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The liverwort genus Pleurozia, a morphologically specialized bryophyte group, 
holds unique taxonomic and evolutionary significance. This study sequenced and 
assembled the chloroplast genomes of three Pleurozia species (P. acinosa, P. 
gigantea, and P. subinflata), with genome sizes of 118,233 bp, 118,423 bp, and 
118,304 bp, respectively. All three genomes exhibit the typical quadripartite 
structure. Comparative genomics analyses, including the genome of P. 
purpurea, revealed high conservation in genome  size,  gene  content,  and
inverted repeat (IR) boundaries. Coding regions were more conserved than 
noncoding and intronic regions, suggesting the potential of the latter as 
molecular markers. The IR regions also displayed significantly lower sequence 
divergence compared to the single-copy regions. Most protein-coding genes 
were subject to purifying selection, whereas ycf66 and ndhD showed signs of 
positive selection. Codon usage bias analyses across the four species identified a 
consistent preference for U- and A-ending codons, with a moderate bias 
primarily shaped by natural selection, in conjunction with mutation pressure. 
Phylogenetic analyses based on 35 liverwort chloroplast genomes strongly 
supported the monophyly of Pleurozia and confirmed Pleuroziales as an 
evolutionary intermediate between thalloid and leafy liverworts. These findings 
provide valuable genomic resources for improving our understanding of species 
delimitation, phylogenetic relationships, and evolutionary mechanisms 
in liverworts. 
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1 Introduction 

Liverworts (Marchantiophyta), comprising approximately 
7,300 species (Söderström et al., 2016), represent a key lineage in 
land plant evolution. Their pivotal evolutionary role is supported by 
both fossil records (Wellman et al., 2003; Rubinstein et al., 2010; 
Clarke et al., 2011) and phylogenetic analyses (Bowman, 2013; Cox 
et al., 2014; Li et al., 2024). Current phylogenetic studies reveal an 
evolutionary trajectory in liverworts from complex thalloid via 
simple thalloid to leafy conditions (Forrest et al., 2006; Qiu et al., 
2006). Within this evolutionary framework, the genus Pleurozia 
Dumort. (Pleuroziales: Pleuroziaceae) occupies a significant 
position hypothesized to be a transitional group bridging simple 
thalloid and leafy liverworts (He-Nygrén et al., 2006). Pleurozia is 
notable for its distinctive two-sided apical cell, differing from the 
typical three-sided apical cell found in other leafy liverworts 
(Crandall-Stotler, 1976; Thiers, 1993). Furthermore, this genus 
also displays diverse morphological features, notably the 
formation of sac-shaped leaves and the frequent occurrence of 
sterile perianths. These unique traits not only demonstrate the 
genus’s evolutionary distinctiveness but also enhance its value for 
understanding liverwort phylogeny and evolutionary processes. 
Ecologically, Pleurozia species are predominantly epiphytic, 
primarily inhabiting high-elevation tropical and subtropical 
montane rainforests (Thiers, 1993)—habitats that are particularly 
sensitive to environmental disturbances such as climate change. 
This niche specialization renders Pleurozia not only a potential 
bioindicator for high-altitude forest ecosystems, but also highly 
vulnerable to environmental threats. 

There are twelve species in Pleurozia according to the latest 
taxonomic checklist (Söderström et al., 2016). However, the 
placement of Pleuroziaceae within the liverwort taxonomic 
framework, as well as the resolution of its infrageneric 
relationships, has been historically challenging when based solely 
on morphological data (He-Nygrén et al., 2006), likely due to the 
reduction and subsequent re-evolution of morphological characters 
within the lineage (Thiers, 1993). DNA barcoding, first proposed by 
Hebert et al. (2003), has become a valuable tool for taxonomic 
studies, particularly in resolving ambiguous identifications, 
uncovering  cryptic  species,  identifying  new  taxa,  and  
reconstructing phylogenetic relationships (Hollingsworth et al., 
2009; Krawczyk et al., 2014; Bac̨zkiewicz et al., 2017). However, 
its effectiveness varies across plant groups and has shown notable 
limitations in liverworts (Ślipiko et al., 2020). The advent of Next-
Generation Sequencing (NGS) has made complete plastid genomes 
(plastomes) an increasingly powerful alternative. Complete plastid 
genomes now serve as powerful molecular markers for 
classification, phylogenetic reconstruction, and evolutionary 
studies across diverse land plants (Dodsworth, 2015; Li et al., 
2015). Their utility extends to distinguishing closely related taxa 
Abbreviations: RSCU, Relative synonymous codon usage; ENC, Effective 

number of codons; LSC, Large single-copy; SSC, Small single-copy; IR, 

Inverted repeat; CDS, Coding sequences; BI, Bayesian inference; ML, 

Maximum likelihood; CUB, Codon usage bias; PCGs, Protein-coding genes. 
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(e.g., Szczecińska and Sawicki, 2015; Myszczyński et al., 2017; 
Krawczyk et al., 2018), varieties, and individual genotypes (Kane 
et al., 2012), significantly improving phylogenetic resolutions across 
various taxonomic levels (e.g., Zhang et al., 2011; Wang et al., 2016; 
Chen et al., 2022). Although the first liverwort chloroplast genome 
(Marchantia polymorpha L.) was sequenced over three decades ago 
(Ohyama et al., 1986), the number of complete liverwort genomes 
in GenBank remains strikingly low compared to vascular plants. 
This scarcity substantially hinders our understanding of plastid 
genome evolution in bryophytes, limits the application of plastid 
sequences in comprehensive phylogenomic analyses (Wang et al., 
2022; Li et al., 2024), and critically impedes efforts to resolve the 
phylogenetic placement of key transitional taxa such as Pleurozia. 
Moreover, the presumed conserved quadripartite structure of 
liverwort plastomes (Yu et al., 2019; Dong et al., 2021) requires 
further validation through expanded taxonomic sampling. 

