel depth is shown in

Equation 4.

D(t+1)
k = D(t)

k + 2 (4)

The process by which the variable-depth convolutional kernel

maximizes the model accuracy by incrementally increasing the
FIGURE 8

Flow diagram of the optimal depth determination process for variable-depth convolutional kernels.
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convolutional kernel depth can be expressed by Equation 5.

 Dbest = arg1≤Dk≤Dmax
maxP(Dk) (5)

Due to the dynamic nature of the variable-depth convolutional

kernel, whose depth changes with each iteration, conventional 3D

convolutional neural networks with fixed kernel depth cannot be

directly applied to this structure. To accommodate the depth

variability of the convolutional kernel throughout the iterative

process, a novel convolutional neural network architecture must

be designed. This model should not only support the computational

mechanism of variable-depth kernels but also incorporate necessary

modifications in network architecture, parameter optimization, and

feature extraction strategies. These adaptations are essential to fully

exploit the adaptive depth capability of the kernels, thereby enabling

efficient modeling and classification of complex data structures.
3.2 Establishment of a variable-depth
convolutional neural network

In this study, a corn seed variety recognition model is proposed

and implemented based on the PyTorch framework. The core

architecture consists of an input layer, variable-depth (VD)

convolutional layers, max-pooling layers, fully connected layers,

and dropout layers. The input layer receives three-dimensional

hyperspectral data with dimensions of 462×100×100.

The VD convolutional module, as illustrated in Figure 9A, is

composed of VD convolutional layers, batch normalization layers,
Frontiers in Plant Science 09
ReLU activation functions, and max-pooling layers. In this module,

the VD convolutional layers are designed to adaptively extract both

textural and spectral features. Batch normalization facilitates faster

convergence during training and improves the stability of the

model. The ReLU activation function introduces non-linearity,

enabling the network to capture complex interactions among

features. Max-pooling layers are subsequently employed to reduce

spatial dimensionality and suppress redundant information,

thereby enhancing computational efficiency and improving

generalization performance.

The fully connected module, shown in Figure 9B, integrates

fully connected layers, ReLU activation functions, and dropout

layers. In this module, the fully connected layers transform and

consolidate high-level abstract features extracted by the preceding

VD convolutional module. Dropout layers are incorporated as a

regularization technique to mitigate overfitting by randomly

deactivating a subset of neurons during training, ultimately

contributing to improved model generalizability.

Ultimately, the proposed VD-CNN model is constructed by

sequentially stacking four VD convolutional modules and three

fully connected modules. The overall architecture of the model is

depicted in Figure 10. Each VD convolutional module is designed to

progressively extract multi-scale spectral and spatial features, while

the fully connected modules are responsible for integrating these

high-level features and performing final classification.

In this research, the depth parameter range is set between 3 and

25. To facilitate a comparative analysis of the impact of different

kernel depths on model classification accuracy, all depth values
FIGURE 9

Structure of the convolution module (A) and fully connected module (B) in the VD-CNN.
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generated during the depth selection process were manually

extracted, and corresponding VD-CNN models were constructed

for each depth configuration. The width and height of the kernels

are fixed at 3×3, while the depth of the kernels, denoted as d, ranges

from 3 to 25 in increments of 2 (i.e., 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,

23, and 25), resulting in 12 different VD kernel sizes. The kernel size

for the remaining convolutional layers is set to 3×3×3. Since each

band in the hyperspectral images represents one-dimensional data,

the number of convolution operation channels for all convolutional

layers is set to 1. The padding size for the first and second

convolutional layers is set to half the size of the kernel, while the

padding for the remaining convolutional layers is set to 1. The

parameters for the fully connected layers are configured as (1008,

512), (512, 256), and (256, 8), and the dropout layer parameter p is

set to 0.5. A comparison of the model parameters is shown

in Table 1.
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3.3 Optimizer and loss function

