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Introduction: Maize is a crucial source of nutrition, and the quality traits such as

starch content, oil content, and lysine content are essential formeeting the demands

of modern agricultural development. Understanding the genetic basis of these

quality traits significantly contributes to improving maize yield and optimizing end-

use quality. While previous studies have explored the genetic basis of these traits,

further investigation into the quantitative trait loci (QTL) responsible for variations in

starch content, oil content, and lysine content still requires additional attention.

Methods: Double haploid (DH) populations were developed via a nested

association mapping (NAM) design. Phenotypic data for starch, oil, and lysine

content were collected using near-infrared spectroscopy and analyzed via

ANOVA. Genotyping employed a 3K SNP panel, and genetic maps were

constructed using QTL IciMapping. QTL analysis integrated single linkage

mapping (SLM) and NAM approaches, with candidate genes identified via

maizeGDB annotation and transcriptome data.

Results: The broad-sense heritability of the populations with a range of 63.98-80.72%

indicated themajority of starch content, oil content and lysine content variations were

largely controlled by genetic factors. The geneticmapswere constructed and a total of

47 QTLs were identified. The phenotypic variation explained (PVE) of the three traits is

in a range of 2.60-17.24% which suggested that the genetic component of starch

content, oil content and lysine content was controlled bymany small effect QTLs. Five

genes encoding key enzymes in regulation of starch, oil and lysine synthesis and

metabolism located within QTLs were proposed as candidate genes in this study.

Discussion: The information presented herein will establish a foundation for the

investigation of candidate genes that regulate quality traits in maize kernels. These

QTLs will prove beneficial for marker-assisted selection and gene pyramiding in

breeding programs aimed at developing high-quality maize varieties.
KEYWORDS

maize, starch, oil, lysine, QTLs, genetic analysis
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1599530/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1599530/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1599530/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1599530/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1599530&domain=pdf&date_stamp=2025-05-16
mailto:ljw_plant@yeah.net
mailto:chengz5251@163.com
mailto:zxlnyz@126.com
https://doi.org/10.3389/fpls.2025.1599530
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1599530
https://www.frontiersin.org/journals/plant-science


He et al. 10.3389/fpls.2025.1599530
Introduction

Maize (Zea mays L.) is one of the most significant crops globally,

contributing to 43% of total cereal production worldwide (Žilić et al.,

2022). Beyond yield improvement, enhancing kernel quality traits-

starch, oil, and lysine has emerged as a priority to meet rising demands

for nutrient-dense crops and sustainable biorefineries (Planta and

Messing, 2017; Mishra et al., 2025). Starch, constituting 70%–80% of

kernel dry weight, directly determines caloric output and industrial

utility, while oil (4%–5%) and lysine (0.13%–0.30%) are pivotal for

nutritional value, particularly in livestock and human diets (Moro

et al., 1996; Comparot-Moss and Denyer, 2009; Ranum et al., 2014;

Zhang et al., 2019). This composition varies across genotypes and

environments, highlighting the genetic complexity underlying

carbohydrate and lipid allocation in kernels. Despite decades of

genetic research, the interplay between these traits and their genetic

networks remains poorly resolved, limiting holistic breeding strategies.

To elucidate the genetic variation in starch, oil, and lysine

biosynthesis and metabolism, a multitude of QTL studies have been

conducted over the past few years employing various mapping

methods and diverse populations. These investigations have

successfully identified numerous QTLs associated with quality traits

in maize kernels. For instance, six QTLs associated with starch content

in maize kernel were identified within a RIL population. Following the

application of the bin-map method to refine the QTL intervals, seven

genes emerged as candidate genes. Three of these genes encode

enzymes are involved in non-starch metabolism, while four genes

may function as direct regulators of starch biosynthesis (Wang et al.,

2015). Subsequently, a total of 50 QTLs were identified, including 18

novel QTLs, through the integration of single linkage mapping (SLM),

joint linkage mapping (JLM), and GWAS within a multi-parent

population comprising six recombinant inbred line (RIL)

populations (Hu et al., 2021). Many QTLs have been shown to

regulate seed oil accumulation in a randomly mated F2:3 population

derived from the cross between IHO and ILO (Alrefai et al., 1995;