Although Pleurozia occupies a unique phylogenetic position, its 
study has been hindered by challenges in specimen collection and 
preservation, resulting in limited data availability for modern 
taxonomic revisions and molecular phylogenetic analyses. To 
date, only the complete plastid genome of P. purpurea and 
P. subinflata have been sequenced and preliminarily analyzed 
(Wang et al., 2009; Dong et al., 2021; Song et al., 2024). In China, 
five Pleurozia species have been recorded (P. acinosa, P. caledonica, 
P. subinflata, P. gigantea, and P. purpurea), all restricted to southern 
regions, with four of these (excluding P. purpurea) occurring on 
Hainan Island (http://www.sp2000.org.cn/). Among these species, 
P. purpurea and P. subinflata are categorized as Near Threatened 
(NT) on the China Biodiversity Red List: Higher Plants Volume 
(2020). Additionally, P. caledonica has not been reported or re­
collected since its initial discovery on Hainan Island in 1998 
(Bai and Li, 1998). Therefore, this study aims to enhance the 
genomic resources for this important genus by sequencing the 
complete chloroplast genomes of three Pleurozia species from 
Hainan Island. Specifically, our objectives are to: 1) assemble and 
annotate the complete chloroplast genomes of the three Pleurozia 
species; 2) analyze the chloroplast genome characteristics and 
codon usage patterns within Pleurozia; 3) investigate the 
phylogenetic placement of Pleurozia as a potential transitional 
lineage between simple thalloid and leafy liverworts. 
2 Materials and methods 

2.1 Plant materials and DNA extraction 

Fresh specimens of three Pleurozia species were collected from 
tree trunks in the tropical cloud forests of Wuzhishan Mountain 
(108°42′E, 18°53′N), Hainan, China, in October 2022. Their 
morphological characteristics in the wild is illustrated in Figure 1. 
Voucher specimens have been preserved at the Herbarium of 
Hainan University (HUTB). Species identification was performed 
by Li-Na Zhang. Each specimen was meticulously cleaned with 
distilled water and then dried using absorbent paper. To reduce 
potential contamination from other plant sources, the clean shoots 
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were isolated using a stereomicroscope and immediately frozen in 
liquid nitrogen. They were stored in an ultralow-temperature 
freezer at -80 °C pending further analysis. Total genomic DNA 
extractions were carried out employing the Universal Genomic 
DNA Kit (CW2298, CWBIO), and using the Agilent 5400 Fragment 
Analyzer system, their integrity, quality, and concentration 
were assessed. 
2.2 Chloroplast genome sequencing, 
assembly and annotation 

DNA clusters were sequenced on the Illumina NovaSeq 6000 
platform, achieving average sequencing depths of 795X for P. 
acinosa, 409X for P. gigantea, and 189X for P. subinflata. The 
sequencing produced raw sequences with a read length of 150 bp, 
including paired-end sequencing of total DNA and the construction 
of an Illumina PE library. The raw sequencing image data were 
converted into sequence data via Base Calling and saved in the 
FASTQ format. These sequences underwent a rigorous quality 
control process, which included the removal of adapter sequences 
and 5’-end bases that were not AGCT, trimming reads with quality 
values below Q20, discarding reads with N proportions of 10% or 
higher, and eliminating joint sequences and small segments under 
75 bp after pruning. Consequently, high-quality read sequences 
(clean reads) were obtained. For the de novo assembly of these clean 
data, SPAdes v3.14.1 (Prjibelski et al., 2020) was used in “careful” 
mode with default k-mers, and the sequences were self-corrected 
using the Hammer algorithm. Following the initial assembly, 
reassembly was performed with optimized k-mer settings (93, 95, 
97, 103, 105, 107, and 115) using VelvetOptimiser (Zerbino and 
Birney, 2008) to integrate the results. 

The extracted chloroplast genome sequences were merged into 
a single FASTA file after alignment with published chloroplast 
DNA (cpDNA) data and protein-coding gene (PCG) sequences of 
closely related species using BLASTn and Exonerate. The PRICE 
(Paired-Read Iterative Contig Extension) algorithm facilitated 
iterative contig extension until the sequence length stabilized 
(Ruby et al., 2013). Subsequently, the original sequencing reads 
were reviewed, and paired reads were selected for reassembly using 
Bowtie2 (Langmead and Salzberg, 2012). The circular chloroplast 
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genome was then extracted after performing a final assembly with 
SPAdes v3.14.1 (Prjibelski et al., 2020). 

The initial annotation of chloroplast genomes was performed 
using PGA (available at https://github.com/quxiaojian/PGA) (Qu 
et al., 2019), with Porella perrottetiana (GenBank accession: 
NC_043780) and Ptilidium pulcherrimum (GenBank accession: 
HM222519) serving as reference sequences for preliminary 
annotation. Re-annotation was subsequently performed using 
Geneious Prime 2023.2.1, utilizing the GenBank file from the initial 
annotation results and setting a 70% similarity threshold for 
annotation. Initiation and termination codons, along with 
intron/exon boundaries, were manually verified by referencing 
sequences from closely related species. tRNA genes were identified 
using tRNAscan-SE 2.0.7 (Chan et al., 2021), and rRNA genes were 
annotated with RNAmmer 1.2 (Lagesen et al., 2007). Finally, the large 
single-copy (LSC) region, small single-copy (SSC) region, and 
inverted repeat (IR) regions of the cpDNA were annotated using 
the Repeats Finder plugin in Geneious Prime 2023.2.1. 

