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Plant–insect interactions pose a major threat to global food security and 
ecological stability. This review provides a comprehensive synthesis of the 
molecular and physiological mechanisms underlying plant immunity against 
herbivorous insects, with emphasis on structural defenses, secondary 
metabolites, and hormone signaling pathways including Jasmonic acid, 
salicylic acid, and ethylene. It highlights key advances in understanding defense 
signaling crosstalk, effector-triggered responses, and the role of microbiota and 
environmental cues. The review further discusses insect counterstrategies and 
explores cutting-edge technologies-CRISPR/Cas9, RNA interference, and 
metabolic engineering that are reshaping pest management. However, 
challenges remain, including limited field validation of engineered traits, 
ecological trade-offs, and regulatory hurdles. We conclude by outlining future 
research directions focused on multi-omics integration, climate-resilient 
defense networks, and ethical deployment of plant biotechnologies within 
sustainable agroecosystems. 
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1 Introduction 

1.1 Importance of plant–insect interactions 
in agriculture and ecosystems 

Plant–insect interactions are vital to agricultural productivity 
and ecosystem health, influencing biodiversity, ecosystem services, 
and food production. These interactions can be beneficial, e.g., 
pollination and natural pest control, or detrimental, e.g., herbivory 
and pathogen transmission (Shen and Ni, 2024). In agriculture, 
insect pollinators, including bees and butterflies, enhance crop 
yields, with 75% of food crops relying on insect-mediated 
pollination (Riffell, 2020; Jordan et al., 2021). Predatory and 
parasitic insects, like lady beetles and parasitoid wasps, help 
regulate pests, reducing pesticide reliance and fostering 
sustainability (Fei et al., 2023; Wu et al., 2022). Conversely, 
herbivorous insects cause crop damage, impose economic losses, 
and spread plant pathogens (Mostafa et al., 2022; Sarwar, 2020; 
Wielkopolan et al., 2021). In natural ecosystems, these interactions 
sustain biodiversity by regulating plant populations and preventing 
monocultures (Balmaki et al., 2022; Whitehill et al., 2023), and 
coevolution between plants and insects has driven the development 
of traits like plant defenses and insect’s detoxification abilities 
(Beran and Petschenka, 2022; Endara et al., 2023; Amezian et al., 
2021). Managing these interactions is key to sustainable pest 
management (Figure 1), integrating natural predators and 
Frontiers in Plant Science 02 
advanced breeding or genetic approaches to reduce chemical 
pesticide dependence while supporting agricultural productivity 
and conservation (Boeraeve and Hatt, 2024). 
1.2 Evolutionary arms race between plants 
and insects 

The coevolution of plants and insects represents a dynamic 
evolutionary arms race shaping biodiversity and ecosystem 
functionality over millions of years (Mello and Silva-Filho, 2002). 
Reciprocal pressures drive plants to evolve defenses while insects 
develop counter-adaptations (Endara et al., 2017; Leite Dias and 
D’Auria, 2024). Plant defenses include physical barriers (e.g., thorns 
and trichomes), chemical toxins (e.g., alkaloids and terpenoids), and 
molecular responses like immune signaling and the production of 
volatile organic compound (VOC) to attract natural enemies 
(Salgado‐Luarte et al., 2023; Hu et al., 2024; Demis, 2024). Insects 
counter these defenses through detoxification systems, behavioral 
adaptations, and molecular effectors that suppress plant immunity 
(Boter and Diaz, 2023; Acevedo et al., 2015). For example, monarch 
butterflies exploit toxic cardenolides, using them for predator 
defense, while noctuid caterpillars use HARP1-like proteins to 
suppress plant defenses (Hoogshagen et al., 2024; Chen et al., 
2019b). This coevolution drives innovation in plant immunity 
and insect counterstrategies, shaping both antagonistic 
FIGURE 1 

An overview of plant–insect interactions in agricultural ecosystems. Beneficial insects, such as pollinators (e.g., honey bees) and natural predators 
(e.g., ladybugs), support plant growth, reproduction, and defense by facilitating pollination and controlling pest populations. In contrast, herbivorous 
insects, such as aphids and fall armyworms, damage plants by feeding on leaves and transmitting pathogens. The rhizosphere, which consists of 
beneficial microbes (e.g., rhizobia), enhances nutrient uptake and plant resilience. On the other hand, some organisms, such as ants, may facilitate 
pest interactions, adding complexity to the ecosystem (created using BioRender.com). 
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(herbivory) and mutualistic (pollination) interactions (Bronstein 
et al., 2006; Nepi et al., 2018). Understanding these interactions is 
crucial for sustainable pest management (Dixon and Dickinson, 
2024). Deciphering genetic and biochemical pathways in plant 
resistance and insect counter adaptation can inspire novel 
strategies to enhance plant immunity and disrupt insect defenses, 
reducing reliance on chemical pesticides and fostering agricultural 
resilience (Ahmad et al., 2024). 
1.3 Benefits of research on plant immunity 
to insect herbivory: implications for global 
food security 

Research on plant immunity to insect herbivory is vital to 
addressing global food security challenges posed by climate 
change, pests, and diseases. Insect pests cause 20–40% of global 
crop losses annually, threatening food supplies and economic 
stability, especially in agriculture-dependent developing nations 
(Popp et al., 2013; Junaid and Gokce, 2024). The jasmonate 
signaling cascade plays a central role in mediating herbivore-
induced defenses. Upon perception of damage, jasmonoyl­

isoleucine (JA-Ile) accumulates and binds to the SCF^COI1 
receptor complex, promoting degradation of JAZ and JAV1 
repressors, thereby releasing transcription factors such as MYC2 
to activate downstream defense genes, including those involved in 
secondary metabolite biosynthesis and protease inhibitor 
production (Hewedy et al., 2023; Macioszek et al., 2023; Ali et al., 
2024a). This hormonal signaling cascade contributes to the 
synthesis of defense metabolites and structural reinforcements, 
such as lignin and cuticular waxes (Xiao et al., 2021; Bungala 
et al., 2024). Advances in breeding, genetic modification, and 
multi-omics integration further allow fine-tuning of these 
pathways for enhanced pest resilience under variable climatic 
conditions (Felton and Tumlinson, 2008; Soares et al., 2019; 
Skendžić et al., 2021). In addition, emerging studies highlight the 
involvement of other hormones such as abscisic acid (ABA), 
gibberellins (GA), and auxins in modulating plant responses to 
herbivory. ABA can influence stomatal regulation and drought-
mediated defense trade-offs during herbivore attack. GA signaling 
often interacts antagonistically with JA to regulate resource 
allocation between growth and defense. Auxins may contribute to 
defense by modulating leaf morphology and influencing cross-talk 
with JA/SA pathways (Erb, 2018). Strengthening plant immunity 
reduces synthetic pesticide use, preserves beneficial insects, and 
fosters sustainable food systems (Sharma et al., 2021; Barbero and 
Maffei, 2023; da Silva Pinheiro et al., 2024) (Figure 2). 

This review delves into the dynamic evolutionary arms races 
between plants and their insect herbivores, examining molecular, 
chemical, and physical plant defenses alongside insect counter 
adaptations. It emphasizes the role of environmental factors, such 
as climate change, in shaping these interactions. Cutting-edge 
biotechnological advancements, including genetic engineering and 
metabolic enhancement, are explored as tools to bolster plant 
immunity for sustainable pest management. By identifying key 
Frontiers in Plant Science 03 
knowledge gaps, the review advocates for future research 
integrating multi-omics approaches and innovative strategies to 
address global agricultural and food security challenges. 
2 Plant immune responses to insect 
herbivores 

Plants have evolved highly sophisticated defense strategies 
against herbivorous insects, broadly categorized into constitutive 
and inducible mechanisms (Singh et al., 2024a). Constitutive 
defenses serve as pre-existing barriers and include structural 
features such as waxy cuticles, thorns, and trichomes, as well as 
deterrent chemical compounds like alkaloids and terpenoids, which 
inhibit insect feeding and interfere with their development 
(Malinovsky et al., 2014; Fürstenberg-Hägg et al., 2013; Balaji and 
Jambagi, 2024). In contrast, inducible defenses are triggered upon 
herbivore attack and rely on the detection of herbivore-associated 
molecular patterns (HAMPs) and damage-associated molecular 
patterns (DAMPs). These molecular cues are perceived by specific 
receptors  that  initiate  intracellular  signaling  cascades  
predominantly regulated by jasmonic acid (JA) and salicylic acid 
(SA) pathways (Caarls et al., 2015; Ali and Baek, 2020; Snoeck et al., 
2022). Additional phytohormones, including ethylene (ET) and 
brassinosteroids, intricately modulate these signaling networks to 
fine-tune the plant’s resistance depending on herbivore feeding 
strategy and attack severity (Jamal et al., 2013; Gilroy and 
Breen, 2022). 

Activation of these hormonal pathways culminates in the 
expression of defense-related proteins such as protease inhibitors 
(PIs), which disrupt insect digestive physiology by targeting gut 
proteases, thereby reducing herbivore growth and survival (Bezerra 
et al., 2021). Simultaneously, the emission of volatile organic 
compounds (VOCs) enhances indirect defenses by attracting 
natural enemies of herbivores like predators and parasitoids, thus 
augmenting the plant’s biocontrol potential (Bezerra et al., 2021). 
Beyond localized defense, systemic signaling mechanisms ensure 
protection of undamaged tissues via long-distance signals, including 
systemin, JA, and SA, which mediate systemic acquired resistance 
(SAR). Mobile signals such as azelaic acid further amplify systemic 
immunity by priming distal tissues for heightened defensive 
readiness (Toyota and Betsuyaku, 2022). Through this 
multilayered defense architecture—spanning physical, chemical, 
and systemic levels plants can dynamically respond to herbivore 
threats in varying environmental contexts (Wu et al., 2024). 
Deciphering these defense mechanisms is critical for developing 
pest-resistant crops and advancing sustainable agricultural 
practices (Figure 3). 

While JA and SA signaling form the core of inducible defenses, 
other phytohormones such as abscisic acid (ABA), gibberellins 
(GAs), and auxins significantly contribute to herbivory responses, 
especially under concurrent abiotic stress conditions (Falconieri 
et al., 2022; Wang and Irving, 2011). ABA, widely recognized for its 
role in abiotic stress adaptation, also exerts complex influences on 
herbivore-induced defense pathways. Its accumulation under shade 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1599450
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Vasantha-Srinivasan et al. 10.3389/fpls.2025.1599450 
stress can inhibit bud growth, a suppression that is reversible by 
gibberellic acid application (Yang and Li, 2017; Bhatt et al., 2020). 
Moreover, ABA exhibits antagonistic interactions with JA-ET 
defense signaling, modulating transcriptional responses and thus 
affecting overall resistance (Kamle et al., 2020). For instance, ABA-
mediated stomatal closure in response to herbivore attack limits 
water loss and preserves plant turgor pressure, indirectly 
contributing to stress resilience (Chen et al., 2010). Additionally, 
ABA can regulate secondary metabolite biosynthesis, enhancing 
both direct deterrence of herbivores and attraction of their natural 
enemies (Choudhary and Kumari, 2021). 