Laurie et al., 2004). These studies have demonstrated that oil content

was controlled by numerous genes with individually small effects and

mainly additive gene action (Yang et al., 2010). An important high-oil

QTL, designated as qHO6, has been successfully cloned from

chromosome 6. The candidate gene identified encodes an acyl-CoA:

diacylglycerol acyltransferase (DGAT1-2), which is responsible for

catalyzing the final step in oil synthesis (Zheng et al., 2008). The major

QTL Pal9, which accounts for 42% of the phenotypic variation in

palmitic acid content, was identified on maize chromosome 9 within a

bi-parental segregating population. The candidate gene Zmfatb, which

encodes acyl-ACP thioesterase, is associated with this QTL (Li et al.,

2011b). In order to enhance breeding strategies aimed at achieving a

balanced amino acid composition in maize kernels, several QTLs

associated with lysine content or quality protein maize (QPM)-related

traits have been examined in previous studies, including o2 modifiers

on chromosomes 5, 7, and 9 (Holding et al., 2011; Wu and Messing,

2014). Recent multi-parent population studies reveal that natural

allelic diversity beyond o2 (e.g., o7 and fl2) significantly impacts

lysine biosynthesis, as observed in wheat and rice grain quality

research (Hung et al., 2017; Kumar et al., 2020).
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However, maize exhibits considerable phenotypic and genetic

diversity (Ansaf et al., 2024). The molecular diversity in maize is

estimated to be two- to fivefold greater than that found in other

domesticated grass crops (Buckler et al., 2001). This extensive

genetic variation has led to the observation that QTLs are often

specialized within distinct populations and parent lines.

Consequently, it motivates us to conduct further investigations

using relevant germplasm to enhance our understanding of the

genetic basis underlying quality traits. In this study, we constructed

three DH populations using a NAM design with four quality

parents. The genetic maps were developed and conducted

subsequent analyses to investigate the genetic basis and identify

QTLs associated with starch content, oil content, and lysine content.

Additionally, we proposed key genes involved in related

biosynthetic pathways within the QTL regions as candidate genes,

which may provide valuable insights into the genetic foundation of

quality traits in maize kernels and facilitate marker-assisted

breeding for high-quality maize.
Materials and methods

Plant materials and growing environment

Four maize inbred lines (X987F, AJ5001, AJ7001, and AJ9010)

from Maize Yufeng Biotechnology LLC were collected to construct

three DH populations with X987F as the common parent, forming a

NAM population. The plants were cultivated using a randomized

complete block design across three different locations in 2022:

Beijing (BJ, 40°08′N, 116°10′E), Neimeng (NM, 40°31′N, 107°05′
E), and Liaoning (LN, 40°82’N, 123°56’E). Each line was grown in

single-row plots, 250 cm in length, with 11 plants per row and 60

cm spacing between rows, under natural field conditions. The 11

plants in each row were self-pollinated, and 300 kernels were bulk-

sampled from five moderate-sized ears, with an equal number of

kernels collected from each ear. These bulk kernels were then used

for phenotyping.
Collection and analysis of phenotypic data

Phenotypic data were collected on three phenotypic quality

traits of maize, including starch content, oil content, and lysine

content. Specifically, a near-infrared reflectance (NIR) spectrometer

(DA 7250, Perten Instruments Inc., Sweden) was utilized to assess

the quality traits in maize kernels. Each sample underwent scanning

three times to obtain an average value. The phenotypic variation of

the quality traits was analyzed using R software version 4.0.1 with

the “AOV” function (ANOVA). The ANOVA model employed is

expressed as y = m + ag + be + e, where ag is the effect of the g
th line,

be is the effect of the eth environment, and e is the error. All of the
effects were considered to be random. These variance components

were used to calculate the broad-sense heritability as h2 = sg2/(sg2 +
se2/e), where sg2 is the genetic variance, se2 is the residual error,

and e is the number of environments. To eliminate the influence of
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environmental effects, the best linear unbiased predictor (BLUP)