The assembled and annotated cp-genome sequences have been 
deposited in GenBank (http://www.ncbi.nlm.nih.gov/) under the 
accession numbers OR168937, OR168938 and OR168939. 
2.3 Characteristic analysis of chloroplast 
genome 

The annotated chloroplast genome maps of the three Pleurozia 
species were generated using the online chloroplast genome 
mapping tool Chloroplot (Zheng et al., 2020). Further analysis in 
Geneious Prime 2023.2.1 enabled us to ascertain crucial chloroplast 
genome characteristics, including the total length, GC content, the 
number of PCGs, introns, tRNA genes, and rRNA genes. 
2.4 Comparative genomic analysis and 
nucleotide diversity 

To elucidate the sequence divergence within the chloroplast 
genomes of Pleurozia species, we used a custom Perl script 
(available at https://github.com/quxiaojian/Bioinformatic_Scripts) 
to transform the GenBank files into mVISTA-compatible formats. 
FIGURE 1
 

Morphological characteristics and habitats of Pleurozia species. (A) P. acinosa. (B) P. subinflata. (C) P. gigantea.
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Employing P. purpurea cpDNA (GenBank accession: MK645838; 
also included in subsequent analyses) as a reference, we compared 
the complete chloroplast genome sequences of the three newly 
sequenced species using the mVISTA tool in Shuffle-LAGAN mode 
(Frazer et al., 2004). Structural variations and collinearity within the 
Pleurozia cpDNA were investigated through progressive Mauve 
alignments in the Mauve software, enabling the creation of a 
structural variation map (Darling et al., 2004, 2010). A sliding 
window analysis was conducted to assess nucleotide variability (Pi) 
across the entire chloroplast genome using DnaSp v6 (Rozas et al., 
2017), with a window length of 600 bp and a step size of 200 bp. To 
analyze the expansion and contraction of the IR regions, the 
MUMmer4 and CPJSdraw software were employed to delineate 
the boundaries between the single-copy (SC) and IR regions 
(Marçais et al., 2018; Li et al., 2023). 
 

2.5 Selective pressure analysis 

To accurately assess selective pressures in the molecular 
evolution of chloroplast genomes, homologous protein-coding 
genes (PCGs) were extracted from the chloroplast genomes of 
four Pleurozia species using Geneious Prime 2023.2.1. The 
Translation Align module of Geneious Prime 2023.2.1 was 
employed to select the transl_table 11 genetic code (Bacterial, 
Archaeal, and Plant Plastid Code) for MAFFT v7.490 alignment 
(Katoh, 2002; Katoh and Standley, 2013). Subsequently, Ka, Ks, and 
Ka/Ks values of PCGs were calculated using transl_table 11 with the 
YN method selected in KaKs_Calculator 3.0 (Yang and Nielsen, 
2000; Zhang, 2022; Hu et al., 2023). Here, Ka represents the rate of 
nonsynonymous substitutions, while Ks indicates the rate of 
synonymous substitutions. By comparing these substitution rates 
and the Ka/Ks ratio, inferences were made regarding whether the 
PCGs are under positive selection (Ka/Ks > 1), negative selection 
(Ka/Ks < 1), or neutral selection (Ka/Ks = 1). Finally, the R language 
packages ggplot2 (Wickham, 2016) and aplot (Yu, 2023) were

utilized to create bubble charts for visualizing the results. 
2.6 Analysis of codon usage bias 

To explore the codon usage bias (CUB), we analyzed the 
chloroplast genomes of four Pleurozia species. The coding 
sequences (CDS) were extracted using Geneious Prime 2023.2.1 
and screened to ensure correct  transcriptional start codons 
(transl_table 11), with sequences shorter than 300 bp excluded. We 
calculated GC1, GC2, and GC3 (the G+C content at the first, second 
and third codon position, excluding stop codons), as well as P1, P2, 
and P3 (G+C content at the first, second and third codon positions, 
excluding ATG, ATA, TGG and stop codons) (Sueoka, 1999). 
Additionally, we determined A3s, T3s, C3s, and G3s (the content 
of A, T, C and G at synonymous third codon positions, excluding 
ATG, ATT, ATC, ATA, TGG and stop codons) for each chloroplast 
genomic CDS using Python scripts. The effective number of codons 
(ENC) (Wright, 1990), relative synonymous codon usage (RSCU) 
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(Sharp and Li, 1986), and GC3s (the G+C content at the third 
position of synonymous codons) were calculated using the codonW 
1.4.2 program. RSCU values reflect the preference or avoidance of 
synonymous codons, with an RSCU value of 1.0 indicating no bias, 
while values deviating from 1.0 indicate positive or negative codon 
preference, respectively (He et al., 2016). ENC values, ranging from 
20 to 61, indicate the degree of codon usage bias, with lower values 
(≤35) suggesting a strong preference (Parvathy et al., 2022). 

To investigate the forces shaping CUB, we performed three 
analyses. First, an ENC-GC3s plot was generated to distinguish the 
effects of mutation pressure versus natural selection. Genes lying on 
or near the standard curve are considered to be primarily influenced 
by mutation pressure, whereas those deviating significantly below the 
curve are shaped by selection (Wright, 1990). Second, a Parity Rule 2 
(PR2) plot was constructed by plotting A3/(A3+T3) against G3/(G3 
+C3) (Sueoka, 1995). Deviation of genes from the central point (0.5, 
0.5), where A=T and G=C, indicates the relative influence of selection 
over mutation pressure (Chakraborty et al., 2020). Third, a neutrality 
plot (P12 vs. P3, where P12 is the mean of P1 and P2) was used to 
quantify the relative contributions of mutation and selection. The 
regression slope approaching 1.0 suggests a dominant role for 
mutation pressure, while a slope near 0 indicates stronger selection 
(Sueoka, 1988). RSCU patterns and all subsequent analytical plots 
were visualized in R v4.3.1 using the ggplot2, ggstar, and aplot 
packages (Wickham, 2016; Xu, 2022; Yu, 2023). 
2.7 Phylogenetic analysis 