GAs, though traditionally associated with plant growth, 
influence defense by modulating resource allocation between 
development and immunity. Depending on the context, GA 
signaling can either suppress or promote defense mechanisms, 
enabling tolerance or resistance to insect feeding. Auxins, 
primarily involved in cell division and elongation, have also been 
implicated in systemic immunity by modulating transcription of 
defense genes and reinforcing cell wall integrity through 
Frontiers in Plant Science 04
lignification and PR protein production (Heil, 2002). These 
hormones interact synergistically or antagonistically with core 
signaling pathways, representing an additional regulatory layer 
that shapes the plant’s defense landscape under biotic and abiotic 
stress interplay. 
2.1 Innate immunity and pattern 
recognition receptors 

2.1.2 Pattern-triggered immunity 
Plant innate immunity is a critical defense against biotic stressors, 

including insect herbivory. It relies on the recognition of conserved 
HAMPs by PRRs on plant cell surfaces, activating pattern-triggered 
immunity (PTI) as the first line of defense (Iriti and Faoro, 2007; Hou 
et al., 2019). As shown in Figure 4, PRRs, such as receptor-like kinases 
(RLKs) and receptor-like proteins (RLPs), detect HAMPs molecules 
from herbivore’s oral secretions, oviposition fluids, or salivary 
enzymes and activate intracellular signaling cascades (Singh et al., 
FIGURE 2 

Schematic view of adaptations and defense mechanisms involved in plant–insect interactions. The figure illustrates the multifaceted biochemical, 
physiological, morphological, behavioral, and ecological adaptations of insect herbivores to overcome plant defense mechanisms, in addition to the 
implications for global food security (created using BioRender.com). 
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2024b). Similarly, DAMPs, such as cell wall fragments and ATP from 
damaged plant cells, that signal tissue disruption trigger generalized 
defense responses (Harris and Mou, 2024). Together, HAMPs and 
DAMPs drive PTI, as illustrated in Supplementary Figure 1, enabling 
plants to target herbivores and mitigate tissue damage (Hu et al., 
2024). As shown in Figure 5, PRRs such as RLKs and RLPs recognize 
HAMPs derived from herbivore saliva, oviposition fluids, or frass. In 
some cases, plant PRRs detect MAMPs from bacterial symbionts 
residing in or on herbivores. A key example is the receptor 
FLAGELLIN-SENSING 2 (FLS2), which binds to the conserved 
flg22 epitope of bacterial flagellin secreted by insect-associated 
microbes. Upon ligand recognition, FLS2 forms a complex with 
BAK1 (BRI1-ASSOCIATED RECEPTOR KINASE 1), initiating 
MAPK cascades, transcriptional reprogramming, and the 
production of defense-related compounds (Chinchilla et al., 2007; 
2009; Huang and Joosten, 2024). This MAMP-triggered pathway 
highlights how insect herbivory may indirectly activate PTI via 
associated microbiota. 

A key response to PRR activation in PTI is the rapid generation of 
reactive oxygen species (ROS), which act as signaling molecules and 
Frontiers in Plant Science 05 
antimicrobial agents, causing oxidative damage to insect cells and 
strengthening plant cell walls (Kuźniak and Kopczewski, 2020). 
Concurrently, cytosolic calcium (Ca2+) influx activates calcium-

dependent protein kinases (CDPKs), amplifying immune signaling 
and inducing defense-related gene expression (Gao et al., 2014; Xu 
and Huang, 2017), and PTI also mobilizes secondary metabolites, 
such as phenolics, alkaloids, and terpenoids, which deter herbivores, 
and PIs, which disrupt insect digestion (Gatehouse, 2011; Chowdhary 
and Tank, 2023). Transcription factors like WRKY (WRKY 
transcription factor), MYB (Myeloblastosis transcription factor), 
and NAC (NAM (no apical meristem), regulate these defenses, 
including the production of VOCs that attract herbivore predators 
(Pandey and Somssich, 2009; Dubos et al., 2010). Additionally, JA-
mediated signaling enhances VOC production and systemic defenses 
(Yu et al., 2022), and crosstalk between the JA and SA pathways fine-
tunes PRR-induced responses based on the type of herbivore attack, 
optimizing defense efficiency (Schweiger et al., 2014; Wari et al., 
2022). Systemic signaling through mobile signals, like systemin, 
primes distal tissues for defense, boosting overall resilience (Ryan, 
2000; Ryan and Moura, 2002; Delano-Frier et al., 2013). 
FIGURE 3 

Overview of plant defense mechanisms. This figure presents the key pathways involved in plant defense against herbivores, including pattern-
triggered immunity (PTI) and effector-triggered immunity (ETI), which activate defense signaling through MAPKs and NLR proteins, respectively. 
Hormonal pathways involving jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) modulate systemic responses, such as systemic acquired 
resistance (SAR) and induced systemic resistance (ISR). The figure also illustrates the production of secondary metabolites and the role of RNA 
silencing and epigenetic regulation in enhancing plant resistance to insect attacks (created using BioRender.com). 
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2.1.3 Effector-triggered immunity 
Effector-triggered immunity (ETI) is a specific plant defense 

mechanism activated by pathogen- or insect-derived effectors, 
complementing PTI as a second layer of immunity (Tsuda and 
Katagiri, 2010). This specialized system enables plants to counter 
herbivore attacks, making them crucial to agricultural productivity 
and ecological stability (Nguyen et al., 2021). ETI relies on 
resistance genes (R-genes) encoding nucleotide-binding site 
(NBS) and leucine-rich repeat (LRR) proteins (R-proteins 
collectively), which detect insect effectors directly or indirectly via 
guard or decoy models (Van der Hoorn and Kamoun, 2008; Wu 
et al., 2014). Upon effector recognition, these R-proteins activate 
defense cascades that enhance resistance (Kaur et al., 2021), and 
recent studies suggest that R-genes have broad-spectrum potential, 
targeting both pathogens and herbivores (Zhang et al., 2022; Wang 
et al., 2023). The ‘guard hypothesis’ posits R proteins monitor 
specific host proteins termed ‘guardees’ which are common targets 
of pathogen effectors. When these guardees are modified by 
Frontiers in Plant Science 06
effectors, the R proteins detect these changes and trigger effector-
triggered immunity (ETI) to counteract the pathogen attack (Van 
der Biezen and Jones, 1998; Dangl and Jones, 2001). In the “decoy 
model,” plants evolve decoy proteins resembling herbivore targets 
to bait effectors, ensuring precise detection and response (Wang 
et al., 2021a). This dynamic recognition system allows plants to 
counter biochemical manipulations by herbivores and tailor 
molecular defenses (Figure 6). 

Upon recognition, R-proteins trigger ROS accumulation, 
MAPK cascades, and defense gene expression, leading to localized 
programmed cell death, which limits insect damage (Gogoi et al., 
2024; Zhang and Zhang, 2022). Overall, ETI is tightly regulated to 
balance defense strength with cellular homeostasis (Falak et al., 
2021). Unlike the broad-spectrum resistance of PTI, ETI is highly 
specific, targeting unique insect-derived effectors (Zhang et al., 
2024a). For example, Nicotiana species possess R-genes 
conferring resistance against Helicoverpa armigera, while

Arabidopsis thaliana has R-genes targeting Pieris rapae (Chen 
FIGURE 4 

Molecular mechanisms underlying plant defense responses against herbivory. The figure illustrates the signal transduction events activated by 
herbivore attacks. Upon larval feeding, pattern recognition receptors (PRRs) on the plant cell surface recognize molecular patterns including 
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), leading to the activation of pattern-triggered 
immunity (PTI). These signals activate intracellular MAPK cascades, cytosolic calcium ion fluxes, and reactive oxygen species (ROS) bursts, 
culminating in transcriptional reprogramming and antimicrobial compound production. Effector-triggered immunity (ETI) is also depicted, where 
intracellular nucleotide-binding leucine-rich repeat (NLR) proteins directly or indirectly recognize insect effectors. The synergistic interaction 
between PTI and ETI leads to enhanced resistance against insect herbivory. (created using BioRender.com). 
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et al., 2022; De Vos et al., 2006). This specificity ensures efficient 
resource use and effective defense. Additionally, R-genes contribute 
through antimicrobial activity, structural barrier enhancement, and 
immune signaling amplification (Farvardin et al., 2024). Advances 
in high-throughput sequencing and CRISPR (Clustered Regularly 
Interspaced Short Palindromic Repeats) technology have identified 
novel R-genes and enabled transgenic approaches to enhance pest 
resistance in crops (Tailor and Bhatla, 2024). Strategies like gene 
pyramiding, stacking multiple R-genes, and synthetic biology 
approaches engineering R-proteins with improved specificity offer 
promising solutions to combat insect adaptation and resistance 
(Das et al., 2022; Vo et al., 2023). 
2.2 Plant signaling pathways involved in 
defense 

Plants deploy highly coordinated signaling pathways to mount 
rapid defense responses against herbivores, wherein jasmonic acid 
Frontiers in Plant Science 07 
(JA), salicylic acid (SA), and ethylene (ET) function as primary 
regulators (Romero et al., 2023). Upon herbivory, signaling cascades 
are activated almost immediately after damage through wounding 
perception and herbivore-associated molecular pattern (HAMP) 
recognition, leading to early hormone production within minutes 
(Machado et al., 2016; Pandey et al., 2017; Zafeiriou et al., 2022). 
These hormonal networks regulate both direct defenses, such as 
protease inhibitors (PIs), oxidative enzymes, and secondary 
metabolites that impair herbivore digestion, and indirect defenses 
including herbivore-induced plant volatiles (HIPVs) that recruit 
natural predators (Sultana et al., 2024; Upadhyay et al., 2024). 
Recent studies have highlighted that indole-3-acetic acid (IAA) 
plays a pivotal role in the early systemic signaling following 
herbivore attack, especially during insect wounding (Singh et al., 
2024a). IAA accumulation is often triggered within minutes after 
herbivore perception, preceding the JA burst, and coordinates 
auxin-responsive gene expression that modulates downstream 
defense amplification and tissue remodeling (Machado et al., 
2016; Ali et al., 2024c). 
FIGURE 5 