value for each line was calculated using a linear mixed model that

considered both genotype and environment as random effects in the

R function “LME4,” and the trait BLUP values were used for

subsequent analyses.
Genotyping and construction of genetic
linkage map

The genotype of the three DH populations with their parents

was obtained by utilizing the GenoBaits Maize 1K marker panel

(Mol Breeding Biotechnology Co., Ltd., Shijiazhuang, China). A

total of 4,589 SNP markers were identified based on genotyping

using a target sequencing platform. The minor allele frequency

(MAF) and missing rate were estimated for each population, with

SNPs exhibiting MAF < 0.1 or a missing rate > 0.6 being filtered out

(Purcell et al., 2007). Following quality control measures, the

polymorphic SNPs between the two parental lines were utilized to

construct genetic linkage maps through the functions est.rf and

est.map from the R/qtl package, employing the Kosambi mapping

method (Broman et al., 2003). A joint linkage map for the three DH

populations was developed using the CMP module in QTL

IciMapping software (version 4.2).
QTL mapping for maize kernel quality traits

Using the genetic linkage maps derived from three DH

populations, SLM was conducted utilizing composite interval

mapping as previously described (Zeng, 1994; Hu et al., 2021),

which was implemented in Windows QTL Cartographer 2.5,

according to the methodology of Wang et al. (2010) for each DH

population. Model 6 of the Zmapqtl procedure (Basten et al., 1997)

in the Composite Interval Mapping module was employed to

identify QTLs across the genome by surveying intervals of 1.0 cM

between markers within a window size of 10 cM. Forward–

backward stepwise regression with five controlling markers was

used to account for background contributions from adjacent

markers. To determine the threshold logarithm of odds (LOD)

value for putative QTLs, 1,000 permutations were performed for

each trait in each DH population, and the resulting LOD score

threshold ranged from 2.76 to 3.27 (a = 0.05). For simplification

purposes, a LOD score threshold of 3.0 was adopted globally. The

confidence interval concerning the position of the QTL was

estimated using the 1.5-LOD support interval method as

articulated in Liu’s study (Liu et al., 2017). Additionally, we

utilized the R function “LM” to calculate total PVE by significant

individual QTLs.

The NAMmodule in QTL IciMapping (version 4.2) was used to

conduct the nested association mapping. The mapping approach

employed was ICIM-ADD (Li et al., 2011a), with a step size set at

1.0 cM. In the same way, 1,000 permutations were performed for

each trait. The resulting LOD score threshold ranged from 4.84 to
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5.36 (a = 0.05), and we adopted a LOD score of 5.0 as the

global threshold.
Identification of candidate genes

All genes located within the QTL support interval were

extracted based on their physical position using the Zea mays L.

B73 reference genome version 4.0. The functional annotation of

genes and information on starch, oil, and lysine metabolism

pathways were obtained from the maizeGDB database (http://

www.maizegdb.org/). The expression levels of candidate genes in

different tissues are derived from public transcriptome data (Yi

et al., 2019).
Results

Phenotypic variation and correlation
analysis among three traits

Four inbred lines exhibiting starch content ranging from 70.99%

to 74.22%, oil content between 4.01% and 5.04%, and lysine content

varying from 0.27% to 0.35% were collected for the development of

three DH populations. The three DH populations, namely, DHPop1,

DHPop2, and DHPop3, comprised 163, 219, and 320 lines,

respectively (Table 1). The distributions of all traits within the DH

populations showed continuous normality without significant

skewness (Figures 1A–C). Analysis of variance (ANOVA) revealed

that genotype variance exceeded environmental variance across

almost all populations (Table 1), indicating that phenotypic

variations were predominantly controlled by genetic factors. In

addition, starch content, oil content, and lysine content exhibited

average broad-sense heritabilities of 78.40%, 71.69%, and 74.89%,

respectively (Table 1). Therefore, the abundant phenotypic variation

along with high heritability observed in maize kernel quality traits

across the three DH populations provides a solid genetic foundation

for identifying new QTLs in maize.
Genotyping and genetic linkage map

The three DH populations were genotyped by using the

GenoBaits Maize 1K marker panel including 4,589 SNP markers.