2.7.1 Maximum likelihood phylogenetic tree 
In order to investigate the phylogenetic position of Pleurozia in 

relation to thalloid and leafy liverworts, we selected 35 liverwort 
species from the available chloroplast genome data in GenBank, 
representing the major orders and families of both morphological 
groups. Using the maximum likelihood (ML) method, a phylogenetic 
tree was constructed based on the chloroplast genomes of these 
species, with Lunularia cruciata serving as the outgroup. The 
corresponding GenBank accession numbers are listed in 
Supplementary Table S1. To assess the impact of non-coding and 
intronic regions on the phylogenetic tree topology, we created a 
dataset comprising the entire chloroplast genomes, excluding the 
second inverted repeat region (IRa), as noted by Xiang et al. (2022), to  
eliminate redundancy and enhance computational efficiency by 
preventing duplicate inclusion repeated consideration of identical 
information. For the “LSC+IRb+SSC” dataset, multiple alignments 
were performed using MAFFT v7.490 with the “–AUTO” strategy 
(Katoh et al., 2002; Katoh and Standley, 2013). Subsequently, the 
best-fit model for the dataset was identified using Modelfinder under 
the Bayesian Information Criterion (BIC), with GTR+F+R5 selected 
as the optimal model (Kalyaanamoorthy et al., 2017). Finally, the 
dataset was subjected to ML analysis using IQ-TREE multicore 
version 2.2.2.7 (Minh et al., 2020), employing stochastic nearest 
neighbor interchange (NNI) operations for tree searches and 
conducting 5000 ultra-fast bootstrap (BS) replications (Minh et al., 
2013; Nguyen et al., 2015). 
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2.7.2 Bayesian inference phylogenetic tree 
Bayesian inference (BI) analysis was conducted using MrBayes­

mpi version 3.2.7 (Huelsenbeck et al., 2001; Ronquist et al., 2012), 
based on the “LSC + IRb + SSC” sequences of 35 liverwort 
(Marchantiophyta) chloroplast genomes, with Lunularia cruciata 
as the outgroup (Supplementary Table S1). Sequence alignments 
were performed in Geneious Prime 2023.2.1 using MAFFT v7.490 
with the “–auto” strategy in normal comparison mode (Katoh et al., 
2002; Katoh and Standley, 2013). The optimal DNA substitution 
model was evaluated using MrModeltest v.2 (Nylander, 2004) under 
the Akaike Information Criterion (AIC), as implemented in PAUP* 
v.4.0a169 (Wilgenbusch and Swofford, 2003; Posada, 2003), which 
identified GTR + I + G as the best-fit model. The aligned sequence 
dataset was then conducted using Markov chain Monte Carlo 
(MCMC) with the following parameters: two independent runs, 
each with four chains (3 hot chains, 1 cold chain), running for 4 
million iterations and sampling every 500 iterations. The 
convergence of the MCMC chains was confirmed by ensuring 
that the average standard deviation of split frequencies (ASDF) 
was less than 0.01, and the effective sample sizes (ESS) for all 
parameters in Tracer v1.7.2 exceeded 200 (Rambaut et al., 2018). 
After discarding a 10% burn-in, as determined by Tracer v.1.7.2, a 
majority-rule consensus tree with posterior probabilities (PP) was 
generated from the remaining trees. 
3 Results 

3.1 Chloroplast genome characteristics of 
Pleurozia species 

The chloroplast genomes of the three sequenced Pleurozia 
species exhibit the same conserved quadripartite structure, 
comprising a large single-copy (LSC) region, a small single-copy 
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(SSC) region, and a pair of inverted repeat (IR) regions. The genome 
lengths are 118,233 bp, 118,423 bp, and 118,304 bp for P. acinosa, 
P. subinflata, and  P. gigantea, respectively (refer to Table 1; 
Figure 2). These chloroplast genomes are highly similar in gene 
content, overall size, and GC composition, with an average overall 
GC content of approximately 32%. In all three genomes, the IR 
regions consistently show the highest GC content (46.5–46.6%), 
followed by the LSC (29.9%) and SSC regions (28.6–28.8%) 
(Table 1). The annotated chloroplast genes can be categorized 
into three functional groups: PCGs, RNA-coding genes, and other 
genes, as detailed in Table 1 and Table 2. Among these, 16 genes 
(e.g., petB, petD, atpF) contain single introns (Table 2), while two 
genes (clpP and ycf3) possess double introns. Notably, the rps12 
gene exhibits trans-splicing in the chloroplast genome. The IR 
regions contain duplicated tRNA genes, including trnA-UGC, 
trnI-GAU, trnN-GUU, trnR-ACG, and trnV-GAC. The chloroplast 
genome of P. acinosa comprises 130 genes (8 rRNA, 36 tRNA, 86 
PCGs), while the other two species each possess 132 genes (8 rRNA, 
36 tRNA, 88 PCGs). This difference is primarily due to the absence 
of the cysA and cysT genes in P. acinosa (refer to Table 2; Figure 2). 
3.2 Genome comparison and nucleotide 
diversity 

3.2.1 Comparative genomic analysis 
mVISTA-based comparative analyses demonstrated high 

sequence conservation and overall similarity across Pleurozia 
chloroplast genomes (Figure 3). Coding regions were more 
conserved than non-coding regions. Non-translated elements 
(tRNAs, rRNAs) showed comparable levels of variation among 
the four species. The sequence divergence was predominantly 
localized in non-coding and intronic regions. Notable intron 
variations were identified in ycf66, trnG-UCC, ycf3, trnL-UAA, 
TABLE 1 Characteristics of cp genomes of the Pleurozia species. 

Content P. acinosa P. gigantea P. subinflata P. purpurea 

Total cp genome size (bp) 118,233 118,423 118,304 118,166 

Length of inverted repeat region (bp) 8,781 8,799 8,805 8,804 

Length of large single copy region (bp) 80,801 80,947 80,806 80673 

Length of small single copy region (bp) 19,870 19,878 19,888 19,878 

Total GC content (%) 32.1 32.2 32.2 32.2 

GC content of LSC (%) 29.9 29.9 29.9 29.9 

GC content of IR (%) 46.6 46.5 46.5 46.5 

GC content of SSC (%) 28.6 28.7 28.7 28.8 

Total number of genes 130 132 132 132 

Number of tRNA genes 36 36 36 36 

Number of rRNA genes 8 8 8 8 

Number of protein-encoding genes 86 88 88 88 
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trnV-UAC, and clpP. Highly variable non-coding regions included 
psbM~ycf66, atpH~atpF, psbI~psbK, psbA~trnH-GUG, trnD-
GUC~trnY-GUA, psbC~trnS-UGA, ycf3~trnS-GGA, psbZ~trnG-
GCC, petA~psbJ, psbE~petL, rpl20~rps12, clpP~psbB, trnM-

CAU~trnV-GAC, and chlL~trnN-GUU. 