Schematic representation of HAMP pathway-mediated pattern-triggered immunity (PTI) in plants following insect attack. The diagram illustrates the 
sequence of cellular events in herbivore-associated molecular pattern (HAMP)-triggered responses. Insect feeding introduces HAMPs, recognized by 
plant pattern recognition receptors (PRRs) such as LecRKs, activating signal transduction cascades. These include mitogen-activated protein kinase 
(MAPK) activation and calcium ion (Ca²+) influx, which independently and cooperatively initiate early defense responses. Calcium influx stimulates 
reactive oxygen species (ROS) generation via NADPH oxidases (RBOHs), while MAPKs activate jasmonic acid (JA) biosynthetic genes such as LOX, 
AOS, and OPR. ROS may further amplify JA signaling and defense gene expression. This coordinated defense network results in anti-herbivore 
protein synthesis, secondary metabolite production, and systemic acquired resistance (SAR) (created using BioRender.com). 
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2.2.1 JA: the principal hormone involved in 
defense against herbivory 

JA biosynthesis is initiated almost immediately after herbivore 
damage, often within minutes, as demonstrated in multiple species 
including Arabidopsis, chickpea, and Nicotiana (Machado et al., 
2016; Pandey et al., 2017; Zafeiriou et al., 2022). Tissue damage 
activates the octadecanoid pathway, converting a-linolenic acid 
into jasmonoyl-L-isoleucine (JA-Ile), which interacts with the 
SCF^COI1-JAZ complex to release MYC transcription factors 
that regulate downstream defense genes (Macioszek et al., 2023; 
Hewedy et al., 2023; Ali et al., 2024a). Within minutes, this signaling 
cascade induces the production of direct defense compounds, 
including alkaloids, terpenoids,  and  PIs that impair insect

digestion (War et al., 2018; Kumar et al., 2024). Concurrently, JA 
regulates oxidative defenses through polyphenol oxidases (PPOs) 
Frontiers in Plant Science 08
and ROS generation that inflict further tissue damage on herbivores 
(Taranto et al., 2017). JA also activates HIPVs that attract predators 
and parasitoids, contributing to indirect defense strategies (Paudel 
Timilsena et al., 2020). 
2.2.2 SA: modulator of crosstalk and indirect 
defense 

Although primarily associated with pathogen defense, SA also 
modulates responses to herbivores, particularly phloem-feeding insects, 
through rapid activation of SA biosynthesis pathways following 
localized cell damage (Pandey et al., 2017; Hou and Tsuda, 2022). 
Piercing-sucking herbivores like aphid’s trigger SA signaling via the 
isochorismate pathway, where Isochorismate Synthase 1 (ICS1) 
mediates SA biosynthesis in chloroplasts (Arif et al., 2021). SA 
FIGURE 6 

Schematic representation of effector-triggered immunity (ETI) during plant defense against insect herbivores. The ETI pathway is initiated when 
herbivores (e.g., caterpillars) attack the plant and secrete effectors (Step 1). R-genes, which encode nucleotide-binding site and leucine-rich repeat 
(NBS–LRR) proteins, recognize these insect-derived effectors and trigger the immune response (Step 2). This recognition activates a signaling 
cascade, including the generation of reactive oxygen species (ROS) and the mitogen-activated protein kinase (MAPK) pathway, amplifying the 
defense response within the cell (Step 3). Hormonal pathways, including jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) pathways, are 
subsequently activated to further regulate immune responses. JA and ET primarily modulate responses against herbivores, while SA is more involved 
in SAR (Step 4). Upon signaling, defense genes, including pathogenesis-related (PR) genes, are activated and produce various proteins, such as 
chitinases and glucanases, to degrade the cell walls of pathogens and inhibit insect feeding (Step 5). The activation of SAR systemically propagates 
the immune response, priming distal tissues for potential future attacks (Step 6). The hypersensitive response (HR) is induced at the local site of 
attack, resulting in localized programmed cell death to limit insect feeding and pathogen spread (Step 7). Concurrently, the cell wall undergoes 
reinforcement through the deposition of callose and lignin, creating a physical barrier against further invasion (Step 8). Together, these molecular 
and cellular processes culminate in a robust defense response, curbing herbivore damage and enhancing the resilience of plants against insect pests 
(created using BioRender.com). 
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activates NPR1-mediated transcription of defense-related genes 
including PR genes (Backer et al., 2019; Christopher et al., 2003). 
Crosstalk between SA and JA is largely antagonistic, allowing fine-
tuned regulation based on herbivore feeding strategy (Yang et al., 
2015), though synergistic cooperation may occur during combined 
pathogen-herbivore challenges (Mishra et al., 2024a). Additionally, SA 
regulates volatile and nectar production, indirectly influencing 
herbivore control via recruitment of natural predators and 
pollinators (Al-Khayri et al., 2023). 

2.2.3 ET: enhancer of herbivore defense 
responses and synergist of JA signaling 

Ethylene operates synergistically with JA, often enhancing 
defense responses especially during extensive tissue damage 
(Pandey et al., 2017; Zafeiriou et al., 2022). ET biosynthesis is 
rapidly induced following herbivory, starting with methionine 
conversion to 1-aminocyclopropane-1-carboxylic acid (ACC) by 
ACS and subsequent oxidation to ET by ACO enzymes. ET 
perception via ETR1 and downstream signaling through EIN2 
and EIN3/EIL transcription factors amplifies JA-driven responses, 
upregulating genes involved in PIs, PPOs, and ROS production 
(Khan et al., 2024; Bungala et al., 2024). ET also promotes cell wall 
reinforcement through lignin biosynthesis and callose deposition, 
limiting further herbivore penetration (Wang et al., 2020; Ninkuu 
et al., 2022; Xiao et al., 2021; Shi et al., 2016). The synergistic 
regulation of PDF1.2 by JA-ET pathways provides defense against 
necrotrophic herbivores (Koornneef and Pieterse, 2008). 

2.2.4 ABA: coordinator of defense under abiotic­
biotic stress intersection 

The co-occurrence of drought and herbivory imposes 
multifaceted stress on plants, necessitating a hormonal crosstalk 
to orchestrate defense and survival. Abscisic acid (ABA), classically 
known for regulating abiotic stress responses, plays a critical role in 
modulating herbivore-induced defenses, especially under drought 
(Mundim and Pringle, 2018). ABA accumulation mediates stomatal 
closure, osmotic balance, and root growth by activating stress-
responsive genes such as RD29A and NCED3 (Zhang et al., 2023b). 
Under simultaneous drought and insect attack, ABA interacts with 
JA and ET pathways to fine-tune defense priorities (Tabaeizadeh, 
1998; Aslam et al., 2022). For instance, ABA-mediated stomatal 
closure reduces transpiration but also limits volatile emission, 
thereby modulating herbivore recognition and natural enemy 
attraction (Liu et al., 2022; Cardoso et al., 2020). Additionally, 
ABA influences the synthesis of defensive secondary metabolites 
and stress-induced proteins, contributing to both direct and indirect 
defenses (Pri-Tal et al., 2023). Herbivore stress can also suppress 
photosynthesis by downregulating the 2-C-methyl-D-erythritol-4­

phosphate (MEP) pathway, limiting isoprenoid-derived defenses 
(Mitra et al., 2021). Importantly, ABA signaling is interconnected 
with SA pathways, forming a regulatory hub in drought-herbivory 
resistance (Benderradji et al., 2021). Beyond defense, ABA 
orchestrates developmental adjustments such as seed dormancy 
and root-shoot architecture to optimize survival under 
compounded stress (González‐Guzmán et al., 2014; Wang et al., 
2018; Huang et al., 2018; Felemban et al., 2019). 
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2.2.5 Crosstalk and integration of JA, SA, and ET 
in defense against herbivores 

The integration of JA, SA, ET, and IAA pathways enables plants to 
dynamically adjust their defense responses. While JA and ET primarily 
counteract chewing herbivores, SA regulates responses to phloem-

feeders and modulates JA-driven defenses through NPR1 and 
WRKY70 (Lazebnik et al., 2014; Arif et al., 2021; Zafeiriou et al., 
2022; Ali et al., 2024b). Importantly, indole-3-acetic acid (IAA) 
functions as an early systemic signal that precedes jasmonic acid 
activation upon herbivory. Machado et al. (2016) demonstrated that 
in Nicotiana attenuata, IAA levels rise rapidly within 30–60 seconds 
after wounding and peak at 5 minutes post-Manduca sexta attack, 
initiating auxin-responsive gene expression before JA biosynthesis is 
fully engaged. This early auxin burst independently propagates to distal 
tissues and modulates JA-dependent secondary metabolism, including 
phenolamide and anthocyanin biosynthesis, essential for downstream 
herbivore defense activation. Such rapid auxin signaling interacts with 
MAPK activation, ROS production, and hormonal crosstalk to fine-
tune systemic defense responses (Steppuhn et al., 2004; Li et al., 2022). 
High-resolution transcriptomic studies reveal rapid transcriptional 
reprogramming in different plant species within minutes of 
herbivory (Pandey et al., 2017; Machado et al., 2016; Zafeiriou et al., 
2022). In chickpea, Pandey et al. (2017) reported activation of JA and 
ET networks as early as 20 minutes post-wounding, while suppressing 
growth-associated hormonal pathways such as auxin and gibberellins. 
Similar rapid hormonal shifts have been observed in Nicotiana and 
Arabidopsis, underscoring the importance of temporally synchronized 
phytohormone crosstalk in tailoring herbivore-specific defense  outputs  
(Montesinos et al., 2024; Kamweru et al., 2022; Vishwanath et al., 
2024). These multi-hormonal pathways and regulatory networks equip 
plants with dynamic, adaptable defenses against diverse herbivore 
challenges, with integrated JA, SA, ET, and IAA interactions 
schematically represented in Figure 7. To further clarify the dynamic 
sequence of molecular responses, a temporal model summarizing the 
rapid perception, early signaling, hormonal activation, defense gene 
expression, and systemic signaling events triggered during herbivore 
attack is presented in Figure 8. 