After quality control, DHPop1, DHPop2, and DHPop3 contained

1,266, 1,210, and 1,249 high-quality SNP markers, respectively, and

covered all ten maize chromosomes. Based on the reference parental

polymorphic loci, three linkage maps were independently

constructed, with genetic map lengths of 728, 734, and 749 cM

(Supplementary Figure S1). The average genetic distance between

adjacent markers was 0.58, 0.61, and 0.62 cM in each DH population,

respectively. The combined linkage map for the three DH

populations using the CMP module in QTL IciMapping, included

1,993 SNP markers spanning a total genetic distance of 1,343 cM.
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Genetic architecture of quality traits
dissected via two methods

We performed SLM analysis in each DH population with the

composite interval mapping method (Zeng, 1994). In total, 37 QTLs

for quality traits were detected, including 14 QTLs for starch

content, 13 QTLs for oil content, and 10 QTLs for lysine content

(Supplementary Table S1, Supplementary Figure S2). The 1.5-LOD

supporting QTL interval averaged 46.26 cM, with a range of 1.7–

168.2 cM. The total PVE by all identified QTLs in a population

ranged from 20.67% to 53.51% for starch content, 28.71% to 33.98%

for oil content, and 7.53% to 37.13% for lysine content

(Supplementary Table S1). The PVE for the three traits showed

far less than broad-sense heritability (Figure 2A), which suggested

that some minor QTLs for these traits cannot be detected in bi-

parent populations. Of these QTLs, 75.68% had the PVE <10%
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(Supplementary Table S1). For starch content, the PVE for each

QTL ranged from 3.97% (qSC14 in DHPop3) to 17.24% (qSC04 in

DHPop1), and only 28.57% (4/14) of the QTLs had large effects

with PVE ≥ 10% (Figure 2A, Supplementary Table S1). For oil

content, the PVE for each QTL ranged from 3.16% (qOiL13 in

DHPop3) to 14.27% (qOiL07 in DHPop2), and only 23.08% (3/13)

of the QTLs had large effects with PVE ≥ 10% (Figure 2A,

Supplementary Table S1). For lysine content, the PVE for each

QTL ranged from 5.14% (qLys05 in DHPop3) to 12.06% (qLys08 in

DHPop3), and only 20.00% (2/10) of the QTLs had large effects

with PVE ≥ 10% (Figure 2A, Supplementary Table S1). For each DH

population, both parents in each DH population contained the

alleles that increased starch content, oil content, and lysine content,

respectively (Figures 2B–D, Supplementary Table S1). In addition,

the QTL co-localization analysis among these three populations

showed partial overlaps among more than two populations.
TABLE 1 The phenotypic performance of four parents, variance and broad-sense heritability of starch content, oil content, and lysine content in the
three DH populations.

Trait Parameters
DH Populations

DHPop1 DHPop2 DHPop3

Starch

Parents

Means ± SD (%)
X987F 70.99 ± 0.51

AJ5001 72.13 ± 0.47 AJ7001 74.22 ± 0.41 AJ9010 71.09 ± 0.89

p-value a <0.001*** <0.0001**** <0.001***

DHs

Means ± SD (%) 71.93 ± 2.06 72.12 ± 1.82 72.16 ± 2.26

Range (%) 65.57–75.69 66.69–76.44 64.64–76.83

h2 (%) e 80.72% 75.63% 78.86%

Oil

Parents

Means ± SD (%)
X987F 5.04 ± 0.13

AJ5001 4.01 ± 0.15 AJ7001 4.59 ± 0.17 AJ9010 4.44 ± 0.02

p-value a <0.0001**** <0.001*** <0.001***

DHs

Means ± SD (%) 4.64 ± 0.37 4.84 ± 0.40 4.64 ± 0.37

Range (%) 3.60–5.60 3.75–5.96 3.68–5.74

h2 (%) e 78.93% 72.15% 63.98%

Lysine

Parents

Means ± SD (%)
X987F 0.33 ± 0.03

AJ5001 0.27 ± 0.04 AJ7001 0.35 ± 0.02 AJ9010 0.31 ± 0.01

p-value a <0.001*** <0.01** <0.01**

DHs

Means ± SD (%) 0.31 ± 0.03 0.34 ± 0.04 0.30 ± 0.05

Range (%) 0.24–0.41 0.22–0.46 0.17–0.42

h2 (%) e 69.82% 77.9% 76.95%
ap-value based on a t-test evaluating two parental lines. ***p < 0.001, ****p < 0.0001; ebroad-sense heritability (h2).
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Moreover, 10 QTLs uniquely detected in a given population

underscored the genetic diversity of the founders of the DH

populations (Figure 2E).