This study utilizes the Adam optimizer to optimize the model’s

learning rate, with the parameter lr set to 0.001. The Adam

optimizer combines the advantages of Adagrad and RMSprop,

dynamically adjusting the learning rate of each parameter based

on the first and second moment estimates of the gradient of each

parameter, thereby achieving a better balance between convergence

speed and stability during the training process (Kingma and Ba,

2014). The specific formula for the update rule of the Adam

optimization algorithm is shown in Equations 6-10. And m and v

represent the first and second moment estimates, respectively, g

denotes the gradient of the current parameter, b1 and b2 are

exponential decay rates, t represents the current iteration number,

m̂ and v̂ represent the corrected first and second moment estimates,

q represents the model parameters, a is the learning rate, e is a very
TABLE 1 The comparison information of the model parameters.

Model Name
Kernel size

Padding size
Fully connected

layer1
Fully connected

layer2
Fully connected

layer3w h d

M3 3 3 3 1 (1008, 512) (512, 256) (256, 8)

M5 3 3 5 2 (1008, 512) (512, 256) (256, 8)

M7 3 3 7 3 (1008, 512) (512, 256) (256, 8)

M9 3 3 9 4 (1008, 512) (512, 256) (256, 8)

M11 3 3 11 5 (1008, 512) (512, 256) (256, 8)

M13 3 3 13 6 (1008, 512) (512, 256) (256, 8)

M15 3 3 15 7 (1008, 512) (512, 256) (256, 8)

M17 3 3 17 8 (1008, 512) (512, 256) (256, 8)

M19 3 3 19 9 (1008, 512) (512, 256) (256, 8)

M21 3 3 21 10 (1008, 512) (512, 256) (256, 8)

M23 3 3 23 11 (1008, 512) (512, 256) (256, 8)

M25 3 3 25 12 (1008, 512) (512, 256) (256, 8)
FIGURE 10

Architecture diagram of the VD-CNN model.
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small number used for numerical stability.

m = b1 · m + (1 − b1) · g (6)

v = b2 · v + (1 − b2) · g
2 (7)

m̂ =
m

1 − b t
1

(8)

v̂ =
v

1 − b t
2

(9)

q = q −
a
ffiffiffi

v̂
p

+ e
· m̂ (10)

This study employs the cross-entropy loss function to train the

model, specifically for multi-classification problems, with the

specific formula shown in Equation 11. N represents the number

of classes, yi is the label for the ith class, and ŷ i is the predicted

probability output by the model. The cross-entropy loss function is

a commonly used loss function for classification problems,

especially widely applied in deep learning. In binary or multi-

class tasks, the cross-entropy loss function can measure the

disparity between the predicted probability distribution of the

model output and the actual labels (Mao et al., 2023).

L(y, ŷ ) = −oN
i=1yilog(ŷ i) (11)
3.4 Evaluation metrics

In this study, the overall evaluation of the model is conducted

by recording the loss value, training time, accuracy, recall, precision,

and F1 score of both the training and testing sets for each epoch.
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The specific calculation formulas are shown in Equations 12-15. In

this case, TP, TN, FP, and FN represent the true positive, true

negative, false positive, and false negative values of the confusion

matrix, respectively. The main evaluation metric is based on the F1

score, indicating a good balance between precision and recall,

signifying accurate and comprehensive classification performance

of the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Recall =
TP

TP + FN
(13)

Precision =
TP

TP + FP
(14)

F1   Score = 2� Precision� Recall
Precision + Recall

(15)
4 Results

The neural network models, distinguished by varying depths of

convolutional kernels, are labeled as M3, M5, M7, M9, M11, M13,

M15, M17, M19, M21, M23, and M25, based on the depth of the

convolutional kernels used. The experimental outcomes of these

models, utilizing 12 distinct convolutional kernel depths, are

carefully analyzed, with the reduction curves of loss values

presented in Figure 11. It is evident that the model labeled M3,

using 3×3×3 convolutional kernels, exhibits the slowest

convergence speed, with the loss plateauing between 0.1 and 0.2

only after 1500 iterations. Additionally, an analysis of the

fluctuating curves reveals that the convergence speeds of the other
FIGURE 11

The Loss curves during the model training process, with the curves of models M3 and M9 labeled in the figure.
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11 models surpass that of M3, with the model M9 demonstrating

the fastest convergence among the group.