It is important to emphasize that most mechanistic insights 
described herein, including hormonal crosstalk, defense activation, 
and temporal signaling sequences, have been derived from 
laboratory- and greenhouse-based experiments conducted under 
controlled environmental conditions, primarily using model 
systems such as Arabidopsis thaliana, Nicotiana attenuata, maize, 
and chickpea. While these studies offer detailed molecular 
frameworks, additional research is needed to fully validate and 
scale  these  mechanisms  under  field  conditions,  where  
environmental variables and complex multi-trophic interactions 
may influence defense outcomes. 
3 Physical and chemical defenses in 
plants 

Plants defend themselves against herbivorous insects using 
preformed structural barriers and inducible chemical weapons. 
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These physical and biochemical traits function in concert with 
phytohormone-regulated signaling, creating a dynamic, 
multilayered defense strategy. This section presents a concise 
synthesis of core structural defenses (e.g., trichomes, waxes, 
cuticle) and chemical responses (e.g., phenolics, alkaloids, VOCs), 
highlighting their integration with hormonal pathways such as JA, 
SA, and ET. 
3.1 Structural defenses 

Trichomes, cuticle layers, and waxes act as critical mechanical 
barriers against herbivory (Figure 9). Nonglandular trichomes 
prevent insect attachment, while glandular trichomes secrete toxic 
metabolites including terpenoids and alkaloids (Wang et al., 2021a, 
b; Balaji and Jambagi, 2024). Trichome development is controlled 
by the GL1–GL3–TTG1 (GL1–GL3–TTG1 complex) and 
downstream targets like GL2, modulated by feedback (Pattanaik 
et al., 2014; Pei et al., 2024; Zumajo-Cardona et al., 2023). JA and 
gallic acid influence trichome density via MYC2, integrating light 
and wound signals (Brian and Bergelson, 2003). JA–ET crosstalk 
further enhances glandular secretion and patterning in Arabidopsis 
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through GL3 (Yoshida et al., 2009; Song et al., 2022). Cuticular 
waxes, composed of Very-Long-Chain Fatty Acids (VLCFAs), 
alkanes, and esters, minimize desiccation and deter insect feeding 
(Zeisler-Diehl et al., 2018; Batsale et al., 2021). VLCFAs are derived 
from C16/C18 fatty acids and elongated in the ER by the FAE 
complex (Batsale et al., 2023). Export to the surface is mediated by 
ABC (ATP-Binding Cassette Transporters) such as ABCG12 
(CER5), reinforcing the cuticle barrier (Pighin et al., 2004). Wax 
layers also trap VOCs that repel herbivores or attract predators 
(Camacho-Coronel et al., 2020; Xue et al., 2017). ABA signaling 
enhances wax biosynthesis under herbivory (Lewandowska et al., 
2024; Joubès and Domergue, 2018). 
3.2 Chemical defenses 

Plants produce diverse chemical compounds including 
phenolics, alkaloids, terpenoids, VOCs, and protease inhibitors 
(Divekar et al., 2023a, 2022; Vasantha-Srinivasan et al., 2024). 
Their synthesis is induced by HAMPs or wounding and regulated 
by JA and SA signaling (Sharma et al., 2017; Malik et al., 2021; 
Nguyen et al., 2022). Phenolic compounds such as flavonoids, 
FIGURE 7 

Crosstalk and integration of jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) pathways in defense responses against herbivores. The diagram 
illustrates the complex signaling interactions among the JA, SA, and ET pathways in mediating plant defenses. The JA pathway initiates defense via 
COI1 and MYC2, with regulatory control by JAZ repressors. ET signaling interacts synergistically with JA, enhancing defenses via ERF1 activation 
downstream of JA-ET convergence. SA signaling, regulated by NPR1 and TGA, activates defenses against both herbivores and pathogens, while 
WRKY70 modulates antagonism between SA and JA pathways. Pathways are color-coded: teal for JA, purple for SA, red for ET, and brown for 
defense outcomes (created using BioRender.com). 
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tannins, and lignins act through multiple mechanisms digestive 
inhibition, nutrient sequestration, or cell wall reinforcement 
(Kumar et al., 2020; Singh et al., 2021; Iqbal and Poór, 2024; 
Balakrishnan et al., 2024). Flavonoids and tannins interfere with 
enzymes or form indigestible complexes, while lignins strengthen 
tissue resistance. Alkaloids like nicotine and caffeine disrupt 
herbivore neural and metabolic pathways (Matsuura and Fett-
Neto, 2015; Steppuhn et al., 2004; Garvey et al., 2020; Abernathy 
et al., 2023; Raisch and Raunser, 2023; Mostafa et al., 2022). 
Nicotine overstimulates nicotinic receptors; caffeine inhibits 
phosphodiesterase. Their biosynthesis is JA-dependent, involving 
Putrescine N-Methyltransferase (PMT) and caffeine synthase (Yang 
et al., 2016). Terpenoids-monoterpenes, sesquiterpenes, and 
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diterpenes exert toxicity by disrupting membranes, mimicking 
hormones, or inhibiting neural enzymes (Konuk and Ergüden, 
2020; Tsang et al., 2020; Zielińska-Błajet and Feder-Kubis, 2020; 
Câmara et al., 2024). Diterpenes target mitochondrial function 
(Yang et al., 2022). Their synthesis is upregulated via the 
Mevalonate Pathway (MVA) and Methylerythritol Phosphate 
(MEP) pathways (Opitz et al., 2014; Singh et al., 2024c; Ghorbel 
et al., 2021). VOCs, especially Green Leaf Volatiles (GLVs) and 
Herbivore-Induced Plant Volatiles (HIPVs), deter herbivores and 
attract predators (Mortensen, 2013; Allmann et al., 2013; Ameye 
et al., 2018; Jones et al., 2022a, b; Zhang et al., 2017; Frago et al., 
2022; Matsui and Engelberth, 2022). Hexenal disrupts olfactory 
cues; methyl jasmonate recruits parasitoids. VOCs also prime 
FIGURE 8 

Temporal hierarchy of molecular signaling pathways activated during plant defense against herbivores. Herbivore attack triggers immediate 
perception of herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs) by pattern recognition 
receptors (PRRs). Within seconds to minutes, early signaling events such as calcium (Ca²+) influx, reactive oxygen species (ROS) burst, and MAPK 
activation are initiated. Indole-3-acetic acid (IAA) accumulates rapidly within 30–60 seconds, peaking around 5 minutes, preceding Jasmonic acid 
(JA) biosynthesis which activates within 5–30 minutes’ post-attack. Ethylene (ET) signaling synergizes with JA responses within 30–60 minutes, 
while salicylic acid (SA) signaling becomes prominent at later stages (hours), particularly under phloem-feeding herbivores. These sequential 
hormone activations drive downstream defense gene expression (protease inhibitors, polyphenol oxidases, secondary metabolites, and volatiles) and 
systemic acquired resistance (SAR) through long-distance mobile signals. The time frames represent experimentally observed approximate windows 
based on literature review, (created using BioRender.com). 
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systemic defense in neighboring tissues. Protease inhibitors (PIs) 
and tannins impair digestion by targeting gut proteases and binding 
proteins (Divekar et al., 2023b; Cid-Gallegos et al., 2022; Molino 
et al., 2021; Iqbal and Poór, 2024; Mora et al., 2022). JA and SA 
regulate the expression of key defense genes such as Proteinase 
Inhibitor II (PI-II) from S. lycopersicum and Phenylalanine 
Ammonia-Lyase (PAL), which is conserved across several species 
including Arabidopsis and Nicotiana, providing rapid and localized 
resistance against herbivores (Farmer and Ryan, 1992). Table 1 
systematically summarizes various induced defense compounds and 
their specific actions against herbivores. 
4 Insect counter-defense mechanisms 

Herbivorous insects have evolved precise and multi-layered 
strategies to overcome plant immune responses. These counter-
defenses are not merely structural or behavioral but deeply 
integrated at the molecular and hormonal levels, allowing insects 
to exploit host vulnerabilities and manipulate plant immunity. 
Below, we elaborate the most mechanistically relevant counter-
strategies insects use to suppress, evade, or reprogram plant defense 
networks (Figure 10). 
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4.1 Behavioral adaptations 

Herbivores engage in finely tuned behaviors that limit exposure 
to inducible plant defenses. For example, leaf miners such as 
Liriomyza spp. feed internally, avoiding detection by external 
pattern recognition receptors and minimizing activation of 
systemic hormonal cascades (Hamza et al., 2023). Gall-inducing 
insects hijack developmental signaling to create nutrient-rich 
microenvironments shielded from chemical defenses (Mishra 
et al., 2024b). Additionally, many insects exploit phenological 
windows targeting young, less lignified tissues with lower 
concentrations of phenolics and VOCs (Milton, 1979). Physical 
adaptations, such as hydrophobic tarsal pads in thrips and beetles, 
allow navigation across resinous or trichome-dense surfaces, 
mitigating mechanical restriction and enhancing feeding efficiency 
(Voigt et al., 2017). 
4.2 Target site insensitivity and molecular 
adaptations 

At the molecular level, insects have developed specific 
mutations and regulatory mechanisms to resist plant defenses. 
FIGURE 9 

Molecular mechanisms underlying structural defenses of plants against herbivore attack. The figure illustrates the complex molecular mechanisms 
underlying the structural defenses of plants in response to herbivore attack, emphasizing the roles of trichome development, cuticle thickening, and 
wax layer formation (created using BioRender.com). 
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TABLE 1 Plant metabolites involved in defenses against insect attacks and their modes of action. 