Subsequently, we identified a total of 17 QTLs using the NAM

analysis, including seven QTLs for starch content, four QTLs for oil

content, and six QTLs for lysine content (Table 2, Supplementary

Table S2). The total PVE averaged 5.42%, with a range of 2.60%–
Frontiers in Plant Science 05
9.72% in all populations for the three traits. Compared with the

SLM results, the QTL interval was expectedly small, with 82.35%

(14/17) of the QTL intervals falling within 50 Mb. The QTL co-

localization analysis showed that almost all QTL from NAM were

overlapping intervals with these from SLM, which indicates that the

QTLs mined from the three DH populations established are

representative (Figure 2E).
FIGURE 1

Phenotypic variation analysis of three traits. (A–C) Phenotypic variation in related to starch content, oil content, and lysine content among the three
DH populations. The black arrows indicated the values for the common parent line X987F, while the blue arrows represented the values for the
unique parent lines.
FIGURE 2

Summary of single QTLs for starch content, oil content, and lysine content identified by SLM and NAM analysis. (A) Broad-sense heritability (h2) and
total PVE for single QTLs in each population. (B–D) Effect size and the origin of the increasing alleles of the identified single QTLs. Orange bars
indicated that increasing alleles come from the unique parent lines, while blue bars indicated that increasing alleles come from the common parent.
(E) Distribution of single QTLs on chromosomes.
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Identification of candidate genes
underlying the detected QTLs

The genes located within the QTL support interval were

extracted, resulting in the identification of 20,367 genes

(Supplementary Table S3). According to the annotation in the

MaizeGDB database (www.maizegdb.org), genes with the most

relevant functional annotation information was nominated as the

candidate genes. Phosphoglucomutase2 protein-coding gene pgm2

was the most abundant annotations gene for starch content

positioned in 11,195,010–11,201,017 interval of chromosome 5

(Figure 3A, Supplementary Table S3). Expression pattern analysis

showed that pgm2 was expressed in all tissues of maize, and the

expression levels were relatively the same except in pollen

(Figure 3B). There were two annotations genes for oil content.

Acyl carrier protein coding gene ACP was positioned in

252129992–252138538 interval of chromosome 1 and expressed

in all tissues (Figures 3C, D; Supplementary Table S3). Acyl-

coenzyme A oxidase coding gene ACOX was positioned in

7209473–7214489 interval of chromosome 4 (Figure 3E,

Supplementary Table S3). ACOX was also expressed in almost all

tissues of maize except in pollen (Figure 3F). In addition, the

expression levels in the embryo and endosperm vary with

different developmental stages (Figure 3F). For lysine content,

glyceraldehyde-3-phosphate dehydrogenase 4 coding gene gpc4

and Acyl-activating enzyme-like protein coding gene o7 were

positioned in 186104976–186109690 interval of chromosome 5

and 149382212–149384169 interval of chromosome 10,

respectively (Figure 3G, I; Supplementary Table S3). gpc4 was

expressed in all tissues of maize, and the expression level of o7

was significantly lower in the shoot apical meristem (SAM), ear,

cob, and embryo tissues compared to other tissues (Figures 3H, J).
Discussion

QTL mapping precision

SNP markers represent the most prevalent variations within

genomes, and their application in plant breeding has significantly

enhanced the precision of QTL mapping and genetic analysis

(Bhattramakki et al., 2002; Mammadov et al., 2012; Kaur et al.,

2021). By conditioning linked markers during testing, the sensitivity

of the test statistic to the positions of individual QTLs is heightened,

thus improving the accuracy of QTL mapping (Zeng, 1994). With
Frontiers in Plant Science 06
advancements in sequencing technology, an increasing array of

molecular markers has been utilized for QTL mapping, leading to

substantial improvements in its accuracy (Schnable et al., 2009;