3.2.2 Genome collinearity analysis and nucleotide 
diversity 

Genome collinearity analyses demonstrated structural 
conservation among the chloroplast genomes of Pleurozia species 
(Figure 4A). The absence of gene inversions or genomic 
rearrangements confirms high collinearity among these genomes. 
Nucleotide diversity (Pi) analyses revealed Pi (p) values ranging 
from 0 to 0.0350, with a genome-wide average of 0.0127 (Figure 4B). 
The IR regions exhibited significantly lower variability compared to 
the LSC and SSC regions. Three hypervariable non-coding regions 
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(p >  0.03)  were  identified:  rpl23~trnM-CAU  (0.0350),  
psbE~petL~petG (0.0317), and trnL-UAA~trnF-GAA (0.0314). 
Additionally, 15 moderately variable non-coding regions (e.g., 
trnN-GUU~ndhF, atpI~atpH~atpF, psbA~trnH-GUG) and  six
intronic regions (ycf66, trnG-UCC, rpl16, rpoC1, clpP, ndhB 
introns) were detected (see Figure 4B; Supplementary Table S2). 
Notably, ycf2 was the only moderately variable protein-
coding region. 

3.2.3 IR contraction and expansion analysis 
As depicted in Figure 4C, the chloroplast genomes of the four 

Pleurozia species exhibit highly conserved SC/IR boundary 
architecture, with no significant expansions or contractions. 
Notably, the ndhF gene extends across the IRb/SSC junction, with 
64 bp located within IRb region, while the chlL gene spans the IRa/ 
SSC boundary, containing merely 5 bp into the IRa region. 
FIGURE 2 

Chloroplast genome maps of Pleurozia. P. acinosa (A), P. gigantea (B), and P. subinflata (C). Genes inside the large circles are transcribed in a 
clockwise direction, whereas those outside follow a counterclockwise transcriptional direction. Small circles indicate the GC content and shaded 
regions denote the IR areas. Genes of differing functions are distinguished by various colors. 
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3.3 Selective pressure analysis	 

In the chloroplast genomes across four Pleurozia species, only ycf66 
and ndhD exhibited Ka/Ks > 1, indicating positive selection. 
The remaining genes displayed ratios < 1 (Figure 5), consistent with 
genome-wide purifying selection. These findings underscore strong 
evolutionary constraints in Pleurozia chloroplast genomes, reflecting 
the conservation of essential protein functions through the selective 
removal of deleterious mutations. 
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3.4 Codon usage bias of chloroplast 
genomes of Pleurozia species 

3.4.1 GC content of each codon position 
A total of 58, 60, 60, and 60 CDS from P. acinosa, P. gigantea, 

P. purpurea, and P. subinflata were analyzed, respectively. The 
results showed no significant interspecific variation in overall GC 
content (Supplementary Table S3). However, significant 
heterogeneity (p < 0.0001) was observed among GC1, GC2, and 
TABLE 2 List of genes annotated in three Pleurozia plastomes. 

Gene function Gene product Gene 

Protein-coding genes Photosystem I psaA, psaB, psaC, psaI, psaJ, psaM 

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ 

Cytochrome b/f complex petA, petBa , petDa , petG, petL, petN 

ATP synthase atpA, atpB, atpE, atpFa , atpH, atpI 

NADH dehydrogenase ndhAa , ndhBa , ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 

Rubisco large subunit rbcL 

Chlorophyll biosynthesis chlB, chlL, chlN 

RNA polymerase rpoA, rpoB, rpoC1a , rpoC2 

Small subunit 
ribosomal proteins 

rps2, rps3, rps4, rps7, rps8, rps11, rps12a,c , rps14, rps15, rps18, rps19 

Large subunit 
ribosomal proteins 

rpl2a , rpl14, rpl16a , rpl20, rpl21, rpl22, rpl23, rpl32, rpl33, rpl36 

Catalytic subunit of 
the protease 

clpPb 

Maturase matK 

Translation factor infA 

Acetyl-CoA carboxylase accD 

Subunit A of the system II 
complex for C-type 

cytochrome biogenesis 

ccsA 

Chloroplast envelope 
membrane protein 

cemA 

Sulfate/thiosulfate import 
ATP-binding protein 

cysA*, cysT* 

Other genes Component of 
TIC complex 

ycf1, ycf1-2 

Component of 2-MD 
heteromeric AAA-
ATPase complex 

ycf2 

Hypothetical chloroplast 
reading frames 

ycf3b , ycf4, ycf12, ycf66a 

RNA-coding genes Transfer RNAs trnA-UGCa,d , trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCCa , trnH-GUG, trnI-
GAUa,d , trnK-UUUa , trnL-CAA, trnL-UAAa , trnL-UAG, trnM-CAU, trnN-GUUd , trnP-UGG, trnQ-UUG, trnR-
ACGd , trnR-CCG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GACd , trnV-UACa , 

trnW-CCA, trnY-GUA 

Ribosomal RNAs rrn4.5d , rrn5d , rrn16d , rrn23d 
aGene containing a single intron; bGene containing two introns; cTrans-splicing genes; dTwo gene copies due to the IR; *Gene deletion in species P. acinosa. 
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GC3, demonstrating a consistent pattern of GC1(43.40%) > GC2 
(36.75%) > GC3 (18.04%) across all species (Supplementary Figure 
S1; Supplementary Table S3). 