Compound(s) Plant(s) Attacking insect(s) Mode of action Reference 

Nicotine 
Nornicotine 
Anabasine 
Anatabine 

Nicotiana tabacum Phthorimaea operculella Induced by vibrational signals, 
deterring pest attack 

Pinto et al., 2019 

Anthocyanins Arabidopsis thaliana Lepidopteran insects Induced by leaf vibrations 
produced by chewing 
herbivores, deterring 
pest attack 

Kollasch et al., 2020 

Alcohol 
Aldehyde Hydrocarbon Ketone 
Ester 
Benzenoid Terpenoid 

Aquilaria sinensis Heortia vitessoides Attracts the insect predator 
Cantheconidea concinna 

Qiao et al., 2018 

Turpentine 
a-terpineol 
Eucalyptol 

Cinnamomum camphora 
Pinus species 

Plutella xylostella Reduces herbivore attack and 
disrupts mating 

Wang et al., 2016 

(E)-4,8-dimethyl­
1,3,7-nonatriene 

Gossypium hirsutum Spodoptera littoralis Suppresses olfactory 
signaling pathways 

Hatano et al., 2015 

Coumarins Artemisia granatensis Spodoptera littoralis 
Myzus persicae 
Rhopalosiphum padi 

Disrupts herbivore attack 
on plants 

Barrero et al., 2013 

3-methyl-3-pentanol 
2,5-hexanedione 
Tetradecanal 

Brassica campestris Spodoptera litura Reduces feeding and odor 
selection under cadmium stress 

Guo et al., 2024 

(3E)-4,8-dimethyl-1,3,7­
nonatriene 
Caryophyllene 
Humulene 

Vitis vinifera Tetranychus urticae Attracts natural predators that 
feed on spider mites 

Van Den Boom et al., 2004 

b-caryophyllene 
(E)-b-farnesene 
(E)-4,8-dimethyl­
1,3,7-nonatriene 

Vitis vinifera Lobesia botrana Attracts grapevine 
moth females 

Tasin et al., 2007 

Benzoxazinoids Triticum aestivum Rhopalosiphum padi Improves plant resistance 
against insect herbivores 
in wheat 

Shavit et al., 2022 

Nonyl tetradecyl ether 
Hexacosane 
2-hexyl-1-decanol 
Tetratriacontane 
Heneicosane 
Octacosane 

Aloe barbadensis Manduca sexta 
Spodoptera frugiperda 

Prevents the feeding of larvae Johnson et al., 2023 

Plumieride Himatanthus drasticus Callosobruchus maculatus Inhibits intestinal a-amylases 
and reduces C. 
maculatus infestation 

Morais et al., 2021 

b-ocimene 
Thuja-2,4(10)-diene 
Terpinene 

Brassica oleracea Pieris rapae 
Plutella xylostella 

Attracts natural parasitoids to 
defend against insect attack 

Bruinsma et al., 2009 

(E)-b-ocimene Phaseolus lunatus Tetranychus urticae Increases volatile emission and 
enhances biological control of 
spider mites 

Menzel et al., 2014 

Polyphenol oxidases Bouteloua dactyloides Blissus occiduus Exhibits antinutritional activity Heng-Moss et al., 2004 

Chitinases Hybrid of Populus alba (white 
poplar) × 
P. tremula (common aspen) 

Malacosoma disstria Exhibits toxicity against larvae Ralph et al., 2006 

(Continued) 
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TABLE 1 Continued 

Compound(s) Plant(s) Attacking insect(s) Mode of action Reference 

Threonine 
Citric acid 
Alanine 

Jacobaea aquatica Frankliniella occidentalis Inhibits feeding and reduces 
thrips populations 

Wei et al., 2021 

Lectins Nilaparvata lugens Triticum aestivum Exhibits antinutritional activity Saha et al., 2006 

Borneol 
Eucalyptol 
(+)-camphor 

Artemisia sieversiana 
A. sylvatica 

Callosobruchus chinensis Chemicals from galls that 
exhibit insecticidal activity 

Liu et al., 2024 

Sorbitol 
Xylitol 

Cajanus platycarpus 
C. cajan 

Helicoverpa armigera Reduces nutrient availability to 
insects and enhances specific 
defense hormones 
and pathways 

Dokka et al., 2024 

9-hydroxy-10-oxo-12(Z),15(Z)­
octadecadienoic acid 
(9,10-KODA) 

Zea mays Spodoptera frugiperda Arrests the growth of fall 
armyworm larvae, primes the 
plant for enhanced wound-
induced defense gene 
expression, and modulates 
GLV signaling for 
improved resistance 

Yuan et al., 2023 

1,8-cineole 
a-pinene 
Linalool 
Thymol 
Carvacrol 

Eucalyptus globulus 
Citrus sinensis 
Mentha arvensis 

Tribolium castaneum 
Plutella xylostella 
Bemisia tabaci 

Inhibits the growth and 
disrupts the development of 
pests and repels pests by 
disrupting olfactory receptors 

Qasim et al., 2024 

Quercetin 
Rutin 

Pyrus ussuriensis 
P. bretschneideri 

Cydia pomonella 
Grapholita molesta 

Upregulated in response to 
pest feeding, serving as 
defense compounds 

Zhang et al., 2024b 

Cardenolides 
Iridoid glycosides 
Furanocoumarins 

Asclepias species 
Plantago species 
Pastinaca sativa 

Danaus plexippus 
Caterpillars and beetles 
Papilio polyxenes 

Inhibits sodium-potassium 
pumps in the pest 
Converted into reactive 
compounds that denature 
defense proteins in insects 
Binds to DNA, causing toxicity 
under UV light exposure 

Blanchard and Holeski, 2024 

BrPGIP3 (polygalacturonase­
inhibiting protein) 

Brassica rapa Phaedon cochleariae Inhibits polygalacturonases 
expressed by the leaf beetle, 
reducing the pest’s ability to 
hydrolyze pectin in the plant 
cell wall 

Haeger et al., 2020 

p-hydroxycinnamic acid Pinus species Ips typographus Acts as an antifeedant, disrupts 
digestion, and repels pests. 

Latreche and Rahmania, 2011 

Nicotine Nicotiana species Manduca sexta Acts as a neurotoxin, 
disrupting nervous system 
function in pests 

Howe and Herde, 2015 

Indole 
Methyl anthranilate 

Zea mays Spodoptera exigua Emitted by maize in response 
to maize plant elicitor peptide 
3 and attracts parasitoids and 
deter herbivores 

Huffaker, 2015 

Indole Zea mays Spodoptera exigua Primes plant defense responses 
by enhancing early signaling 
events, such as 
MAPK activation 

D’Alessandro et al., 2006 

(Z)-3-hexenol 
(E)-2-hexenal 

Zea mays Spodoptera littoralis Activates Ca2+ 
flux in plants, 

triggering early defense 
response and reducing pest 
feeding and performance 

Farag and Paré, 2002 

(Continued) 
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Resistance to plant toxins often arises from genetic mutations that 
can alter the target sites of these compounds (Petschenka and 
Dobler, 2009). Some insects, such as milkweed bugs and monarch 
butterflies, exhibit remarkable adaptations through mutations in the 
sodium–potassium ATPase gene. These mutations reduce the 
binding affinity of cardenolides, which are toxic steroids produced 
by milkweed plants, to the enzyme and effectively neutralize their 
inhibitory effects. This molecular modification enables these insects 
to not only tolerate high levels of cardenolides but also sequester 
these compounds for use as a chemical defense against predators 
(Aardema et al., 2012). In the Colorado potato beetle L. 
decemlineata, the production of digestive enzymes, including 
lipases and cellulases, is upregulated to break down structural 
components of plants, such as waxes and cellulose. This 
enzymatic plasticity helps in coping with different plant species or 
varying environmental conditions (Wilhelm et al., 2024). 
Frontiers in Plant Science 15 
4.3 Suppression of plant immune 
responses by herbivore effectors 

In their arms race with plants, herbivorous insects have evolved 
the ability to suppress plant immune responses by using specialized 
proteins known as effectors. These molecules, secreted in the saliva 
or other oral secretions of insects, can directly interfere with the 
immune signaling pathways of plants, enabling successful 
colonization and feeding (Wang et al., 2023). Herbivores use 
effectors to manipulate plant immune signaling systems, such as 
those regulated by JA, SA, and ET. These phytohormones 
orchestrate plant  defense responses against different types of 
attackers (Caarls et al., 2015). The primary goal of herbivore 
effectors is to suppress recognition by plants and prevent the 
downstream activation of these pathways. Herbivorous insects 
secrete effectors that suppress plant PTI, which is activated upon 
TABLE 1 Continued 

Compound(s) Plant(s) Attacking insect(s) Mode of action Reference 

b-ocimene Arabidopsis thaliana Myzus persicae Acts as a signal to attract 
natural enemies of aphids 

Fäldt et al., 2003 

Linalool Medicago truncatula Spodoptera exigua Increases PPO activity, making 
the pest more susceptible 
to pathogens 

Navia-Giné et al., 2009 

Methyl salicylate Nicotiana tabacum Helicoverpa armigera Signals systemic acquired 
resistance and 
repels herbivores 

Shulaev et al., 1997 

a-pinene Pinus sylvestris Dendrolimus pini Acts as a feeding deterrent and 
exhibits larval toxicity 

Raffa et al., 2005 

b-caryophyllene Zea mays Diabrotica virgifera Attracts entomopathogenic 
nematodes that parasitize 
rootworm larvae 

Rasmann et al., 2005 

Eugenol Ocimum basilicum Spodoptera litura Exhibits insecticidal activity 
and disrupts larval feeding 

Nerio et al., 2010 

Carvacrol Origanum vulgare Sitophilus oryzae Exhibits fumigant toxicity and 
disrupts respiratory functions 

Kim et al., 2003 

(E)-b-farnesene Arabidopsis thaliana Myzus persicae Acts as an alarm pheromone, 
repelling aphids and attracting 
their natural enemies 

Pickett et al., 1992 

(Z)-3-hexenyl acetate Zea mays Spodoptera littoralis Attracts parasitoid wasps, 
enhancing indirect plant 
defense mechanisms 

Turlings et al., 1995 

Methyl jasmonate Nicotiana attenuata Manduca sexta Induces the production of 
nicotine and other defense 
compounds, 
deterring herbivory 

Baldwin, 1998 

(E)-4,8-dimethyl­
1,3,7-nonatriene 

Phaseolus lunatus Tetranychus urticae Attracts predatory mites, 
reducing herbivore populations 

Arimura et al., 2000 

(E,E)-a-farnesene Glycine max Helicoverpa zea Attracts parasitic wasps, 
facilitating the biological 
control of herbivores 

Röse and Tumlinson, 2004 

(E)-b-ocimene Medicago truncatula Spodoptera exigua Serves as a signal to attract 
natural enemies of herbivores 

Leitner et al., 2005 
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recognition of HAMPs, thereby facilitating successful feeding (Basu 
et al., 2018). For example, Helicoverpa zea secretes glucose oxidase 
(GOX), which disrupts ROS signaling in the plant host, weakening 
defense activation (Tian et al., 2012), and aphids deliver salivary 
effectors to inhibit R-proteins and suppress ETI cascades (Elzinga 
et al., 2014). Some insects, like weevils, modulate polygalacturonase 
inhibitors to suppress cell wall-based defenses, facilitating feeding 
with minimal resistance (Kalunke et al., 2015; Gong et al., 2023). 
Through such diverse adaptations, herbivorous insects effectively 
navigate plant defenses. Understanding these mechanisms is vital 
for developing innovative pest management strategies in 
agricultural systems. 
4.4 Hormonal crosstalk manipulation by 
herbivores 

Herbivorous insects can manipulate plant hormonal crosstalk 
to circumvent defenses by exploiting the antagonistic interaction 
between JA and SA. Aphids and whiteflies stimulate SA 
accumulation while suppressing JA-mediated defenses, resulting 
in reduced synthesis of JA-regulated compounds such as PIs and 
secondary metabolites (Zarate et al., 2007; Zhang et al., 2013; Xu 
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et al., 2019). This hormonal manipulation facilitates phloem 
feeding, thereby promoting insect colonization and reproduction 
(VanDoorn et al., 2015; Zhang et al., 2018). Whiteflies (Bemisia 
tabaci) secrete salivary effectors to activate SA signaling, dampening 
JA-mediated defenses in host plants like tomato (Zhang et al., 
2018), and aphids use similar strategies, activating SA and 
suppressing JA to weaken defenses, facilitating efficient feeding 
(Zhang et al., 2023a; 2024c). The tobacco hornworm (Manduca 
sexta) secretes GOX to interfere with the oxidative burst associated 
with JA signaling, reducing overall plant defense and enhancing 
feeding efficiency (Bari and Jones, 2009). These examples illustrate 
the intricate strategies by which herbivorous insects manipulate 
plant hormonal crosstalk, thereby enhancing their ability to 
overcome plant defenses. 