Chia et al., 2012; Bukowski et al., 2018; Fang et al., 2021). In this

study, the average physical intervals of the QTLs were 42.11 Mb;

29.79% (14/47) spanned physical intervals of <10 Mb, and 68.09%

(32/47) spanned <50 Mb. These findings indicate a considerable

enhancement in resolution due to both the large number of

employed markers and the suitable population type used in this

research. The resolution is likely on the order of 2–3 cM, since pairs

of markers that are farther apart rarely exhibit significant levels of

linkage disequilibrium.
Genetic basis of maize kernel quality traits
in the DH and NAM populations

The maize kernel quality traits including starch content, oil

content, and lysine content are complex quantitative traits, and the

genetic basis are still unresolved issues at present (Holding et al.,

2008; Huang et al., 2021). A set of parameters that elucidates the

genetic component underlying trait variation within or among

populations will influence the genetic architecture of quantitative

traits. Mapping populations represent one of the critical parameters

capable of capturing genetic diversity and possessing the power to

detect QTLs with small effects (Odell et al., 2022). DH populations

have the advantages of retaining homozygosity and genetically

identical replicates (Bordes et al., 2006; Foiada et al., 2015; Yan

et al., 2017; Chaikam et al., 2019) and nested association mapping

simultaneously exploits the advantages of both linkage and

association mapping and has been successfully applied to

investigate the genetic basis of complex quantitative traits in

maize (Yu et al., 2008; Gage et al., 2020). In this study, we

developed a NAM population formed by three DH populations

for detection of QTLs and identification of candidate genes. The

results of the phenotypic and genetic detection showed that there

was a wide phenotypic variation extent in starch content (64.64%–

76.83%), oil content (3.60-5.96%), and lysine content (0.17-0.46%)

and high broad-sense heritability in the DH populations. It

illustrated that these traits were mainly controlled by genetic

factors. Totally, 47 QTLs were found in the three DH populations

and distributed on chromosomes 1–10. Among the identified QTLs,

three QTLs (qSC02 in DHPop1 and qSC09 in DHPop3 for starch

content, qLys06 in DHPop3 for lysine content) spanned a 104.93

Mb physical interval on chromosome 4. Four QTLs (qSC07 in
TABLE 2 Summary of QTLs for starch content, oil content, and lysine content identified via two methods.

Starch content Oil content Lysine content

Method QTL numbera Total PVE (%)b QTL number Total PVE (%) QTL number Total PVE (%)

SLM 14 (2–7) 3.97–17.24 13 (4–5) 2.97–14.27 10 (1–6) 5.14–12.06

NAM 7 3.68–9.72 4 2.60–9.68 6 2.73–5.99
aThe number of all QTLs identified via SLM in three DH populations is shown before brackets, while the range of QTLs identified in a given DH population are shown within the brackets;
bPhenotypic variance explained (PVE) by all single QTLs.
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DHPop2 and qSC11 in DHPop3 for starch content, qOiL08 in

DHPop3 and qOiL12 in DHPop3 spanned 86.51 Mb physical

interval on chromosome 6. These results indicated that there is

cross-over in the regulatory network of starch content, oil content,

and lysine content in maize kernel. The average PVE per QTL was
Frontiers in Plant Science 07
7.89% using SLM in each DH population, whereas it was 5.42%

using NAM method across three DH populations. Similar to

previous studies, our findings align with the quantitative nature of

these quality traits, which are acknowledged to be governed by a

multitude of genes and QTLs with minor effects.
FIGURE 3

Co-localization of candidate genes (A, C, E, G, I) and their expression levels in different tissues from the public transcriptome data (Yi et al., 2019)
(B, D, F, H, J). SAM (shoot apical meristem) 1 and 2 : Vegetative Stages (V1 and V2); Leaf 1-7: the leaves of V1-V7; Ear 1-2: the ear of V1-V2; Cob 1-2:
Reproductive Stages (R1-R2); Tassel 1-5: the tassel of V13-V18; em 10-38: the embryo of DAP (days after pollination) 10-38; en 6-38: the
endosperm of DAP 6-38; s 0-38: the seed of DAP 6-38.
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Candidate genes underlying quality traits
QTLs