3.4.2 RSCU analysis 
The analyses identified 29 codons with RSCU values >1 

(Supplementary Table S4), including 16 U-ending and 13 A-
ending codons, demonstrating a pronounced preference for U/A-
terminated codons in the chloroplast genomes of Pleurozia. 
Notably, the Leucine-encoding UUA codon exhibited an RSCU 
value exceeding 3. As shown in Figure 6, the RSCU ratios are 
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broadly similar across the four Pleurozia species, indicating a 
consistent codon usage pattern. 

3.4.3 ENC plot analysis 
The ENC values ranged from 33.74 to 48.28 in P. acinosa (mean = 

40.42), 37.10 to 47.66 in P. gigantea (mean = 40.56), 34.18 to 48.42 in P. 
purpurea (mean = 40.30), and 34.59 to 48.69 in P. subinflata (mean = 
40.34). All genes exhibited ENC values below 50, with species means 
exceeding 35 (Figures 7A–D), indicating moderate CUB in Pleurozia 
chloroplast genomes. The ENC plots for the four Pleurozia species 
(Figures 7A–D) revealed dispersed distributions relative to the expected 
FIGURE 3 

Comparative visualization of chloroplast genome sequences across four Pleurozia species. The y-axis represents sequence identity ranging from 
50% to 100%, and the x-axis shows the position within the chloroplast genome. Arrows indicate the annotated genes and their transcription 
direction in the reference genome. The protein-coding and non-coding regions are highlighted in purple and orange, respectively. 
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curve. While a minority of genes clustered near the standard curve, the 
majority of genes were scattered around it. This pattern suggests 
synergistic effects of mutation pressure and natural selection in 
shaping CUB. Furthermore, no significant interspecific differences were 
observed in ENC values, GC3s composition (Supplementary Figures 
S2A–B), or overall codon usage patterns (Supplementary Figure S2C–D). 
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3.4.4 PR2-plot analysis 
The PR2-plot results (Figures 8A–D) revealed asymmetric CDS 

distribution across all four Pleurozia species, with CDS points 
predominantly clustered in the lower-left quadrant (A3s < T3s, 
G3s < C3s), indicating a clear preference for T/C bases. A small 
number of CDS approached the plot center (A3s/(A3s + T3s) ≈ 0.5, 
FIGURE 4 

Comparative genomics analyses of four Pleurozia species. (A) Mauve alignment of four Pleurozia plastomes. Locally co-linear blocks are represented 
by continuous colored regions. (B) Sliding window analysis of the whole chloroplast genomes across Pleurozia species. Step length: 600 bp; window 
length: 200 bp. (C) Comparative analysis of the junctions between the IR regions and two single copy regions (LSC/SSC) in four Pleurozia 
chloroplast genomes. Colored boxes above or below the main line indicate adjacent border genes. The distance between the genes and boundaries 
are represented by the base lengths (bp). JLA, junction between LSC and inverted repeat (IRA). JLB, junction between LSC and IRB. JSA, junction 
between SSC and IRA. JSB, junction between SSC and IRB. 
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G3s/(G3s + C3s) ≈ 0.5), suggesting limited neutral evolution 
dynamics. The consistent, unbalanced usage of bases at the third 
codon position across  Pleurozia species highlights conserved 
evolutionary constraints mediated by the combined effects of 
mutational pressures, selective constraints, and other forces. 

3.4.5 Neutrality-plot analysis 
As shown in Figures 9A–D, the regression analysis revealed that 

only a few genes were diagonally distributed in the plot, and P12 
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exhibited no significant correlation with P3 (r for all species < 0.09, 
P > 0.05), suggesting that natural selection may exert a considerable 
influence on the CUB of the four Pleurozia species. Furthermore, 
the slopes of the regression lines were 0.1000 (P. acinosa), 0.1230 (P. 
gigantea), 0.0914 (P. purpurea) and 0.1800 (P. subinflata), 
indicating that the mutation pressure across the four species 
accounted for only 9.14% to 18.00%. Consequently, these results 
imply that natural selection is superior to mutation pressure in 
shaping the development of CUB in Pleurozia. 
FIGURE 5 

Bubble plots are employed to illustrate the variation in selection pressure across 63 PCGs in four Pleurozia chloroplast genomes. (A) Ka (blue 
bubbles) and Ks (yellow bubbles) substitution rates. Bubble size corresponds to Ka or Ks values; yellow predominance indicates Ka/Ks > 1. (B) Ka/Ks 
ratios. Bubble size and color intensity reflect ratio magnitude; larger ratios indicate stronger selection pressure. Vertical axis: individual genes; 
horizontal axis: species pairs (PA, P. acinosa; PG, P. gigantea; PP, P. purpurea; PS, P. subinflata). 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1599291
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bi et al. 10.3389/fpls.2025.1599291 
3.5 Phylogenetic analysis of Pleurozia 
chloroplast genomes 

Phylogenetic analyses of 35 liverwort chloroplast genomes 
(LSC + IRb + SSC regions) using both maximum likelihood (ML) 
and Bayesian inference (BI) methods revealed highly congruent 
topologies. Most nodes corresponding to orders and families 
received strong support, with ML bootstrap (BS) values ≥ 80 and 
Bayesian posterior probabilities (PP) of 1.00 (Figures 10A, B). On 
the resulting phylogenetic tree, the Marchantiales clade, together 
with Lunulariales, belongs to the complex thalloid liverworts. The 
remaining taxa form a major clade, further divided into two 
subclades. One consists of Pallaviciniales, Pelliales, and 
Fossombroniales, representing a group of simple thalloid 
liverworts. The other contains Metzgeriales, another group of 
simple thalloid liverworts, along with the leafy liverwort orders 
Pleuroziales, Ptilidiales, Porellales, and Jungermanniales. The four 
Pleurozia species form a strongly supported monophyletic group 
representing Pleuroziales (BS/PP = 100/1.00), which is resolved as 
the sister lineage to Metzgeriales. 
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4 Discussion 