Insect herbivores have evolved intricate countermeasures to 
overcome plant defenses mediated by ABA, a key hormone involved 
in stress adaptation (Park et al., 2019). One such strategy involves 
the secretion of salivary effector proteins that disrupt ABA signaling 
to suppress plant defensive responses. These effectors may target 
crucial components of the ABA pathway, including ABA receptors 
(PYR/PYL/RCAR),  protein  phosphatases  (PP2Cs) ,  or  
transcriptional regulators, effectively modulating guard cell 
behavior and secondary metabolite production (Korek and 
FIGURE 10 

A schematic representation of insect counter-defense mechanisms against plant defense barriers. These include morphological, behavioral, and 
biochemical adaptations, in addition to effector delivery mechanisms, hormonal crosstalk manipulation, and the suppression of plant immune 
responses by herbivore effectors. Additional strategies involve target site insensitivity, molecular adaptations, and symbiotic relationships that 
enhance insect survival against plant defenses (created using BioRender.com). 
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Marzec, 2023). Such interference can compromise stomatal closure, 
leading to enhanced water loss and weakened physical barriers, 
ultimately increasing insect feeding efficiency. Additionally, certain 
insect salivary proteins have been shown to mimic phosphatases, 
potentially dephosphorylating key signaling proteins involved in 
ABA cascades, thereby dampening the transcription of ABA-
responsive genes that are otherwise critical for defense 
reinforcement under combined drought and herbivore pressure 
(Khan et al., 2015). Beyond signaling disruption, insects may 
enzymatically degrade or detoxify ABA through metabolic 
conversion pathways, reducing the hormone’s bioavailability. 
Some evidence suggests that insect species may upregulate specific 
oxidases or transferases that modify plant-derived ABA into 
inactive forms (Kosma et al., 2009). While such detoxification 
pathways remain underexplored, they represent a compelling 
frontier in plant-insect interaction research. Moreover, plant 
biotechnology research suggests that enhancing ABA pathway 
robustness through genetic engineering can mitigate such insect 
manipulations. For instance, transgenic lines with fortified ABA 
signaling components have shown improved resilience to both 
abiotic and biotic stress, although precise gene targets and field 
validation remain critical (Dhariwal et al., 1998). These multifaceted 
counter-adaptations reflect the dynamic co-evolution between 
plants and insect herbivores, underscoring the need for integrated 
pest management strategies that consider both plant resistance and 
insect plasticity in manipulating defense signaling networks. 
 

4.5 Effector delivery mechanisms in 
herbivores 

Herbivorous insects have evolved precise delivery systems to 
deploy effector molecules that interfere with host immunity at the 
cellular and molecular levels. Piercing–sucking insects, including 
aphids and whiteflies, utilize slender stylets to navigate intercellular 
spaces and deliver salivary effectors directly into the cytoplasm of 
phloem and mesophyll cells, where they disrupt host immune 
signaling (Wang et al., 2023; Naalden et al., 2021). For instance, 
Myzus persicae secretes Mp10, which suppresses callose deposition 
at sieve plates, thereby maintaining phloem conductivity for 
sustained nutrient uptake (Bos et al., 2010). Bemisia tabaci 
releases the effector BtE1 that interferes with SA-mediated 
defense cascades, leading to reduced expression of defense-related 
genes and enhanced phloem extraction efficiency (van Kleeff et al., 
2024). Similarly, rice planthoppers like Nilaparvata lugens 
translocate effectors such as NlNSE1 and NlNSE2 into host 
tissues to suppress JA biosynthetic and downstream signaling 
pathways, thereby diminishing the accumulation of phenolic and 
flavonoids essential for herbivore deterrence (Lou et al., 2005). 
These strategies facilitate long-term colonization and reproductive 
success. Chewing insects, such as caterpillars and coleopterans, also 
employ salivary effectors during feeding to suppress localized 
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immune responses. Helicoverpa armigera secretes GOX, which 
attenuates the oxidative burst by downregulating NADPH oxidase 
activity and interfering with ROS-dependent amplification of JA 
signaling (Tian et al., 2012). Likewise, L. decemlineata produces 
polygalacturonase (LDPG1), which degrades homogalacturonan in 
the plant cell wall matrix, thereby weakening structural integrity 
and facilitating herbivore feeding (Gosset et al., 2009). Other 
herbivores have evolved enzymatic adaptations that modulate 
secondary metabolite activation. N. lugens secretes b-glucosidases 
that hydrolyze glucosylated precursors, preventing the activation of 
toxic glucosinolates and reducing defense metabolite pools (Wang 
et al., 2008). Similarly, sawflies feeding on Brassicaceae manipulate 
the glucosinolate–myrosinase system to suppress the release of 
isothiocyanates, diminishing plant chemical deterrence (Ahuja 
et al., 2011). The diversification of effector repertoires across 
insect taxa illustrates a sophisticated evolutionary response to 
host immunity, reflecting the coevolutionary pressure exerted by 
plant surveillance systems. While plants continuously evolve novel 
receptors and immune modulators to recognize and neutralize 
insect effectors, herbivores reciprocally fine-tune effector 
specificity, expression timing, and delivery routes to evade 
detection and maintain feeding success (Wang et al., 2023). 
Understanding these dynamic molecular dialogues offers 
promising avenues for engineering crops with enhanced 
recognition capacity or effector-triggered resistance, laying the 
foundation for next-generation pest management strategies. 
5 Molecular crosstalk between plants 
and insects 

5.1 Signaling molecules in plant–insect 
interactions 

The intricate interplay between plants and herbivorous insects 
involves signaling molecules and genes orchestrating both plant 
defenses and insect counterstrategies (Zebelo and Maffei, 2015; 
Pang et al., 2021).  The JA  derivative JA-Ile,  in  particular, is
central to plant defenses against chewing insects. It binds to the 
COI1–JAZ receptor complex, degrading JAZ repressors and 
activating transcription factors like MYC2, which, in turn, 
induces PIs and secondary metabolites, such as glucosinolates and 
alkaloids (Kumar et al., 2024). SA plays a pivotal role in plant 
defense against phloem-feeding insects by activating PR genes 
through the SA signaling pathway (Fang et al., 2025). Systemin 
and ET amplify local and systemic defenses by interacting with the 
JA and SA pathways, while VOCs further enhance resistance (Erb, 
2018). Insect-derived elicitors, or HAMPs, refine plant responses. 
For instance, fatty acid–amino acid conjugates from S. frugiperda 
and b-glucosidase from Pieris brassicae activate MAPK cascades via 
plant LRR-RLK receptors, boosting secondary metabolite 
production (Vidhyasekaran, 2016). In contrast, insect salivary 
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effectors such as aphid Mp55 suppress plant defenses by reducing 
the accumulation of defense-related compounds, thereby 
facilitating infestation (Elzinga et al., 2014). In addition to Mp55, 
several candidate salivary effectors have been identified from M. 
persicae, including Mp10, Mp42, and MpC002, which are predicted 
to interfere with plant immune responses (Bos et al., 2010). Rapid 
plant defense signaling involves ROS and calcium ion (Ca²+), which 
activate transcription factors like WRKY through MAPK and 
CDPK pathways, further amplifying stress-responsive gene 
expression (Adachi et al., 2015). Additionally, jasmonate signaling 
activates MYC transcription factors, such as MYC2, to regulate 
defense responses (Lorenzo et al., 2004). 
5.2 Role of microRNAs and small 
interfering RNAs in mediating plant–insect 
interactions 

Small RNAs, including miRNAs and siRNAs, regulate plant 
defenses by fine-tuning gene expression post-transcriptionally. Both 
miR393 and miR319 enhance JA defenses by suppressing auxin 
signaling and modulating JA biosynthesis, promoting secondary 
metabolite production (Schommer et al., 2008; Iglesias et al., 2014; 
Jacob et al., 2021), and siRNAs, such as phasiRNAs derived from 
miRNA-targeted NLR transcripts, silence genes that negatively 
regulate JA signaling, ensuring resource-efficient defenses during 
herbivore attacks (Liao et al., 2022). Cross-kingdom RNA transfer 
adds complexity to plant-insect interactions. Plants can deliver 
small RNAs via extracellular vesicles to insects, targeting genes 
involved in detoxification or digestion, such as cytochrome P450s in 
H. armigera, thereby disrupting insect physiology (Zhao et al., 
2024). Conversely, H. armigera miRNAs, such as miR854, 
manipulate plant defenses by targeting JA-signaling regulators 
like WRKY, shifting the JA–SA balance to weaken resistance (Tan 
et al., 2012; Chen et al., 2019a). Small RNAs secreted by insect saliva 
can target key plant defense genes, including those involved in 
lignin biosynthesis (e.g., MYB transcription factors), RLK signaling 
pathways, and ROS generation, thereby attenuating both structural 
and biochemical defenses (Han et al., 2025). For example, siRNAs 
from aphids and whiteflies interfere with NADPH oxidases, 
reducing the oxidative bursts crucial for secondary metabolite 
production (Hu et al., 2020). These RNA-mediated interactions 
highlight the sophistication and complexity of the co-evolutionary 
arms race between plants and herbivores. 
6 Biotic factors influencing plant– 
insect interactions 

Biotic factors, including symbiotic microbes, endophytes, and 
natural enemies, shape plant–insect dynamics by mediating 
ecological and molecular interactions that enhance plant 
resilience to herbivory (Pineda et al., 2013). Microbes, such as 
mycorrhizal fungi and nitrogen-fixing bacteria, prime hormonal 
pathways and bolster secondary metabolite production, while 
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endophytes induce systemic resistance and produce bioactive 
compounds that deter herbivores (Grabka et al., 2022). Plant-
associated microbiomes also modulate VOC emissions that attract 
herbivore predators, reinforcing defense strategies (Raza et al., 
2021). Additionally, natural predators and parasitoids not only 
directly suppress pest populations but also indirectly influence 
plant immunity through trophic cascades, reinforcing plant 
defense strategies (Simberloff, 2011). 
6.1 Role of symbiotic microbes in plant 
immunity to insect herbivores 