The bar chart displaying the F1 scores of the models on both the

training and testing sets is shown in Figure 12. It is evident that the

F1 scores of all models on the training set are approximately 0.97,

with the highest score achieved by the model labeled M15,

which attains an F1 score of 0.9865. Furthermore, when analyzing

the F1 scores on the testing set, M15 also achieves the highest

score of 0.9697. The trend of F1 score variations demonstrates a

gradual increase from M3, reaching its peak at M15, and then

decreasing thereafter. Based on these experimental results, it can

be concluded that the model labeled M15 delivers the best

performance, excelling not only in training effectiveness but also

in generalization capabilities.

The confusion matrix for the model’s testing set is shown in

Figure 13. Notably, the model labeled M15 demonstrates the best

classification performance, with all eight types of samples achieving

a classification accuracy of approximately 0.95. Furthermore, the

samples labeled as 2, 5, and 7 exhibit perfect classification accuracy,

reaching a score of 1.

To compare the classification performance of the VD-CNN

model with traditional models and to assess the impact of the VD

convolution kernel, this study conducted ablation experiments

using widely adopted models such as ResNet-50, VGG16, and

AlexNet. The experimental results are presented in Table 2. It is

evident that before the introduction of the VD convolution kernel,

the classification performance of the traditional models was

generally superior to that of the CNN model, with a classification

accuracy exceeding by at least 14.14%. However, after incorporating

the VD convolution kernel, the classification accuracy of the VD-

CNN model reached its peak, achieving an accuracy of 96.88%.
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As shown in Table 3, this comparative evaluation of several

convolutional neural network architectures highlights distinct

trade-offs among computational complexity, model size, and

inference efficiency. VGG16 exhibits the highest computational

burden, with 15.52 giga multiply-accumulate operations and

138.36 million parameters, resulting in a moderate inference time

of 1.62 milliseconds per sample. Although ResNet-50 significantly

reduces both parameter count and computational load—25.56

million parameters and 4.13 giga operations—its inference time

increases to 5.26 milliseconds per sample, likely due to the

additional overhead introduced by its deep residual connections.

AlexNet achieves the fastest inference speed of 0.52 milliseconds per

sample, with a moderate complexity of 716.44 million operations

and 61.1 million parameters. Notably, the VD-CNN model

demonstrates a compelling balance between efficiency and

performance. With only 650.73 thousand parameters and a

computational cost of 679.05 million operations, VD-CNN

achieves a competitive inference time of 0.586 milliseconds per

sample, closely matching that of AlexNet, despite having a model

size nearly 100 times smaller. Compared to other architectures, VD-

CNN offers superior efficiency in terms of parameter utilization and

inference latency, making it particularly well-suited for deployment

in resource-constrained or real-time applications. These results

underscore the value of compact and well-optimized architectures

like VD-CNN when balancing accuracy, latency, and hardware

limitations in practical scenarios.

To validate the applicability of the model, experiments were

conducted using the publicly available hyperspectral rice seed

dataset RVHID90 from the research data open platform Zenodo

(Vu et al., 2019). The dataset contains 90 varieties of rice seeds, with

96 samples (seeds) per variety. Samples of each variety are imaged
FIGURE 12

Statistical chart of the F1 scores on the training set and the testing set of the model.
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in two bundles of 48 seeds, arranged in a 6 by 8 grid on a black

background plate. Imaging is performed simultaneously using both

an RGB camera and a hyperspectral camera. The RGB camera has a

resolution of 4896 by 3264 pixels. The hyperspectral camera used is

a VIS/NIR (visible/near-infrared) camera, capturing reflectance

across the range from 385 nm to 1000 nm over 256 discrete

wavelengths. By comparing the classification models (Filipović

et al., 2021; Taheri et al., 2024) from previous studies that used

this dataset, the results shown in Table 4 indicate that the proposed

VD-CNN model achieves the highest classification accuracy. This

demonstrates that the variable-depth convolutional kernel structure

significantly enhances the completeness of feature extraction for
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general hyperspectral data, making a notable contribution to the

development of hyperspectral classification technologies.
5 Discussion and conclusion