For starch content, pgm2 (Zm00001d013428) located in qSC10 was

themost abundant annotations among the annotated genes (Figure 3A),

which encoded phosphoglucomutase 2. Phosphoglucomutase (PGM) is

a phosphoenzyme (EC 5.4.2.2) and catalyzes an important trafficking

point in carbohydrate metabolism in cells of prokaryotic and eukaryotic

organisms (Manjunath et al., 1998). In maize, cytosolic isozymes of

PGM are encoded by pgm1 and pgm2 (Goodman et al., 1980; Stuber

and Goodman, 1983), and the existing levels of PGM are sufficient to

maintain the flux of Glc-1-phosphate into glycolysis under O2

deprivation (Manjunath et al., 1998).

There were three most abundant annotations genes for oil content

(Figure 3A). ACP (Zm00001d033149) in qOiL10 interval was

annotated to be one of the important acyl carrier protein encoding

gene. ACP is linked to the malonyl group via a transacylation reaction

when acetyl-CoA is carboxylated to malonyl-CoA and participates in

de novo fatty acid synthesis in plants and prokaryotes (Kalinger and

Rowland, 2023). In qOiL03 interval, there were two abundant

annotations genes both related to lipid synthesis metabolic

pathways. ACOX (Zm00001d048890) was identified as acyl-

coenzyme oxidase encoding gene that involved in the fatty acid b-
oxidation pathway in plant peroxisomes (Li et al., 2024; Ruan et al.,

2024). ACOX family members may specifically recognize distinct

chain lengths of fatty acids and catalyze the first step of peroxisomal

fatty acid b-oxidation to converse fatty acyl-CoAs to trans-2-enoyl

CoAs (Chu et al., 1994). This step is thought to be critical the rate of

carbon flux in the b-oxidation pathway (Pinfield-Wells et al., 2005).

Zm00001d017121 in qLys08 is one of the small multi-gene family,

which encoded a glyceraldehyde-3-phosphate dehydrogenase. Inmaize

cytoplasm, glyceraldehyde-3-phosphate dehydrogenase protein is

synthesized in roots during anoxic conditions and is known to be one

of the “anaerobicpolypeptides” (ManjunathandSachs,1997). Inplants,

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme

in the glycolytic pathway, reversibly converts the glyceraldehyde-3-

phosphate to1,3-bisphosphoglyceratebycouplingwith the reduction in

NAD1 toNADH (Sirover, 1997) and plays an important role in several

cellular processes, including plant hormone signaling, plant

development, and transcriptional regulation (Kim et al., 2024).

Zm00001d026649 in qLys04 was annotated as opaque endosperm7

(o7) gene. o7 is one of the three most important high-lysine mutants

in maize, alongside opaque2 (o2) and floury2 (fl2) (Misra et al., 1972;

Miclaus et al., 2011). The o7 mutant endosperm was characterized as

having significantlymore lysinedue to a general reduction in zein levels

and an increase in other lysine-rich proteins like the albumins and

globulins (Misra et al., 1972; Azevedo et al., 2004).
Conclusion

In this study, four maize inbred lines were used in a NAM design

to establish three DH populations. The kernel starch content, oil

content, and lysine content exhibited continuously and approximately

normal distribution. The analysis of broad-sense heritability indicated
Frontiers in Plant Science 08
that the majority of the three quality traits variations were largely

controlled by genetic factors. Nine major and 38 minor effect QTLs

were identified based on the genetic linkage map with LOD threshold

of 3.00 with PVE in the range of 2.60%–17.24%, which suggested that

the genetic component of starch content, oil content, and lysine

content was controlled by many small effect QTLs. Furthermore,

five main genes that were involved in starch, oil, and lysine synthesis

and metabolism pathways were the causal candidate genes underlying

the identified QTLs. These QTLs in this study will facilitate the

exploration of candidate genes that regulate the quality

characteristics of maize kernels. The advancement will also benefit

molecular breeding programs that utilize marker-assisted selection to

develop maize varieties with optimal quality traits.
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