Symbiotic microbes critically influence plant–insect dynamics 
by either enhancing plant immunity or facilitating herbivore 
adaptation. In the rhizosphere, arbuscular mycorrhizal fungi 
(AMF) and nitrogen-fixing rhizobia prime plant defenses by 
modulating phytohormonal pathways. AMF enhance JA-
dependent synthesis of terpenoids and phenolics that deter insect 
feeding (Sharma et al., 2017; Boyno et al., 2023). Sinorhizobium 
meliloti, which forms nodules in legumes like Medicago truncatula, 
not only improves nitrogen status but also strengthens aphid 
resistance through JA-mediated induction of deterrent 
metabolites (Pandharikar et al., 2020). Endophytic fungi and 
bacteria within plant tissues also contribute to insect resistance. 
Fusarium solani-derived endophytes in rice upregulate phenolic 
biosynthesis and PR gene expression, reducing stem borer 
infestation (De Lamo and Takken, 2020; Xia et al., 2022). 
Similarly, Epichloë fungi in grasses produce defensive alkaloids— 
peramine and lolines regulated by JA, SA, and ET signaling 
crosstalk (Bharadwaj et al., 2020). Recent work has shown that 
plant-associated microbiomes directly modulate hormone-

regulated defenses in plant–insect interactions (Théatre et al., 
2021). A meta-analysis revealed that inoculation with PGPR (e.g., 
Pseudomonas fluorescens, Bacillus subtilis) enhances resistance to 
chewing insects by inducing JA- and ET-mediated defense 
responses, including elevated PIs and phenolic accumulation in 
leaves demonstrated under greenhouse conditions in cabbage and 
maize (Ruiz-Santiago et al., 2025). Endophytic Trichoderma 
asperellum M2RT4 induces systemic resistance against Tuta 
absoluta in tomato by activating both SA and JA signaling 
pathways and altering volatile emissions to reduce oviposition 
and larval survival (Agbessenou et al., 2022). Moreover, Root 
herbivory by insects alters rhizosphere microbial communities, 
which feeds back to influence aboveground plant defense via ISR-
like mechanisms (Friman et al., 2021). These studies highlight direct 
and indirect hormone-pathway modulation by microbes, 
contextualized in eco-physiological setups. Additionally, microbes 
appear to subtly influence IAA- and JA-hormone balance: PGPR-
induced auxin changes may prime downstream defense cascades 
(root-shoot signaling), aligning with the timing and strength of 
systemic responses (Rashid and Chung, 2017). It is important to 
emphasize that these effects, though robust in controlled 
environments, vary significantly with plant genotype, microbial 
consortia, environmental factors, and insect feeding strategies 
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(Tronson and Enders, 2025). These examples illustrate how 
microbial partnerships facilitate plant defense suppression via 
detoxification, hormonal modulation, and nutritional support. 
6.2 Role of natural predators and 
parasitoids in modulating plant immunity 

Natural predators and parasitoids regulate herbivore 
populations, indirectly enhancing plant immunity through 
trophic cascades. By reducing herbivore pressure, they allow 
plants to allocate resources toward growth and reproduction, 
making predator–prey interactions important to sustaining plant 
health (Silliman and Angelini, 2012). Predators like lady beetles 
(Coccinellidae) prey on aphids, reducing aphid populations and 
thereby diminishing the secretion of salivary effectors that suppress 
plant defenses. This predation enables plants to maintain their 
natural immune responses (Elzinga and Jander, 2013). Parasitoids, 
such as Trichogramma species, parasitize pest eggs and disrupt the 
host’s ability to produce salivary effectors, similarly reducing 
herbivore-induced plant-defense suppression and allowing 
stronger immune activation (Martel et al., 2021). Plants also 
detect insect oviposition and initiate defenses against subsequent 
herbivory (Wang et al., 2021c). In A. thaliana, for example, 
oviposition by P. brassicae activates an SA-dependent signaling 
pathway, inducing PR protein expression and enhancing systemic 
resistance (Gouhier-Darimont et al., 2013). This response involves 
the recognition of egg-associated elicitors, similar to PAMPs, 
triggering localized and systemic defense mechanisms to prepare 
for future attacks. 
7 Biotechnological and genetic 
engineering approaches to enhancing 
plant immunity 

The integration of biotechnology with plant immunity research 
has revolutionized pest-resistant crop development by enabling 
precise manipulation of molecular defense networks (Klümper 
and Qaim, 2014). Genetic engineering platforms, including 
transgenic expression systems, CRISPR/Cas9-mediated genome 
editing,  and  RNAi,  now  allow  targeted  modulation  of  
phytohormone signaling, transcriptional regulators, and small 
RNA pathways to strengthen plant immune responses. For 
instance, transgenic crops expressing B. thuringiensis (Bt) genes 
such as Cry1Ac and Cry1Ab (Crystal Protein) produce d­
endotoxins that bind to cadherin-like receptors in the midgut of 
lepidopteran pests, leading to pore formation, osmotic imbalance, 
and cell lysis (Chakrabarty et al., 2022). Overexpression of 
Arabidopsis thaliana Cystatin 1 (AtCYS1), a cystatin gene, 
enhances resistance to herbivory in Arabidopsis by inhibiting 
digestive cysteine proteases in insect midguts (Belenghi et al., 
2003). However, due to rapid pest adaptation, recent strategies 
emphasize multigene stacking, such as combining protease 
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inhibitors and lectins, for broader and more sustainable defense 
(Belenghi et al., 2003). 

CRISPR/Cas9 genome editing  enables high-precision

modification of immune-related loci (Xuebo et al., 2023). 
Knockout of susceptibility (S) genes like MLO (Mildew Locus O) 
in barley or DMR6 (Downy Mildew Resistant 6) in tomato and 
sweet basil has been shown to confer enhanced resistance without 
growth penalties (Thomazella et al., 2021). Editing key 
transcriptional regulators like MYC2, MYC3, and MYC4 
amplifies JA-responsive pathways and increases the production of 
proteinase inhibitors and alkaloids, improving resistance against 
chewing herbivores such as S. littoralis (Fernández-Calvo et al., 
2011). More recent innovations use dead Cas9 (dCas9) fused to 
activator domains for transcriptional reprogramming of defense 
genes, enabling non-mutagenic but inducible defense expression 
(Gao, 2021). 

Host-induced gene silencing (HIGS) leverages RNAi by 
allowing plants to produce dsRNAs that target essential genes in 
insect pests upon ingestion. Transgenic tomato and tobacco 
expressing dsRNAs targeting Helicoverpa armigera genes such as 
V-ATPase, chitin synthase, and CYP6B6 reduce larval growth and 
midgut function (Jin et al., 2015; Mamta et al., 2016). Moreover, 
insects deploy cross-kingdom effectors such as miR29b, which, 
when delivered via saliva, silence host genes like BAG4 through 
AGO1 recruitment, impairing defense (Han et al., 2023). 
Counteracting such miRNAs by designing target mimics or 
CRISPR editing of AGO1-regulated promoters offers new 
resistance pathways. Additionally, silencing insect miRNAs like 
miR-7-5p derepresses OsbZIP43 in rice, activating defense 
transcription (Zhang et al., 2024d). 

However, RNAi-based resistance strategies face critical 
challenges, including instability of dsRNA in field conditions, 
limited uptake in phloem-feeding pests, and inconsistent efficacy 
due to rapid degradation by insect gut nucleases. To overcome these 
issues, chloroplast genome engineering has been proposed as a 
transgene containment strategy and a sustainable expression 
platform for dsRNAs. For instance, Bulle et al. (2023) 
demonstrated that engineering the chloroplast genome can 
produce high levels of stable dsRNA, minimizing off-target 
movement and enhancing pest-specific toxicity, especially for 
Scirtothrips dorsalis (chili thrips). 

Metabolic engineering is another frontier, enabling redirection 
of central metabolism toward defense metabolite production (Tilkat 
et al., 2024). Overexpression of TPS10 and TPS21 increases 
emission of volatile monoterpenes such as a-pinene and (E)-b­
ocimene, which repel pests or attract their natural enemies (Wang 
et al., 2021c). Activation of transcription factors like MYB20, 
MYB85,  and  WRKY45  enhances  flavonoid  and  l ignin  
biosynthesis, reinforcing physical barriers and modulating ROS 
homeostasis (Bahrini et al., 2011; Geng et al., 2020). 

Advanced synthetic biology approaches integrate multiplex 
CRISPR editing with hormone-responsive synthetic promoters 
and field-deployable delivery tools (Vitorino, 2024). For example, 
star polycation (SPc) nanocarriers improve delivery and stability of 
dsRNAs or miRNAs, enabling RNAi-mediated pest control in 
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open-field conditions (Abdelrahman et al., 2021). Recently 
identified compact genome editors such as TnpB, a minimalist 
RNA-guided endonuclease, offer potential for lightweight editing 
systems compatible with large-genome crops (Karvelis et al., 2021). 
Synthetic inducible promoters responsive to pest-associated cues 
can also be coupled to immune signaling genes, activating defense 
only under attack to conserve energy (Yang et al., 2022). These 
molecularly informed strategies exemplify the integration of 
genome engineering, epigenetic regulation, and metabolic 
reprogramming for developing pest-resilient crops tailored to 
dynamic agro ecological challenges (Zaidi et al., 2020; Lyu 
et al., 2021). 
 

8 Challenges and future directions 

8.1 Gaps in our understanding of plant 
immunity to insect herbivores 

Despite advancements, critical gaps remain in understanding 
the complexity of plant immunity to herbivores. Hormonal 
crosstalk between JA, SA, and ET pathways under field 
conditions, where biotic and abiotic stresses co-occur, is not fully 
elucidated (Ku et al., 2018; Ament et al., 2010), and trade-offs in JA­
SA antagonism, dynamically modulated by herbivore pressures, 
environmental fluctuations, and genotype-specific regulatory

networks, continue to complicate precise predictions in defense 
allocation (Samanta and Roychoudhury, 2024). Also, the roles of 
resistance genes, miRNAs, and Long non-coding RNAs (lncRNAs) 
in herbivore defense are largely unexplored and require functional 
studies to reveal their precise behaviors (Huang et al., 2023). Newly 
identified herbivore effectors, such as those found in P. rapae and 
M. sexta, demonstrate their ability to manipulate plant defenses, yet 
their mechanisms and targets need deeper investigation. 
Additionally, the temporal dynamics of defense activation and 
specificity under multi-herbivore attacks remain poorly 
understood (Croy et al., 2021). Addressing these gaps demands 
integrative approaches that incorporate ecological conditions, 
coevolutionary pressures, and pest adaptation mechanisms. 