In this study, we focused on analyzing eight different types

of corn seed samples to investigate how varying depths

of convolutional kernels affect the classification accuracy of

VD convolutional neural networks. The results demonstrate

that increasing the depth of convolutional kernels in VD

convolutional neural networks can effectively reduce the accuracy
FIGURE 13

Confusion matrix of the model on the test set.
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loss often associated with feature extraction and dimensionality

reduction processes when handling hyperspectral data of corn seeds

across multiple bands. By comparing the performance of a

traditional 3×3×3 convolutional kernel to that of a 3×3×15

convolutional kernel, significant improvements were observed.

The F1 score for the training set increased from 0.9634 to 0.9865,

and the testing set F1 score rose from 0.8262 to 0.9697. These

findings indicate that increasing the depth of convolutional kernels

enhances the extraction of spectral features from hyperspectral data,

thereby improving classification accuracy. However, further

increases in depth may lead to redundancy in the spectral feature

information across consecutive bands, ultimately resulting in a

decline in classification performance.

Compared with conventional CNN-based approaches in

hyperspectral image (HSI) processing—such as 3D-CNNs and

attention-enhanced networks—the proposed variable-depth

convolutional kernel (VD-CNN) architecture exhibits several

key advantages.

Traditional 3D-CNN methods rely on fixed-size convolutional

kernels to jointly extract spatial-spectral features. While these

architectures can partially preserve the spectral structure of HSI

data, their fixed receptive fields limit the ability to adaptively

capture varying spectral dependencies, especially in cases where

meaningful information spans across long-range or non-uniform

spectral bands. Furthermore, most attention-based mechanisms

focus primarily on enhancing spatial features or selecting

informative bands, yet often lack explicit modeling of spectral

continuity, which is critical in high-dimensional HSI data.

In contrast, the VD-CNN introduces convolutional kernels with

variable depth along the spectral axis, enabling flexible modeling of

both local and global spectral dependencies. This design allows the
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network to dynamically adjust its receptive field based on the

characteristics of the spectral data, thus capturing both fine-

grained and long-range spectral relationships more effectively.

Moreover, the variable-depth design supports a multi-scale

feature extraction paradigm, which enhances the network’s ability

to learn hierarchical spectral representations without relying on

external dimensionality reduction.

Hyperspectral imaging offers a higher level of information

than multispectral imaging, owing to its ability to capture

continuous spectral data across a broad range of wavelengths.

This increased spectral resolution enables the detection of subtle

variations in the composition and characteristics of seeds, thereby

enhancing the accuracy of classification and analysis. However, the

complexity of hyperspectral data presents significant challenges,

particularly in terms of data processing and analysis. Hyperspectral

data typically requires more sophisticated algorithms, greater

computational resources, and longer processing times compared

to multispectral data.

In contrast, multispectral imaging captures data at a limited

number of discrete wavelengths, making it more straightforward to
TABLE 2 The results of the ablation experiment.

VD CNN ResNet-50 VGG16 AlexNet Accuracy Precision Recall F1 Score

✓ 87.64% 88.31% 87.22% 86.79%

✓ 91.32% 90.54% 92.01% 91.41%

✓ 92.5% 92.72% 92.5% 92.56%

✓ 73.5% 71.43% 72.49% 73.49%

✓ ✓ 96.88% 97.24% 96.82% 96.97%
TABLE 3 Computational complexity, parameter size, and inference
performance of different convolutional neural network architectures.

Model FLOPs Params
Average
Inference

Time

ResNet-50 4.13G 25.56M 5.26

VGG16 15.52G 138.36M 1.62

AlexNet 716.44M 61.1M 0.52

CNN 180.09M 650.63K 0.6

VD-CNN 679.05M 650.73K 0.586
TABLE 4 Comparison experimental results table using the
RVHID90 dataset.