4.1 Chloroplast genome features and 
genome variations 

The genus Pleurozia represents a pivotal lineage in the 
evolutionary transition from thalloid to leafy liverworts, offering 
significant insights into the liverwort phylogeny (He-Nygrén et al., 
2006). In this study, we present three complete chloroplast genomes 
from Pleurozia species, along with the first comparative genomic 
analysis of this genus. The findings reveal a conserved quadripartite 
chloroplast genome architecture, consisting of one SSC region, one 
LSC region, and two IR regions (Figure 2), a typical organization 
found in most green plants, including bryophytes (Dong et al., 2021; 
Xiang et al., 2022). The chloroplast genome lengths of the four 
Pleurozia species range from 118,116 to 118,432 bp, aligning with 
the genome sizes observed in other Marchantiophyta species 
(Ślipiko et al., 2020; Dong et al., 2021; Sawicki et al., 2021), yet 
shorter than those of earlier-diverging hornworts (Yu et al., 2019; 
Xiang et al., 2022). Comparative analyses demonstrate a high degree 
FIGURE 6 

RSCU-plot in the chloroplast genomes of four Pleurozia species. Codons are listed on the left side of the graph, corresponding amino acids in the 
center, and RSCU values on the right. 
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of structural conservation and complete collinearity (Figure 4A), 
with minimal fluctuations at the IR boundaries (Figure 4C). 
Nucleotide diversity patterns indicate mutation rate hotspots 
primarily in the LSC and SSC regions, in contrast to the highly 
conserved IR regions. This pattern is consistent with observations 
across land plants (Hu et al., 2023; Xiao et al., 2023). The 
hypervariable regions are mainly located in non-coding and 
intronic sequences (Figure 4B), paralleling evolutionary patterns 
observed in angiosperms (Xiao and Ge, 2022; Yang et al., 2022). 
These highly variable loci exhibit more polymorphic sites than 
standard DNA barcodes, demonstrating their potential as 
phylogenetic markers for resolving complex taxonomic 
relationships (Ren et al., 2021; Hu et al., 2023). 
4.2 Genome annotation and deletion of 
cysA and cysT genes 

Our annotation of the three Pleurozia species identified 130– 
132 chloroplast genes per genome, including eight rRNA, 36 tRNA, 
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and 86–88 PCGs (Table 2; Figure 2). Notably, P. acinosa uniquely 
lacks the cysA and cysT genes, which are typically present in this 
genus. This co-deletion also occurs in other members of 
Jungermanniopsida, such as Fossombronia cristula, Pallavinicia 
lyellii, and Metzgeria leptoneura (Wicke et al., 2011; Dong et al., 
2021). The cysA and cysT genes exhibit a patchy distribution across 
bryophytes, being variably present in hornworts (Kugita, 2003), 
liverworts (Ohyama et al., 1986; Wicke et al., 2011; Dong et al., 
2021), and mosses (Sadamitsu et al., 2021). This irregular pattern 
suggests that these genes have been independently lost multiple 
times during bryophyte evolution (Wicke et al., 2011). Typically 
located in the chloroplasts, cysA and cysT are integral components 
of the sulfate transport system, facilitating the uptake of sulfate—a 
crucial nutrient for plant growth and development—from the 
external environment into the cell and its distribution within the 
plant (Cackett et al., 2022). However, studies have shown that 
species lacking cysA and cysT can still transport cysteine via 
nuclear-encoded proteins (Kopriva et al., 2008). The evolutionary 
pattern of cysA and cysT loss remains unclear, and such deletions 
have not previously been reported in Pleurozia. This study presents 
FIGURE 7 

ENC-GC3s plot of the chloroplast genomes of Pleurozia species. (A–D) ENC-GC3s results of P. acinosa, P. gigantea, P. purpurea, and P. subinflata, 
respectively. The circles represent 95% confidence intervals. 
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the first documented case of cysA and cysT co-deletion in Pleurozia, 
contributing to a broader understanding of recurrent gene loss in 
bryophyte evolution (Dong et al., 2021). 
4.3 Selection pressure 

Ka/Ks ratios are widely used to assess evolutionary pressures 
on PCGs, enabling the differentiation between purifying selection, 
neutral drift, and positive selection (Yang and Bielawski, 2000; 
Raman et al., 2022). Non-synonymous substitutions (Ka) result in 
amino acid changes that can affect protein structure and function, 
potentially contributing to adaptive evolution. In contrast, 
synonymous substitutions (Ks) do not alter the amino acid 
sequence and are generally considered selectively neutral, 
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thereby serving as a baseline for estimating mutation rates 
(Hurst, 2002). A Ka/Ks ratio < 1 suggests purifying selection, 
reflecting the preferential elimination of deleterious non-
synonymous mutations. Conversely, a Ka/Ks > 1 indicates 
positive selection, signifying the preferential retention of 
advantageous mutations that promote adaptive genetic changes 
and accelerate gene evolution (Navarro and Barton, 2003). In 
Pleurozia, the  ycf66 and ndhD genes exhibit Ka/Ks ratios greater 
than 1, suggesting that they are subject to positive selection, which 
may drive adaptive changes in these loci. In contrast, most 
chloroplast genes display Ka/Ks ratios below 1, indicating they 
are under purifying selection that acts to preserve their functional 
integrity. This pattern aligns with the general evolutionary 
conservation of chloroplast genomes in angiosperms, as 
exemplified by Epimedium (Wang et al., 2023). 
FIGURE 8 

PR2-plot analysis of chloroplast genomes in Pleurozia species. (A–D) PR2-plot results for P. acinosa, P. gigantea, P. purpurea, and P. subinflata, 
respectively. Density profiles of G3s/(G3s + C3s) and A3s/(A3s + T3s) in A-D are shown on the top and right edges, respectively. 
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4.4 Codon usage bias 