In field production systems, plant defense mechanisms operate 
alongside and often interact with common agronomic practices 
such as chemical applications and IPM. While agrochemicals (e.g., 
synthetic insecticides) are effective in reducing pest pressures, they 
can disrupt hormonal signaling, harm non-target organisms, and 
promote resistance (Zhou et al., 2024; Ahmad et al., 2024). 
Conversely, IPM strategies that combine monitoring, biological 
control, cultural practices, and targeted chemical interventions 
can support natural plant defense pathways while reducing 
reliance on pesticides, though adoption and implementation 
remain highly context-dependent due to economic and logistical 
challenges (Grasswitz, 2019; Wyckhuys et al., 2023). Incorporating 
discussions on these practical challenges is essential for aligning 
mechanistic insights with real-world crop protection, ensuring that 
laboratory-based discoveries translate effectively into field-resilient 
plant immunity. 
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Pest adaptation, a significant impediment in plant protection, 
involves evolutionary shifts that undermine the long-term efficacy 
of biotechnological interventions. For instance, B. thuringiensis (Bt) 
cotton, initially celebrated for its effectiveness in reducing 
lepidopteran pest infestations in India, has increasingly faced 
challenges due to the development of resistant pest populations 
under continuous selection pressure (Karimi et al., 2012; Xing and 
Wang, 2024). This resistance emergence underscores the necessity 
for robust resistance management strategies such as refuge planting 
and gene pyramiding to maintain the sustainability of Bt 
technologies (Bravo et al., 2015). Concurrently, the ecological 
implications of these interventions require comprehensive 
scrutiny. The deployment of biocontrol agents and their 
derivatives, aimed at suppressing pest populations below 
economic thresholds, contributes to maintaining ecosystem 
equilibrium by preserving beneficial arthropods (Patil et al., 
2021) .  However ,  real iz ing  the  ful l  potential  of  such  
biotechnological tools necessitates integrative frameworks that 
consider agroecological complexities. While initial field 
deployments like Bt cotton demonstrated reduced pesticide 
reliance and increased yield (Sánchez et al., 2018; Singh et al., 
2019), challenges such as RNAi variability under field conditions 
and poor farmer access to information persist (Ramıŕez-Pool et al., 
2024; Shields  et  al. ,  2018).  The  broader  shift  toward  
environmentally benign practices, aligned with green chemistry 
principles, emphasizes reduced toxicity, target specificity, and 
biodegradability, supporting IPM strategies. Nonetheless, the 
continued use of synthetic pesticides raises environmental and 
public health concerns, with mounting evidence of their 
contribution to soil, water, and air pollution and their 
bioaccumulative impacts on biodiversity and human health 
(Lahlali et al., 2022; Antoszewski et al., 2022). Ultimately, 
translating laboratory innovations into sustainable field solutions 
will require not only adaptive resistance management and 
regulatory coherence but also farmer-centric knowledge 
dissemination and ecosystem-based monitoring for long-term 
agricultural resilience. 
8.2 Ethical and ecological considerations 
for engineering plant immunity 

Despite their precision, the deployment of biotechnological 
tools, such as CRISPR/Cas9 and RNAi, raises ethical and 
ecological concerns. Genetically modified plants with enhanced 
resistance may disrupt natural pest–predator dynamics and affect 
nontarget species via unintended RNAi effects (Lundgren and 
Duan, 2013; Diaz et al., 2025). Public apprehensions about GM 
crops, as seen with Bt brinjal in India and stringent GM organism 
policies in the EU, emphasize the need for transparent risk 
assessments and stakeholder engagement (Singh, 2018; European 
Commission, 2024). Ecological concerns, including pest adaptation, 
gene flow to wild relatives, and the disruption of plant–microbe 
interactions, necessitate rigorous long-term studies (Mandal et al., 
2020). Strategies integrating genetic engineering with agroecological 
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practices can mitigate environmental impacts and foster sustainable 
pest management (Anderson et al., 2019). Additionally, robust 
governance frameworks and ecological risk assessments are 
critical for deploying engineered plants ethically and sustainably, 
ensuring their role in climate-resilient agriculture while preserving 
ecosystem integrity (Hilbeck et al., 2011). 

Recent changes in regulatory landscapes have started to 
differentiate genome-edited crops from conventional GMOs. For 
example, countries like the US, Brazil, and Japan have streamlined 
regulations for CRISPR-based edits that do not introduce foreign 
DNA, considering them equivalent to conventional breeding 
outcomes (EFSA Panel on Genetically Modified Organisms, 2010; 
Anderson et al., 2019). In contrast, the European Union continues 
to apply stringent GMO regulations to genome-edited plants, 
limiting their adoption and research potential (Voigt, 2023). 
These discrepancies influence global trade, technology diffusion, 
and food security policy, highlighting the urgent need for 
harmonized international biosafety standards. 

Furthermore, climate change amplifies the complexity of these 
challenges. Elevated CO2 levels, extreme weather patterns, and altered 
pest pressures may unpredictably interact with transgenic traits, 
affecting efficacy and stability (Liu et al., 2020). For instance, RNAi­
based insecticidal crops may exhibit variable gene silencing efficiency 
under fluctuating temperatures, potentially compromising pest 
control and increasing resistance risk (Fletcher et al., 2020). 
Additionally, CRISPR-driven traits targeting susceptibility (S)-genes 
may influence unintended pathways under abiotic stress, necessitating 
context-specific ecological modeling before field deployment. To 
address these emerging concerns, a new paradigm of “precautionary 
innovation governance” is recommended (Nascimento et al., 2023). 
This includes public–private collaborations, real-time monitoring of 
gene flow, off-target effects, and ecosystem-level feedback 
mechanisms. Implementing gene-drive containment strategies, 
temporal deployment limits, and trait-reversal mechanisms (e.g., 
CRISPR-off switches) can provide adaptive safety controls while 
ensuring continued innovation (Pawluk et al., 2016). Lastly, multi-

stakeholder dialogue involving farmers, ecologists, ethicists, and 
regulators is essential to develop trust and social license for genome-

edited agricultural solutions (Lindberg et al., 2023). 
9 Concluding remarks 

The dynamic interplay between plant immunity and insect 
herbivores underpins sustainable crop protection and ecological 
stability. Recent progress in deciphering defense signaling networks 
including JA-SA crosstalk, volatile-mediated tritrophic interactions, 
and secondary metabolite biosynthesis has laid a molecular 
foundation for minimizing pesticide dependency. Emerging tools 
such as RNA interference (RNAi) and CRISPR/Cas9 offer 
precision-based modulation of pest-responsive genes, enabling the 
development of cultivars with tailored immunity to herbivore 
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pressures. However, for field efficacy, future research must 
integrate metabolomics with spatially distributed field trials to 
identify defense biomarkers under variable environmental 
conditions and herbivore pressures. Specifically, CRISPR-edited 
crops targeting herbivore effector recognition or hormone 
biosynthesis nodes like JAZ repressors or WRKY transcription 
factors should be tested in climate-stressed agroecosystems to 
ensure durability and yield neutrality. Concurrently, multi-omics 
profiling of plant–microbe–insect interactions, especially involving 
endophytes, gut microbiota, and rhizosphere consortia, will be vital 
to unravel context-specific immunity triggers. Integrative strategies 
combining genome editing, AI-driven phenotyping, and ecological 
practices such as intercropping and push–pull systems will be 
instrumental in crafting next-generation climate-resilient crops. 
Moving forward, transdisciplinary collaboration between 
molecular biologists, ecologists, agronomists, and data scientists is 
imperative to translate laboratory innovations into robust field 
applications that safeguard biodiversity, ensure long-term pest 
resistance, and secure global food systems amid escalating 
climate challenges. 
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SUPPLEMENTARY FIGURE 1 

Differentiation between damage-associated molecular pattern (DAMP) and 
herbivore-associated molecular pattern (HAMP) pathways during plant 
defense against insect attack. The chart illustrates the distinct pathways and 
mechanisms of DAMPs and HAMPs in triggering plant defense responses 
upon insect feeding (created using BioRender.com). 
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Popp, J., Pető, K., and Nagy, J. (2013). Pesticide productivity and food security. A 
review. Agron. Sust. Dev. 33, 243–255. doi: 10.1007/s13593-012-0105-x 

Pri-Tal, O., Sun, Y., Dadras, A., Fürst-Jansen, J. M. R., Zimran, G., Michaeli, D., et al. 
(2023). Constitutive activation of ABA receptors in Arabidopsis reveals unique 
regulatory circuitries. New Phytol. 241, 703. doi: 10.1111/nph.19363 

Qasim, M., Islam, W., Rizwan, M., Hussain, D., Noman, A., Khan, K. A., et al. (2024). 
Impact of plant monoterpenes on insect pest management and insect-associated 
microbes. Heliyon 10, e39120. doi: 10.1016/j.heliyon.2024.e39120 

Qiao, H., Lu, P., Liu, S., Xu, C., Guo, K., Xu, R., et al. (2018). Volatiles from Aquilaria 
sinensis damaged by Heortia vitessoides larvae deter the conspecific gravid adults and 
attract its predator Cantheconidea concinna. Sci. Rep. 8, 15067. doi: 10.1038/s41598­
018-33404-z 

Raffa, K. F., Aukema, B. H., Erbilgin, N., Klepzig, K. D., and Wallin, K. F. (2005). 
Interactions among conifer terpenoids and bark beetles across multiple levels of scale: 
An attempt to understand links between population patterns and physiological 
processes. Rec. Adv. Phytochem. 39, 79–118. doi: 10.1016/S0079-9920(05)80005-X 

Raisch, T., and Raunser, S. (2023). The modes of action of ion-channel-targeting 
neurotoxic insecticides: lessons from structural biology. Nat. Struct. Mol. Biol. 30, 
1411–1427. doi: 10.1038/s41594-023-01113-5 

Ralph, S., Park, J.-Y., Bohlmann, J., and Mansfield, S. D. (2006). Dirigent proteins in 
conifer defense: gene discovery, phylogeny, and differential wound-and insect-induced 
expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol. Biol. 
60, 21–40. doi: 10.1007/s11103-005-2226-y 

Ramı ́ ́ ́ ́ ́rez-Pool, J. A., Calderon-Perez, B., Ruız-Medrano, R., Ortız-Castro, R., and 
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