Model Accuracy Recall
F1

Score

baseline, original 6 morphological
features + spectral mean LDA (Vu

et al., 2019)
79.64% 78.80% 78.27%

morphological feature set + spectral
mean + NCA (Vu et al., 2019)

84.33% 83.75% 83.43%

morphological feature set + spectral
mean + spectral variance + NCA (Vu

et al., 2019)
86.21% 86.00% 85.65%

ResNet-50 (Filipović et al., 2021) 92.73% 92.94% 92.64%

MobileNet (Filipović et al., 2021) 88.98% 88.58% 88.52%

DenseNet121 (Filipović et al., 2021) 92.23% 91.94% 91.88%

InceptionV3 (Filipović et al., 2021) 90.96% 90.31% 90.31%

Cutom CNN (Filipović et al., 2021) 84.56% 84.04% 83.78%

ResNet-50+MobileNet+DenseNet121
+InceptionV3+Cutom CNN (Filipović

et al., 2021)
94.64% 94.24% 94.22%

VD-CNN 97.78% 97.81% 97.67%
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handle and process. Although it may not provide the same level of

detailed spectral information as hyperspectral imaging,

multispectral imaging remains adequate for many practical

applications, such as seed classification, with the added benefits of

lower equipment and computational costs.

In summary, the following conclusions can be drawn:
Fron
1. Traditional methods for processing hyperspectral data,

such as dimensionality reduction and feature extraction,

may result in the loss of important information. The

spectral information contained in consecutive bands often

includes key feature details. Experimental results

demonstrate that, when using the traditional 3×3×3

convolutional kernel size, increasing the kernel size

significantly improves classification accuracy. However,

traditional three-dimensional convolutional neural

networks are insufficient for effectively handling these

compressed features.

2. By adjusting the depth of convolutional kernels in a VD

convolutional neural network, the model’s classification

accuracy and generalization performance can be

significantly enhanced. However, surpassing the optimal

depth threshold for consecutive feature bands can lead

to a decline in both classification accuracy and

generalization performance.

3. The introduction of the VD convolution kernel effectively

improves the model’s classification accuracy. Experimental

results show that the CNN model’s classification accuracy

increased from 73.5% to 96.88%, demonstrating

the importance of simultaneously extracting both texture

features and continuous spectral features from

hyperspectral data.

4. The experimental findings of this study indicate that, for

the dataset under consideration, a convolutional kernel

depth of 15 achieved a training accuracy of 0.9865 and a

testing accuracy of 0.9697. At this depth, the classification

performance was optimal, enabling rapid, effective, and

non-destructive classification of corn seeds.

5. The variable-depth convolutional kernel structure can not

only be applied to the corn seed hyperspectral image

dataset, but also effectively extract features from general

hyperspectral image data, providing a new technological

approach for the development of hyperspectral technology.
The findings of this study are primarily aimed at agricultural

researchers, seed producers, farmers, and related equipment

manufacturers. The outcomes of this research are significant for

advancing agricultural modernization, supporting the protection

and breeding of germplasm resources, and offering valuable insights

for technological innovation in other agricultural fields.

Although the proposed VD-CNN has achieved promising

experimental results, several limitations and potential avenues for

improvement remain. First, hyperspectral images are characterized
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by high dimensionality and strong inter-band correlations, posing

challenges to model generalization. Enhancing the generalization

capability through effective data augmentation strategies is

therefore a valuable direction for future research. For instance,

generating diverse and realistic training samples using techniques

such as Generative Adversarial Networks (GANs) may further

improve model robustness under complex real-world scenarios.

Second, the computational complexity of VD-CNN remains

relatively high. In practical applications, reducing inference time

and improving computational efficiency are critical challenges that

must be addressed. Future work could explore the integration of

depthwise separable convolutions and lightweight network

architectures to reduce computational overhead without

sacrificing classification performance.
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