Plants generally exhibit a high GC content. In nuclear coding 
regions, monocots tend to prefer codons ending in C or G, whereas 
dicots display a higher frequency of codons ending in U or A 
(Parvathy et al., 2022). In contrast, chloroplast and mitochondrial 
genomes typically show a preference for codons ending in U or A. 
This codon usage bias has been observed in studies of chloroplast 
genomes across various plant species, such as Oryza (Chakraborty 
et al., 2020) and Elaeagnus (Li et al., 2023). In bryophytes, including 
Pleurozia, the chloroplast genomes generally exhibit lower GC 
content compared to those of most angiosperms (Yu et al., 2019). 
There is a clear preference for U/A-terminated codons in the 
chloroplast genome of Pleurozia. Comparative analyses of CUB 
across the Pleurozia chloroplast genomes (Figures 6–9) revealed 
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consistent patterns among the four species. ENC-GC3s plots 
displayed gene distributions both near and far from the expected 
curve, reflecting that codon usage in Pleurozia is shaped by a 
combination of mutational pressures and natural selection. The 
similar pattern was previously reported in the mitochondrial 
genome of P. purpurea (Wang et al., 2010). PR2 plots revealed a 
preference for T and C at the third codon positions, likely reflecting 
adaptive fine-tuning of translational efficiency superimposed on 
inherent mutational tendencies (Quax et al., 2015). This dual 
evolutionary mechanism allows for limited codon adaptation 
while maintaining genomic stability (Parvathy et al., 2022). 
Furthermore, neutral plot analyses suggest that natural selection 
exerts a stronger influence than mutation in determining codon 
usage patterns in Pleurozia. This trend mirrors observations in most 
angiosperms, where CUB is influenced by both natural selection 
FIGURE 9 

Neutral-plot analysis of CUB in the chloroplast genomes of Pleurozia species. (A–D) Results for P. acinosa, P. gigantea, P. purpurea, and 
P. subinflata, respectively. Horizontal axis: P3 value; vertical axis: P12 value. 
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and mutational pressure, with natural selection playing the 
dominant role (Yang et al., 2023). 
4.5 Phylogenetic analysis 

As the earliest diverging lineages of land plants, liverworts, mosses, 
and hornworts occupy a pivotal position in plant phylogeny, providing 
key insights into the evolutionary transition from aquatic to terrestrial 
environments (Wang et al., 2022). In this study, the phylogenetic tree 
(Figure 10) comprises major orders representing complex thalloid, 
simple thalloid, and leafy liverworts. Pleuroziales, a monotypic order 
containing only the genus Pleurozia, forms a distinct monophyletic 
lineage. It is resolved as the sister group to Metzgeriales, a representative 
of simple thalloid liverworts. Together, these two lineages cluster with 
the leafy liverworts. Although Pleuroziales exhibits a leafy morphology, 
its close phylogenetic affinity with Metzgeriales suggests a stronger 
evolutionary relationship with simple thalloid liverworts. This 
relationship is consistent with their shared characteristic of 
possessing a two-sided apical cell (Thiers, 1993). 

The phylogeny also indicates that simple and complex thalloid 
liverworts belong to separate clades, with simple thalloid group 
showing closer affinity to leafy liverworts. Notably, the simple 
thalloid liverworts are divided into two groups: one forms a 
monophyletic clade, while Metzgeriales alone clusters sister to the 
leafy liverworts. Among the leafy liverworts, all orders except 
Pleuroziales comprise a distinct clade. This topology aligns with 
previous studies (Dong et al., 2021; Xiang et al., 2022; Li et al., 2024) 
and strongly supports Pleurozia’s transitional position between 
simple thalloid and leafy liverworts, confirming earlier hypotheses 
(Forrest et al., 2006; Dong et al., 2021; Shen et al., 2025). These 
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findings contribute to both the taxonomic and genomic knowledge 
of Pleurozia and enhance our understanding of liverwort evolution. 
5 Conclusions 

In our study, we sequenced the complete chloroplast genomes 
of three Pleurozia species and provided comprehensive insights into 
their structural and evolutionary dynamics. The genomes exhibit a 
conserved quadripartite structure with minimal interspecific 
variation in overall size, gene content, and boundary architecture. 
While coding regions were highly conserved, non-coding 
sequences and introns displayed notable variability, particularly 
within three hypervariable regions, highlighting their potential as 
informative markers for species delimitation and phylogenetic 
analysis. The lower variation in IR regions compared to 
single-copy regions supports their proposed stabilizing role in 
chloroplast genome evolution. Codon usage bias (CUB) analyses 
revealed that natural selection plays a predominant role over 
mutation pressure in shaping codon preferences across all 
Pleurozia species, with a pronounced preference for U/A-ended 
codons. The combined effects of natural selection and mutation 
pressure contribute to maintaining moderate CUB, balancing 
translational efficiency with genomic stability. Notably, purifying 
selection was predominant across protein-coding regions, while 
only ycf66 and ndhD exhibited signs of positive selection, 
underscoring the strong functional constraints governing 
chloroplast genome evolution. Phylogenetic reconstruction 
robustly supports Pleurozia as a monophyletic clade, placing it in 
an intermediate evolutionary position between thalloid and leafy 
liverworts. This finding aligns with morphological evidence and 
FIGURE 10 

Topological comparison and Consensus phylogenetic trees for 35 Liverwort species constructed using ML and BI methods. (A) Topological 
comparison trees. (B) Order-level phylogenetic tree. The BS and PP values are annotated at each node to indicate statistical confidence. The red 
font highlights the order Pleuroziales. 
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previous phylogenetic hypotheses, highlighting the transitional role 
of Pleurozia in liverwort diversification. 
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Krawczyk, K., Nobis, M., Myszczyński, K., Klichowska, E., and Sawicki, J. (2018). 
Plastid super-barcodes as a tool for species discrimination in feather grasses (Poaceae: 
Stipa). Sci. Rep. 8, 1924. doi: 10.1038/s41598-018-20399-w 
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